Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2017

17.08.2017

Targeting metabolic pathways for head and neck cancers therapeutics

verfasst von: Masashi Yamamoto, Hidenori Inohara, Takashi Nakagawa

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Cancer cells have distinctive energy metabolism pathways that support their rapid cell division. The preference for anaerobic glycolysis under the normal oxygen condition is known as the Warburg effect and has been observed in head and neck cancers. These metabolic changes are controlled by cancer-related transcription factors, such as tumor suppressor gene and hypoxia inducible factor 1α. In addition, various metabolic enzymes also actively regulate cancer-specific metabolism including the switch between aerobic and anaerobic glycolysis. For a long time, these metabolic changes in cancer cells have been considered a consequence of transformation required to maintain the high rate of tumor cell replication. However, recent studies indicate that alteration of metabolism is sufficient to initiate tumor transformation. Indeed, oncogenic mutations in the metabolic enzymes, isocitrate dehydrogenase and succinate dehydrogenase, have been increasingly found in various cancers, including head and neck cancers. In the present review, we introduce recent findings regarding the cancer metabolism, including the molecular mechanisms of how they affect cancer pathogenesis and maintenance. We also discuss the current and future perspectives on therapeutics that target metabolic pathways, with an emphasis on head and neck cancer.
Literatur
2.
Zurück zum Zitat Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den stoffwechsel der tumoren. Biochemische Zeitschrift, 152, 319–344. Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den stoffwechsel der tumoren. Biochemische Zeitschrift, 152, 319–344.
4.
Zurück zum Zitat Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews. Cancer, 11(2), 85–95.CrossRefPubMed Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews. Cancer, 11(2), 85–95.CrossRefPubMed
6.
Zurück zum Zitat Schoder, H., Fury, M., Lee, N., & Kraus, D. (2009). PET monitoring of therapy response in head and neck squamous cell carcinoma. Journal of Nuclear Medicine, 50(Suppl 1), 74S–88S.CrossRefPubMed Schoder, H., Fury, M., Lee, N., & Kraus, D. (2009). PET monitoring of therapy response in head and neck squamous cell carcinoma. Journal of Nuclear Medicine, 50(Suppl 1), 74S–88S.CrossRefPubMed
7.
Zurück zum Zitat Cammaroto, G., Quartuccio, N., Sindoni, A., Di Mauro, F., Caobelli, F., & Young, A. W. G. (2016). The role of PET/CT in the management of patients affected by head and neck tumors: a review of the literature. European Archives of Oto-Rhino-Laryngology, 273(8), 1961–1973.CrossRefPubMed Cammaroto, G., Quartuccio, N., Sindoni, A., Di Mauro, F., Caobelli, F., & Young, A. W. G. (2016). The role of PET/CT in the management of patients affected by head and neck tumors: a review of the literature. European Archives of Oto-Rhino-Laryngology, 273(8), 1961–1973.CrossRefPubMed
8.
Zurück zum Zitat Hanamoto, A., Tatsumi, M., Takenaka, Y., Hamasaki, T., Yasui, T., Nakahara, S., et al. (2014). Volumetric PET/CT parameters predict local response of head and neck squamous cell carcinoma to chemoradiotherapy. Cancer Medicine, 3(5), 1368–1376.CrossRefPubMedPubMedCentral Hanamoto, A., Tatsumi, M., Takenaka, Y., Hamasaki, T., Yasui, T., Nakahara, S., et al. (2014). Volumetric PET/CT parameters predict local response of head and neck squamous cell carcinoma to chemoradiotherapy. Cancer Medicine, 3(5), 1368–1376.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gross, A. M., Orosco, R. K., Shen, J. P., Egloff, A. M., Carter, H., Hofree, M., et al. (2014). Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nature Genetics, 46(9), 939–943.CrossRefPubMedPubMedCentral Gross, A. M., Orosco, R. K., Shen, J. P., Egloff, A. M., Carter, H., Hofree, M., et al. (2014). Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nature Genetics, 46(9), 939–943.CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Schwartzenberg-Bar-Yoseph, F., Armoni, M., & Karnieli, E. (2004). The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Research, 64(7), 2627–2633.CrossRefPubMed Schwartzenberg-Bar-Yoseph, F., Armoni, M., & Karnieli, E. (2004). The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Research, 64(7), 2627–2633.CrossRefPubMed
12.
Zurück zum Zitat Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126(1), 107–120.CrossRefPubMed Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126(1), 107–120.CrossRefPubMed
13.
