Skip to main content
Erschienen in: Current Heart Failure Reports 4/2017

27.06.2017 | Experimental Therapeutics (L.S. Maier, Section Editor)

Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure

verfasst von: Alexander Dietl, Christoph Maack

Erschienen in: Current Heart Failure Reports | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

In highly prevalent cardiac diseases, new therapeutic approaches are needed. Since the first description of oxidative stress in heart failure, reactive oxygen species (ROS) have been considered as attractive drug targets. Though clinical trials evaluating antioxidant vitamins as ROS-scavenging agents yielded neutral results in patients at cardiovascular risk, the knowledge of ROS as pathophysiological factors has considerably advanced in the past few years and led to novel treatment approaches. Here, we review recent new insights and current strategies in targeting mitochondrial calcium handling and ROS in heart failure.

Recent Findings

Mitochondria are an important ROS source, and more recently, drug development focused on targeting mitochondria (e.g. by SS-31 or MitoQ). Important advancement has also been made to decipher how the matching of energy supply and demand through calcium (Ca2+) handling impacts on mitochondrial ROS production and elimination. This opens novel opportunities to ameliorate mitochondrial dysfunction in heart failure by targeting cytosolic and mitochondrial ion transporters to improve this matching process. According to this approach, highly specific substances as the preclinical CGP-37157, as well as the clinically used ranolazine and empagliflozin, provide promising results on different levels of evidence. Furthermore, the understanding of redox signalling relays, resembled by catalyst-mediated protein oxidation, is about to change former paradigms of ROS signalling. Novel methods, as redox proteomics, allow to precisely analyse key regulatory thiol switches, which may induce adaptive or maladaptive signalling. Additionally, the generation of genetically encoded probes increased the spatial and temporal resolution of ROS imaging and opened a new methodological window to subtle, formerly obscured processes.