Zurück zum Zitat Jiang, P., Du, W., Wang, X., Mancuso, A., Gao, X., Wu, M., et al. (2011). p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biology, 13(3), 310–316.CrossRefPubMedPubMedCentral Jiang, P., Du, W., Wang, X., Mancuso, A., Gao, X., Wu, M., et al. (2011). p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biology, 13(3), 310–316.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312(5780), 1650–1653.CrossRefPubMed Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312(5780), 1650–1653.CrossRefPubMed
15.
Zurück zum Zitat Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A., & Feng, Z. (2010). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7455–7460.CrossRefPubMedPubMedCentral Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A., & Feng, Z. (2010). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7455–7460.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Feng, Z., Hu, W., de Stanchina, E., Teresky, A. K., Jin, S., Lowe, S., et al. (2007). The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Research, 67(7), 3043–3053.CrossRefPubMed Feng, Z., Hu, W., de Stanchina, E., Teresky, A. K., Jin, S., Lowe, S., et al. (2007). The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Research, 67(7), 3043–3053.CrossRefPubMed
17.
Zurück zum Zitat Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nature Cell Biology, 2(7), 423–427.CrossRefPubMed Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nature Cell Biology, 2(7), 423–427.CrossRefPubMed
18.
Zurück zum Zitat Brahimi-Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia signalling controls metabolic demand. Current Opinion in Cell Biology, 19(2), 223–229.CrossRefPubMed Brahimi-Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia signalling controls metabolic demand. Current Opinion in Cell Biology, 19(2), 223–229.CrossRefPubMed
19.
Zurück zum Zitat Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3(3), 187–197.CrossRefPubMed Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3(3), 187–197.CrossRefPubMed
20.
Zurück zum Zitat Lu, H., Forbes, R. A., & Verma, A. (2002). Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of Biological Chemistry, 277(26), 23111–23115.CrossRefPubMed Lu, H., Forbes, R. A., & Verma, A. (2002). Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of Biological Chemistry, 277(26), 23111–23115.CrossRefPubMed
21.
Zurück zum Zitat Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(51), 32529–32537.CrossRefPubMed Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(51), 32529–32537.CrossRefPubMed
22.
Zurück zum Zitat Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. The Journal of Biological Chemistry, 281(14), 9030–9037.CrossRefPubMed Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. The Journal of Biological Chemistry, 281(14), 9030–9037.CrossRefPubMed
23.
Zurück zum Zitat Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634.CrossRefPubMed Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634.CrossRefPubMed
24.
Zurück zum Zitat Beasley, N. J., Leek, R., Alam, M., Turley, H., Cox, G. J., Gatter, K., et al. (2002). Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Research, 62(9), 2493–2497.PubMed Beasley, N. J., Leek, R., Alam, M., Turley, H., Cox, G. J., Gatter, K., et al. (2002). Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Research, 62(9), 2493–2497.PubMed
25.
Zurück zum Zitat Gong, L., Zhang, W., Zhou, J., Lu, J., Xiong, H., Shi, X., et al. (2013). Prognostic value of HIFs expression in head and neck cancer: a systematic review. PloS One, 8(9), e75094.CrossRefPubMedPubMedCentral Gong, L., Zhang, W., Zhou, J., Lu, J., Xiong, H., Shi, X., et al. (2013). Prognostic value of HIFs expression in head and neck cancer: a systematic review. PloS One, 8(9), e75094.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Mathupala, S. P., Ko, Y. H., & Pedersen, P. L. (2006). Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 25(34), 4777–4786.CrossRefPubMedPubMedCentral Mathupala, S. P., Ko, Y. H., & Pedersen, P. L. (2006). Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 25(34), 4777–4786.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Nakashima, R. A., Mangan, P. S., Colombini, M., & Pedersen, P. L. (1986). Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N′-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry, 25(5), 1015–1021.CrossRefPubMed Nakashima, R. A., Mangan, P. S., Colombini, M., & Pedersen, P. L. (1986). Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N′-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry, 25(5), 1015–1021.CrossRefPubMed
28.
Zurück zum Zitat Shinohara, Y., Sagawa, I., Ichihara, J., Yamamoto, K., Terao, K., & Terada, H. (1997). Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. Biochimica et Biophysica Acta, 1319(2–3), 319–330.CrossRefPubMed Shinohara, Y., Sagawa, I., Ichihara, J., Yamamoto, K., Terao, K., & Terada, H. (1997). Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. Biochimica et Biophysica Acta, 1319(2–3), 319–330.CrossRefPubMed
29.
Zurück zum Zitat Baschnagel, A. M., Wobb, J. L., Di lworth, J. T., Williams, L., Eskandari, M., Wu, D., et al. (2015). The association of (18)F-FDG PET and glucose metabolism biomarkers GLUT1 and HK2 in p16 positive and negative head and neck squamous cell carcinomas. Radiotherapy and Oncology, 117(1), 118–124.CrossRefPubMed Baschnagel, A. M., Wobb, J. L., Di lworth, J. T., Williams, L., Eskandari, M., Wu, D., et al. (2015). The association of (18)F-FDG PET and glucose metabolism biomarkers GLUT1 and HK2 in p16 positive and negative head and neck squamous cell carcinomas. Radiotherapy and Oncology, 117(1), 118–124.CrossRefPubMed
30.
Zurück zum Zitat Peschiaroli, A., Giacobbe, A., Formosa, A., Markert, E. K., Bongiorno-Borbone, L., Levine, A. J., et al. (2013). miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene, 32(6), 797–802.CrossRefPubMed Peschiaroli, A., Giacobbe, A., Formosa, A., Markert, E. K., Bongiorno-Borbone, L., Levine, A. J., et al. (2013). miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene, 32(6), 797–802.CrossRefPubMed
31.
Zurück zum Zitat Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646.CrossRefPubMed Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646.CrossRefPubMed
32.
Zurück zum Zitat Maschek, G., Savaraj, N., Priebe, W., Braunschweiger, P., Hamilton, K., Tidmarsh, G. F., et al. (2004). 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Research, 64(1), 31–34.CrossRefPubMed Maschek, G., Savaraj, N., Priebe, W., Braunschweiger, P., Hamilton, K., Tidmarsh, G. F., et al. (2004). 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Research, 64(1), 31–34.CrossRefPubMed
33.
Zurück zum Zitat Geschwind, J. F., Ko, Y. H., Torbenson, M. S., Magee, C., & Pedersen, P. L. (2002). Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Research, 62(14), 3909–3913.PubMed Geschwind, J. F., Ko, Y. H., Torbenson, M. S., Magee, C., & Pedersen, P. L. (2002). Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Research, 62(14), 3909–3913.PubMed
34.
Zurück zum Zitat Ko, Y. H., Smith, B. L., Wang, Y., Pomper, M. G., Rini, D. A., Torbenson, M. S., et al. (2004). Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochemical and Biophysical Research Communications, 324(1), 269–275.CrossRefPubMed Ko, Y. H., Smith, B. L., Wang, Y., Pomper, M. G., Rini, D. A., Torbenson, M. S., et al. (2004). Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochemical and Biophysical Research Communications, 324(1), 269–275.CrossRefPubMed
35.
Zurück zum Zitat Sandulache, V. C., Ow, T. J., Pickering, C. R., Frederick, M. J., Zhou, G., Fokt, I., et al. (2011). Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer, 117(13), 2926–2938.CrossRefPubMedPubMedCentral Sandulache, V. C., Ow, T. J., Pickering, C. R., Frederick, M. J., Zhou, G., Fokt, I., et al. (2011). Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer, 117(13), 2926–2938.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Nakajo, M., Kajiya, Y., Tani, A., Yoneda, S., Shirahama, H., Higashi, M., et al. (2012). 18FDG PET for grading malignancy in thymic epithelial tumors: significant differences in 18FDG uptake and expression of glucose transporter-1 and hexokinase II between low and high-risk tumors: preliminary study. European Journal of Radiology, 81(1), 146–151.CrossRefPubMed Nakajo, M., Kajiya, Y., Tani, A., Yoneda, S., Shirahama, H., Higashi, M., et al. (2012). 18FDG PET for grading malignancy in thymic epithelial tumors: significant differences in 18FDG uptake and expression of glucose transporter-1 and hexokinase II between low and high-risk tumors: preliminary study. European Journal of Radiology, 81(1), 146–151.CrossRefPubMed
37.
Zurück zum Zitat Paudyal, B., Oriuchi, N., Paudyal, P., Higuchi, T., Nakajima, T., & Endo, K. (2008). Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-D-glucose positron emission tomography. Cancer Science, 99(2), 260–266.CrossRefPubMed Paudyal, B., Oriuchi, N., Paudyal, P., Higuchi, T., Nakajima, T., & Endo, K. (2008). Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-D-glucose positron emission tomography. Cancer Science, 99(2), 260–266.CrossRefPubMed
38.