Summary

These novel insights may broaden our understanding of why previous attempts to target oxidative stress have failed, and at the same time provide us with new targets for drug development.
Literatur
1.
Zurück zum Zitat Münzel T, Camici G, Maack C, Bonetti N, Fuster V, Kovacic J. Impact of oxidative stress on the heart and vasculature. J. Am. Coll. Cardiol. 2017;in press. Münzel T, Camici G, Maack C, Bonetti N, Fuster V, Kovacic J. Impact of oxidative stress on the heart and vasculature. J. Am. Coll. Cardiol. 2017;in press.
2.
Zurück zum Zitat Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:154–60.PubMedCrossRef Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:154–60.PubMedCrossRef
3.
Zurück zum Zitat •• Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 2015;22:472–84. In this paper, we discovered a novel mechanism how pathological cardiac workload increases oxidative stress in mitochondria, and that this oxidative stress played a causal role in the development of heart failure. It also suggests that targeting mitochondria with SS-31 to reduce oxidative stress rescued mortality in mice with heart failure. PubMedCrossRef •• Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 2015;22:472–84. In this paper, we discovered a novel mechanism how pathological cardiac workload increases oxidative stress in mitochondria, and that this oxidative stress played a causal role in the development of heart failure. It also suggests that targeting mitochondria with SS-31 to reduce oxidative stress rescued mortality in mice with heart failure. PubMedCrossRef
4.
Zurück zum Zitat Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol. 2017;595:3753–3763. Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol. 2017;595:3753–3763.
5.
Zurück zum Zitat •• Fujikawa Y, Roma LP, Sobotta MC, Rose AJ, Diaz MB, Locatelli G, et al. Mouse redox histology using genetically encoded probes. Sci Signal. 2016;9:rs1. In this paper, a novel mouse model was developed with which oxidative stress can be analyzed in mitochondria of virtually any organ of interest, with high spatial resolution to discriminate different cell types within an organ. The technique uses histological analysis of a redox-based reporter protein that is highly sensitive and specific for hydrogen peroxide (H 2 O 2 ). PubMedCrossRef •• Fujikawa Y, Roma LP, Sobotta MC, Rose AJ, Diaz MB, Locatelli G, et al. Mouse redox histology using genetically encoded probes. Sci Signal. 2016;9:rs1. In this paper, a novel mouse model was developed with which oxidative stress can be analyzed in mitochondria of virtually any organ of interest, with high spatial resolution to discriminate different cell types within an organ. The technique uses histological analysis of a redox-based reporter protein that is highly sensitive and specific for hydrogen peroxide (H 2 O 2 ). PubMedCrossRef
6.
Zurück zum Zitat • Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Güntsch A, et al. Redox imaging using cardiac myocyte-specific transgenic biosensor mice. Circ Res. 2016;119:1004–16. In this paper, transgenic mice were generated with cardiac myocyte-restricted expression of a redox-sensitive reporter coupled to glutaredoxin 1. Behaving like an endogenous protein, it quantifies glutathione redox potential with high temporal resolution and allows deeper insights into the balance between ROS production and elimination. As it is targeted to either mitochondrial matrix or cytoplasm, it remarkably increases spatial resolution. PubMed • Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Güntsch A, et al. Redox imaging using cardiac myocyte-specific transgenic biosensor mice. Circ Res. 2016;119:1004–16. In this paper, transgenic mice were generated with cardiac myocyte-restricted expression of a redox-sensitive reporter coupled to glutaredoxin 1. Behaving like an endogenous protein, it quantifies glutathione redox potential with high temporal resolution and allows deeper insights into the balance between ROS production and elimination. As it is targeted to either mitochondrial matrix or cytoplasm, it remarkably increases spatial resolution. PubMed
7.
Zurück zum Zitat Leichert LI, Dick TP. Incidence and physiological relevance of protein thiol switches. Biol Chem. 2015;396:389–99.PubMedCrossRef Leichert LI, Dick TP. Incidence and physiological relevance of protein thiol switches. Biol Chem. 2015;396:389–99.PubMedCrossRef
8.
Zurück zum Zitat Dietl A, Stark K, Zimmermann ME, Meisinger C, Schunkert H, Birner C, et al. NT-proBNP Predicts Cardiovascular Death in the General Population Independent of Left Ventricular Mass and Function: Insights from a Large Population-Based Study with Long-Term Follow-Up. PLoS ONE 2016;11(10):e0164060. doi:10.1371/journal.pone.0164060. Dietl A, Stark K, Zimmermann ME, Meisinger C, Schunkert H, Birner C, et al. NT-proBNP Predicts Cardiovascular Death in the General Population Independent of Left Ventricular Mass and Function: Insights from a Large Population-Based Study with Long-Term Follow-Up. PLoS ONE 2016;11(10):e0164060. doi:10.​1371/​journal.​pone.​0164060.
9.
Zurück zum Zitat Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;2016 Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;2016
10.
Zurück zum Zitat McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.PubMedCrossRef McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.PubMedCrossRef
11.
Zurück zum Zitat Birner C, Ulucan C, Bratfisch M, Götz T, Dietl A, Schweda F, et al. Antihypertrophic effects of combined inhibition of the renin-angiotensin system (RAS) and neutral endopeptidase (NEP) in progressive, tachycardia-induced experimental heart failure. Naunyn Schmiedeberg's Arch Pharmacol. 2012;385:1117–25.CrossRef Birner C, Ulucan C, Bratfisch M, Götz T, Dietl A, Schweda F, et al. Antihypertrophic effects of combined inhibition of the renin-angiotensin system (RAS) and neutral endopeptidase (NEP) in progressive, tachycardia-induced experimental heart failure. Naunyn Schmiedeberg's Arch Pharmacol. 2012;385:1117–25.CrossRef