Zurück zum Zitat Paudyal, B., Oriuchi, N., Paudyal, P., Tsushima, Y., Higuchi, T., Miyakubo, M., et al. (2008). Clinicopathological presentation of varying 18F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma. Annals of Nuclear Medicine, 22(1), 83–86.CrossRefPubMed Paudyal, B., Oriuchi, N., Paudyal, P., Tsushima, Y., Higuchi, T., Miyakubo, M., et al. (2008). Clinicopathological presentation of varying 18F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma. Annals of Nuclear Medicine, 22(1), 83–86.CrossRefPubMed
39.
Zurück zum Zitat Tanaka, T., Harano, Y., Sue, F., & Morimura, H. (1967). Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. Journal of Biochemistry, 62(1), 71–91.CrossRefPubMed Tanaka, T., Harano, Y., Sue, F., & Morimura, H. (1967). Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. Journal of Biochemistry, 62(1), 71–91.CrossRefPubMed
40.
Zurück zum Zitat Noguchi, T., Yamada, K., Inoue, H., Matsuda, T., & Tanaka, T. (1987). The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. The Journal of Biological Chemistry, 262(29), 14366–14371.PubMed Noguchi, T., Yamada, K., Inoue, H., Matsuda, T., & Tanaka, T. (1987). The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. The Journal of Biological Chemistry, 262(29), 14366–14371.PubMed
41.
Zurück zum Zitat Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.CrossRefPubMed Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.CrossRefPubMed
42.
Zurück zum Zitat Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 43(7), 969–980.CrossRef Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 43(7), 969–980.CrossRef
43.
Zurück zum Zitat Israelsen, W. J., Dayton, T. L., Davidson, S. M., Fiske, B. P., Hosios, A. M., Bellinger, G., et al. (2013). PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell, 155(2), 397–409.CrossRefPubMed Israelsen, W. J., Dayton, T. L., Davidson, S. M., Fiske, B. P., Hosios, A. M., Bellinger, G., et al. (2013). PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell, 155(2), 397–409.CrossRefPubMed
44.
Zurück zum Zitat David, C. J., Chen, M., Assanah, M., Canoll, P., & Manley, J. L. (2010). HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 463(7279), 364–368.CrossRefPubMed David, C. J., Chen, M., Assanah, M., Canoll, P., & Manley, J. L. (2010). HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 463(7279), 364–368.CrossRefPubMed
45.
Zurück zum Zitat Wong, T. S., Liu, X. B., Chung-Wai Ho, A., Po-Wing Yuen, A., Wai-Man Ng, R., & Ignace Wei, W. (2008). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. International Journal of Cancer, 123(2), 251–257.CrossRefPubMed Wong, T. S., Liu, X. B., Chung-Wai Ho, A., Po-Wing Yuen, A., Wai-Man Ng, R., & Ignace Wei, W. (2008). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. International Journal of Cancer, 123(2), 251–257.CrossRefPubMed
46.
Zurück zum Zitat McDonnell, S. R., Hwang, S. R., Rolland, D., Murga-Zamalloa, C., Basrur, V., Conlon, K. P., et al. (2013). Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma. Blood, 122(6), 958–968.CrossRefPubMedPubMedCentral McDonnell, S. R., Hwang, S. R., Rolland, D., Murga-Zamalloa, C., Basrur, V., Conlon, K. P., et al. (2013). Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma. Blood, 122(6), 958–968.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Tamada, M., Nagano, O., Tateyama, S., Ohmura, M., Yae, T., Ishimoto, T., et al. (2012). Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Research, 72(6), 1438–1448.CrossRefPubMed Tamada, M., Nagano, O., Tateyama, S., Ohmura, M., Yae, T., Ishimoto, T., et al. (2012). Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Research, 72(6), 1438–1448.CrossRefPubMed
48.
Zurück zum Zitat Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334(6060), 1278–1283.CrossRefPubMedPubMedCentral Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334(6060), 1278–1283.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Desai, S., Ding, M., Wang, B., Lu, Z., Zhao, Q., Shaw, K., et al. (2014). Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget, 5(18), 8202–8210.CrossRefPubMed Desai, S., Ding, M., Wang, B., Lu, Z., Zhao, Q., Shaw, K., et al. (2014). Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget, 5(18), 8202–8210.CrossRefPubMed
50.
Zurück zum Zitat Bluemlein, K., Gluckmann, M., Gruning, N. M., Feichtinger, R., Kruger, A., Wamelink, M., et al. (2012). Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis. Oncotarget, 3(11), 1356–1369.CrossRefPubMedPubMedCentral Bluemlein, K., Gluckmann, M., Gruning, N. M., Feichtinger, R., Kruger, A., Wamelink, M., et al. (2012). Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis. Oncotarget, 3(11), 1356–1369.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Wang, Y., Zhang, X., Zhang, Y., Zhu, Y., Yuan, C., Qi, B., et al. (2015). Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biology & Therapy, 16(6), 839–845.CrossRef Wang, Y., Zhang, X., Zhang, Y., Zhu, Y., Yuan, C., Qi, B., et al. (2015). Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biology & Therapy, 16(6), 839–845.CrossRef
52.
Zurück zum Zitat Feng, C., Gao, Y., Wang, C., Yu, X., Zhang, W., Guan, H., et al. (2013). Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. The Journal of Clinical Endocrinology and Metabolism, 98(9), E1524–E1533.CrossRefPubMed Feng, C., Gao, Y., Wang, C., Yu, X., Zhang, W., Guan, H., et al. (2013). Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. The Journal of Clinical Endocrinology and Metabolism, 98(9), E1524–E1533.CrossRefPubMed
53.
54.
Zurück zum Zitat McKenney, A. S., & Levine, R. L. (2013). Isocitrate dehydrogenase mutations in leukemia. The Journal of Clinical Investigation, 123(9), 3672–3677.CrossRefPubMedPubMedCentral McKenney, A. S., & Levine, R. L. (2013). Isocitrate dehydrogenase mutations in leukemia. The Journal of Clinical Investigation, 123(9), 3672–3677.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Dang, L., Jin, S., & Su, S. M. (2010). IDH mutations in glioma and acute myeloid leukemia. Trends in Molecular Medicine, 16(9), 387–397.CrossRefPubMed Dang, L., Jin, S., & Su, S. M. (2010). IDH mutations in glioma and acute myeloid leukemia. Trends in Molecular Medicine, 16(9), 387–397.CrossRefPubMed
56.
Zurück zum Zitat Yang, H., Ye, D., Guan, K. L., & Xiong, Y. (2012). IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clinical Cancer Research, 18(20), 5562–5571.CrossRefPubMedPubMedCentral Yang, H., Ye, D., Guan, K. L., & Xiong, Y. (2012). IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clinical Cancer Research, 18(20), 5562–5571.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Ye, D., Ma, S., Xiong, Y., & Guan, K. L. (2013). R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell, 23(3), 274–276.CrossRefPubMedPubMedCentral Ye, D., Ma, S., Xiong, Y., & Guan, K. L. (2013). R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell, 23(3), 274–276.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Gross, S., Cairns, R. A., Minden, M. D., Driggers, E. M., Bittinger, M. A., Jang, H. G., et al. (2010). Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. The Journal of Experimental Medicine, 207(2), 339–344.CrossRefPubMedPubMedCentral Gross, S., Cairns, R. A., Minden, M. D., Driggers, E. M., Bittinger, M. A., Jang, H. G., et al. (2010). Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. The Journal of Experimental Medicine, 207(2), 339–344.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462(7274), 739–744.CrossRefPubMedPubMedCentral Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462(7274), 739–744.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Ward, P. S., Patel, J., Wise, D. R., Abdel-Wahab, O., Bennett, B. D., Coller, H. A., et al. (2010). The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 17(3), 225–234.CrossRefPubMedPubMedCentral Ward, P. S., Patel, J., Wise, D. R., Abdel-Wahab, O., Bennett, B. D., Coller, H. A., et al. (2010). The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 17(3), 225–234.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S. H., et al. (2011). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 19(1), 17–30.CrossRefPubMedPubMedCentral Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S. H., et al. (2011). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 19(1), 17–30.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., et al. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 483(7390), 474–478.CrossRefPubMedPubMedCentral Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., et al. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 483(7390), 474–478.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., et al. (2009). Mutation in TET2 in myeloid cancers. The New England Journal of Medicine, 360(22), 2289–2301.CrossRefPubMed Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., et al. (2009). Mutation in TET2 in myeloid cancers. The New England Journal of Medicine, 360(22), 2289–2301.CrossRefPubMed
64.