12.
Zurück zum Zitat Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111:1091–106.PubMedCrossRef Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111:1091–106.PubMedCrossRef
13.
Zurück zum Zitat Sag CM, Schnelle M, Zhang J, Murdoch CE, Kossmann S, Protti A, et al. Distinct Regulatory Effects of Myeloid Cell and Endothelial Cell Nox2 on Blood Pressure. Circulation 2017;135: 2163–2177. Sag CM, Schnelle M, Zhang J, Murdoch CE, Kossmann S, Protti A, et al. Distinct Regulatory Effects of Myeloid Cell and Endothelial Cell Nox2 on Blood Pressure. Circulation 2017;135: 2163–2177.
14.
Zurück zum Zitat Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular NOX NADPH oxidases. J Mol Cell Cardiol. 2014;73:70–9.PubMedCrossRef Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular NOX NADPH oxidases. J Mol Cell Cardiol. 2014;73:70–9.PubMedCrossRef
15.
Zurück zum Zitat Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.PubMedCrossRef Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.PubMedCrossRef
16.
Zurück zum Zitat Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35.PubMedCrossRef Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35.PubMedCrossRef
17.
Zurück zum Zitat Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008;275:3278–89.PubMedCrossRef Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008;275:3278–89.PubMedCrossRef
18.
Zurück zum Zitat Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, et al. Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal. 2016;25:10–27.PubMedCrossRef Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, et al. Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal. 2016;25:10–27.PubMedCrossRef
19.
Zurück zum Zitat Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.PubMedCrossRef Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.PubMedCrossRef
21.
Zurück zum Zitat Münzel T, Gori T, Keaney JF, Maack C, Daiber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J. 2015;36:2555–64.PubMedCrossRef Münzel T, Gori T, Keaney JF, Maack C, Daiber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J. 2015;36:2555–64.PubMedCrossRef
22.
Zurück zum Zitat Santos CXC, Raza S, Shah AM. Redox signaling in the cardiomyocyte: from physiology to failure. Int J Biochem Cell Biol. 2016;74:145–51.PubMedCrossRef Santos CXC, Raza S, Shah AM. Redox signaling in the cardiomyocyte: from physiology to failure. Int J Biochem Cell Biol. 2016;74:145–51.PubMedCrossRef
23.
Zurück zum Zitat Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529–35.PubMedCrossRef Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529–35.PubMedCrossRef
24.
Zurück zum Zitat Zhang M, Prosser BL, Bamboye MA, Gondim ANS, Santos CX, Martin D, et al. Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol. 2015;66:261–72.PubMedPubMedCentralCrossRef Zhang M, Prosser BL, Bamboye MA, Gondim ANS, Santos CX, Martin D, et al. Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol. 2015;66:261–72.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yun Kim T, Terentyeva R, Roder KHF, Li W, Liu M, Greener I, et al. SK Channel Enhancers Attenuate Ca2+-Dependent Arrhythmia in Hypertrophic Hearts by Regulating Mito-ROS-Dependent Oxidation and Activity of RyR. Cardiovasc. Res. 2017;113:343–353. Yun Kim T, Terentyeva R, Roder KHF, Li W, Liu M, Greener I, et al. SK Channel Enhancers Attenuate Ca2+-Dependent Arrhythmia in Hypertrophic Hearts by Regulating Mito-ROS-Dependent Oxidation and Activity of RyR. Cardiovasc. Res. 2017;113:343–353.
26.
Zurück zum Zitat Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, et al. NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII. J Mol Cell Cardiol. 2014;75:206–15.PubMedCrossRef Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, et al. NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII. J Mol Cell Cardiol. 2014;75:206–15.PubMedCrossRef
27.
Zurück zum Zitat Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133:978–93.PubMedCrossRef Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133:978–93.PubMedCrossRef
28.
Zurück zum Zitat Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.PubMedCrossRef Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.PubMedCrossRef
29.
Zurück zum Zitat Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.PubMedCrossRef Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.PubMedCrossRef
30.
Zurück zum Zitat Maack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation. 2003;108:1567–74.PubMedCrossRef Maack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation. 2003;108:1567–74.PubMedCrossRef
32.
Zurück zum Zitat Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28:506–14.PubMedCrossRef Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28:506–14.PubMedCrossRef
33.
Zurück zum Zitat Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20, 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23–33. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20, 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23–33.
34.
Zurück zum Zitat Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in pa- tients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–6. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in pa- tients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–6.
35.
Zurück zum Zitat Cross AR, Segal AW. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta Bioenerg. 2004;1657:1–22.CrossRef Cross AR, Segal AW. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta Bioenerg. 2004;1657:1–22.CrossRef
36.
Zurück zum Zitat Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.PubMedCrossRef Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.PubMedCrossRef
37.
Zurück zum Zitat Laufs U, Kilter H, Konkol C, Wassmann S, Böhm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res. 2002;53:911–20.PubMedCrossRef Laufs U, Kilter H, Konkol C, Wassmann S, Böhm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res. 2002;53:911–20.PubMedCrossRef
38.