Zurück zum Zitat Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., et al. (2016). Oncometabolite D-2-Hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer. Scientific Reports, 6, 36289.CrossRefPubMedPubMedCentral Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., et al. (2016). Oncometabolite D-2-Hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer. Scientific Reports, 6, 36289.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Koivunen, P., Lee, S., Duncan, C. G., Lopez, G., Lu, G., Ramkissoon, S., et al. (2012). Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature, 483(7390), 484–488.CrossRefPubMedPubMedCentral Koivunen, P., Lee, S., Duncan, C. G., Lopez, G., Lu, G., Ramkissoon, S., et al. (2012). Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature, 483(7390), 484–488.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Masson, N., & Ratcliffe, P. J. (2014). Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab, 2(1), 3.CrossRefPubMedPubMedCentral Masson, N., & Ratcliffe, P. J. (2014). Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab, 2(1), 3.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., et al. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 299(5607), 700–704.CrossRefPubMed Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., et al. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 299(5607), 700–704.CrossRefPubMed
68.
Zurück zum Zitat King, A., Selak, M. A., & Gottlieb, E. (2006). Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 25(34), 4675–4682.CrossRefPubMed King, A., Selak, M. A., & Gottlieb, E. (2006). Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 25(34), 4675–4682.CrossRefPubMed
69.
Zurück zum Zitat Hao, H. X., Khalimonchuk, O., Schraders, M., Dephoure, N., Bayley, J. P., Kunst, H., et al. (2009). SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science, 325(5944), 1139–1142.CrossRefPubMed Hao, H. X., Khalimonchuk, O., Schraders, M., Dephoure, N., Bayley, J. P., Kunst, H., et al. (2009). SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science, 325(5944), 1139–1142.CrossRefPubMed
70.
Zurück zum Zitat Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287(5454), 848–851.CrossRefPubMed Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287(5454), 848–851.CrossRefPubMed
71.
Zurück zum Zitat Bardella, C., Pollard, P. J., & Tomlinson, I. (2011). SDH mutations in cancer. Biochimica et Biophysica Acta, 1807(11), 1432–1443.CrossRefPubMed Bardella, C., Pollard, P. J., & Tomlinson, I. (2011). SDH mutations in cancer. Biochimica et Biophysica Acta, 1807(11), 1432–1443.CrossRefPubMed
72.
Zurück zum Zitat Kirmani, S., & Young, W. F. (1993). Hereditary paraganglioma-pheochromocytoma syndromes. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, et al. (Eds.), GeneReviews(R). Seattle (WA). Kirmani, S., & Young, W. F. (1993). Hereditary paraganglioma-pheochromocytoma syndromes. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, et al. (Eds.), GeneReviews(R). Seattle (WA).
73.
Zurück zum Zitat Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7(1), 77–85.CrossRefPubMed Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7(1), 77–85.CrossRefPubMed
74.
Zurück zum Zitat Favier, J., & Gimenez-Roqueplo, A. P. (2010). Pheochromocytomas: the (pseudo)-hypoxia hypothesis. Best Practice & Research. Clinical Endocrinology & Metabolism, 24(6), 957–968.CrossRef Favier, J., & Gimenez-Roqueplo, A. P. (2010). Pheochromocytomas: the (pseudo)-hypoxia hypothesis. Best Practice & Research. Clinical Endocrinology & Metabolism, 24(6), 957–968.CrossRef
75.
Zurück zum Zitat Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., et al. (2012). Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes & Development, 26(12), 1326–1338.CrossRef Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., et al. (2012). Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes & Development, 26(12), 1326–1338.CrossRef
76.
Zurück zum Zitat Chiarugi, A., Dolle, C., Felici, R., & Ziegler, M. (2012). The NAD metabolome—a key determinant of cancer cell biology. Nature Reviews. Cancer, 12(11), 741–752.CrossRefPubMed Chiarugi, A., Dolle, C., Felici, R., & Ziegler, M. (2012). The NAD metabolome—a key determinant of cancer cell biology. Nature Reviews. Cancer, 12(11), 741–752.CrossRefPubMed
77.
Zurück zum Zitat Javle, M., & Curtin, N. J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 105(8), 1114–1122.CrossRefPubMedPubMedCentral Javle, M., & Curtin, N. J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 105(8), 1114–1122.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Revollo, J. R., Grimm, A. A., & Imai, S. (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. The Journal of Biological Chemistry, 279(49), 50754–50763.CrossRefPubMed Revollo, J. R., Grimm, A. A., & Imai, S. (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. The Journal of Biological Chemistry, 279(49), 50754–50763.CrossRefPubMed
80.
Zurück zum Zitat Yamamoto, M., Hikosaka, K., Mahmood, A., Tobe, K., Shojaku, H., Inohara, H., et al. (2016). Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PloS One, 11(1), e0147037.CrossRefPubMedPubMedCentral Yamamoto, M., Hikosaka, K., Mahmood, A., Tobe, K., Shojaku, H., Inohara, H., et al. (2016). Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PloS One, 11(1), e0147037.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Sampath, D., Zabka, T. S., Misner, D. L., O'Brien, T., & Dragovich, P. S. (2015). Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacology & Therapeutics, 151, 16–31.CrossRef Sampath, D., Zabka, T. S., Misner, D. L., O'Brien, T., & Dragovich, P. S. (2015). Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacology & Therapeutics, 151, 16–31.CrossRef
82.
Zurück zum Zitat Patel, S., Ansari, J., Meram, A., Abdulsattar, J., Cotelingam, J., Coppola, D., et al. (2017). Increased nicotinamide phosphoribosyltransferase and cystathionine-beta-synthase in oral cavity squamous cell carcinomas. International Journal of Clinical and Experimental Pathology, 10(1), 702–707. Patel, S., Ansari, J., Meram, A., Abdulsattar, J., Cotelingam, J., Coppola, D., et al. (2017). Increased nicotinamide phosphoribosyltransferase and cystathionine-beta-synthase in oral cavity squamous cell carcinomas. International Journal of Clinical and Experimental Pathology, 10(1), 702–707.
83.
Zurück zum Zitat Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., et al. (2013). Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. The Journal of Biological Chemistry, 288(5), 3500–3511.CrossRefPubMed Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., et al. (2013). Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. The Journal of Biological Chemistry, 288(5), 3500–3511.CrossRefPubMed
84.
Zurück zum Zitat Hikosaka, K., Ikutani, M., Shito, M., Kazuma, K., Gulshan, M., Nagai, Y., et al. (2014). Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. The Journal of Biological Chemistry, 289(21), 14796–14811.CrossRefPubMedPubMedCentral Hikosaka, K., Ikutani, M., Shito, M., Kazuma, K., Gulshan, M., Nagai, Y., et al. (2014). Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. The Journal of Biological Chemistry, 289(21), 14796–14811.CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Hasmann, M., & Schemainda, I. (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research, 63(21), 7436–7442.PubMed Hasmann, M., & Schemainda, I. (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research, 63(21), 7436–7442.PubMed
86.
Zurück zum Zitat Goldinger, S. M., Gobbi Bischof, S., Fink-Puches, R., Klemke, C. D., Dreno, B., Bagot, M., et al. (2016). Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-cell lymphoma: a phase 2 clinical trial. JAMA Dermatology, 152(7), 837–839.CrossRefPubMed Goldinger, S. M., Gobbi Bischof, S., Fink-Puches, R., Klemke, C. D., Dreno, B., Bagot, M., et al. (2016). Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-cell lymphoma: a phase 2 clinical trial. JAMA Dermatology, 152(7), 837–839.CrossRefPubMed
87.
Zurück zum Zitat Gehrke, I., Bouchard, E. D., Beiggi, S., Poeppl, A. G., Johnston, J. B., Gibson, S. B., et al. (2014). On-target effect of FK866, a nicotinamide phosphoribosyl transferase inhibitor, by apoptosis-mediated death in chronic lymphocytic leukemia cells. Clinical Cancer Research, 20(18), 4861–4872.CrossRefPubMed Gehrke, I., Bouchard, E. D., Beiggi, S., Poeppl, A. G., Johnston, J. B., Gibson, S. B., et al. (2014). On-target effect of FK866, a nicotinamide phosphoribosyl transferase inhibitor, by apoptosis-mediated death in chronic lymphocytic leukemia cells. Clinical Cancer Research, 20(18), 4861–4872.CrossRefPubMed
88.
Zurück zum Zitat Chan, M., Gravel, M., Bramoulle, A., Bridon, G., Avizonis, D., Shore, G. C., et al. (2014). Synergy between the NAMPT inhibitor GMX1777(8) and pemetrexed in non-small cell lung cancer cells is mediated by PARP activation and enhanced NAD consumption. Cancer Research, 74(21), 5948–5954.CrossRefPubMed Chan, M., Gravel, M., Bramoulle, A., Bridon, G., Avizonis, D., Shore, G. C., et al. (2014). Synergy between the NAMPT inhibitor GMX1777(8) and pemetrexed in non-small cell lung cancer cells is mediated by PARP activation and enhanced NAD consumption. Cancer Research, 74(21), 5948–5954.CrossRefPubMed
89.
Zurück zum Zitat Kato, H., Ito, E., Shi, W., Alajez, N. M., Yue, S., Lee, C., et al. (2010). Efficacy of combining GMX1777 with radiation therapy for human head and neck carcinoma. Clinical Cancer Research, 16(3), 898–911.CrossRefPubMed Kato, H., Ito, E., Shi, W., Alajez, N. M., Yue, S., Lee, C., et al. (2010). Efficacy of combining GMX1777 with radiation therapy for human head and neck carcinoma. Clinical Cancer Research, 16(3), 898–911.CrossRefPubMed
90.
Zurück zum Zitat Petrelli, R., Felczak, K., & Cappellacci, L. (2011). NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications. Current Medicinal Chemistry, 18(13), 1973–1992.CrossRefPubMed Petrelli, R., Felczak, K., & Cappellacci, L. (2011). NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications. Current Medicinal Chemistry, 18(13), 1973–1992.CrossRefPubMed
91.
Zurück zum Zitat Bajrami, I., Kigozi, A., Van Weverwijk, A., Brough, R., Frankum, J., Lord, C. J., et al. (2012). Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO Molecular Medicine, 4(10), 1087–1096.CrossRefPubMedPubMedCentral Bajrami, I., Kigozi, A., Van Weverwijk, A., Brough, R., Frankum, J., Lord, C. J., et al. (2012). Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO Molecular Medicine, 4(10), 1087–1096.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Wurster, S., Hennes, F., Parplys, A. C., Seelbach, J. I., Mansour, W. Y., Zielinski, A., et al. (2016). PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget, 7(9), 9732–9741.CrossRefPubMedPubMedCentral Wurster, S., Hennes, F., Parplys, A. C., Seelbach, J. I., Mansour, W. Y., Zielinski, A., et al. (2016). PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget, 7(9), 9732–9741.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews. Cancer, 15(10), 608–624.CrossRefPubMed Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews. Cancer, 15(10), 608–624.CrossRefPubMed
94.
Zurück zum Zitat Menssen, A., Hydbring, P., Kapelle, K., Vervoorts, J., Diebold, J., Luscher, B., et al. (2012). The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 109(4), E187–E196.CrossRefPubMed Menssen, A., Hydbring, P., Kapelle, K., Vervoorts, J., Diebold, J., Luscher, B., et al. (2012). The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 109(4), E187–E196.CrossRefPubMed
95.
Zurück zum Zitat Kikuchi, K., Noguchi, A., Kasajima, R., Miyagi, Y., Hoshino, D., Koshikawa, N., et al. (2015). Association of SIRT1 and tumor suppressor gene TAp63 expression in head and neck squamous cell carcinoma. Tumour Biology, 36(10), 7865–7872.CrossRefPubMed Kikuchi, K., Noguchi, A., Kasajima, R., Miyagi, Y., Hoshino, D., Koshikawa, N., et al. (2015). Association of SIRT1 and tumor suppressor gene TAp63 expression in head and neck squamous cell carcinoma. Tumour Biology, 36(10), 7865–7872.CrossRefPubMed
96.
Zurück zum Zitat Lai, C. C., Lin, P. M., Lin, S. F., Hsu, C. H., Lin, H. C., Hu, M. L., et al. (2013). Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biology, 34(3), 1847–1854.CrossRefPubMed Lai, C. C., Lin, P. M., Lin, S. F., Hsu, C. H., Lin, H. C., Hu, M. L., et al. (2013). Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biology, 34(3), 1847–1854.CrossRefPubMed
97.
Zurück zum Zitat Lu, C. T., Hsu, C. M., Lin, P. M., Lai, C. C., Lin, H. C., Yang, C. H., et al. (2014). The potential of SIRT6 and SIRT7 as circulating markers for head and neck squamous cell carcinoma. Anticancer Research, 34(12), 7137–7143.PubMed Lu, C. T., Hsu, C. M., Lin, P. M., Lai, C. C., Lin, H. C., Yang, C. H., et al. (2014). The potential of SIRT6 and SIRT7 as circulating markers for head and neck squamous cell carcinoma. Anticancer Research, 34(12), 7137–7143.PubMed
Metadaten
Titel
Targeting metabolic pathways for head and neck cancers therapeutics
verfasst von
Masashi Yamamoto
Hidenori Inohara
Takashi Nakagawa
Publikationsdatum
17.08.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9691-z

Weitere Artikel der Ausgabe 3/2017

Cancer and Metastasis Reviews 3/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.