Zurück zum Zitat Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120:229–43.PubMedCrossRef Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120:229–43.PubMedCrossRef
39.
Zurück zum Zitat Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37:2315–81.PubMedCrossRef Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37:2315–81.PubMedCrossRef
40.
Zurück zum Zitat Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388:2532–61.PubMedCrossRef Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388:2532–61.PubMedCrossRef
41.
Zurück zum Zitat Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest. 2001;108:1429–37.PubMedPubMedCentralCrossRef Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest. 2001;108:1429–37.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation. 2001;104:982–5.PubMedCrossRef Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation. 2001;104:982–5.PubMedCrossRef
43.
Zurück zum Zitat Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;105:868–73.PubMedCrossRef Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;105:868–73.PubMedCrossRef
44.
Zurück zum Zitat Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation. 2001;104:576–81.PubMedCrossRef Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation. 2001;104:576–81.PubMedCrossRef
45.
Zurück zum Zitat Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JGF, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–61.PubMedCrossRef Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JGF, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–61.PubMedCrossRef
46.
Zurück zum Zitat Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2016;14:30–8.PubMedCrossRef Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2016;14:30–8.PubMedCrossRef
47.
Zurück zum Zitat Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90:E58–65.PubMedCrossRef Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90:E58–65.PubMedCrossRef
48.
Zurück zum Zitat • Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96. This paper highlights the crosstalk of reactive oxygen species from NADPH oxidases and mitochondria in vascular cells. It shows that mitochondria amplify reactive oxygen species (ROS) formation from NADPH oxiase and vice versa, that NADPH oxidase-dependent ROS activate NADPH oxidase. PubMedCrossRef • Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96. This paper highlights the crosstalk of reactive oxygen species from NADPH oxidases and mitochondria in vascular cells. It shows that mitochondria amplify reactive oxygen species (ROS) formation from NADPH oxiase and vice versa, that NADPH oxidase-dependent ROS activate NADPH oxidase. PubMedCrossRef
49.
Zurück zum Zitat Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58:73–82.PubMedPubMedCentralCrossRef Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58:73–82.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat • Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837–46. This paper shows that the NADPH oxidase-mitochondrial ROS crosstalk, as described by Doughan et al. (ref. 48) in vascular cells, also contributes to maladaptive cardiac remodeling and the development of diastolic heart failure in response to angiotensin II. It further shows that targeting mitochondrial ROS prevents this phenotype, while targeting cytosolic ROS in a rather non-specific way does not prevent angiotensin II-induced heart failure, giving a clue to why nonspecific antioxidants have been unsuccesful in patients at cardiovascular risk. PubMedPubMedCentralCrossRef • Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837–46. This paper shows that the NADPH oxidase-mitochondrial ROS crosstalk, as described by Doughan et al. (ref. 48) in vascular cells, also contributes to maladaptive cardiac remodeling and the development of diastolic heart failure in response to angiotensin II. It further shows that targeting mitochondrial ROS prevents this phenotype, while targeting cytosolic ROS in a rather non-specific way does not prevent angiotensin II-induced heart failure, giving a clue to why nonspecific antioxidants have been unsuccesful in patients at cardiovascular risk. PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29:207–16.PubMedCrossRef Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29:207–16.PubMedCrossRef
52.
Zurück zum Zitat Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation. 1997;96:2311–6.PubMedCrossRef Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation. 1997;96:2311–6.PubMedCrossRef
53.
Zurück zum Zitat Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.CrossRef Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.CrossRef
54.
Zurück zum Zitat Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci. 2009;106:8665–70.PubMedPubMedCentralCrossRef Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci. 2009;106:8665–70.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20:709–11.PubMedCrossRef Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20:709–11.PubMedCrossRef
56.
Zurück zum Zitat Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res. 2014;115:348–53.PubMedPubMedCentralCrossRef Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res. 2014;115:348–53.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.PubMedCrossRef Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.PubMedCrossRef
58.
Zurück zum Zitat Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383:1933–43.PubMedPubMedCentralCrossRef Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383:1933–43.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;375:752–762. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;375:752–762.
60.
61.
Zurück zum Zitat Arcaro A, Pirozzi F, Angelini A, Chimenti C, Crotti L, Giordano C, et al. Novel perspectives in redox biology and pathophysiology of failing myocytes: modulation of the intramyocardial redox milieu for therapeutic interventions—a review article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. Oxid Med Cell Longev. 2016;2016:6353469.PubMedPubMedCentralCrossRef Arcaro A, Pirozzi F, Angelini A, Chimenti C, Crotti L, Giordano C, et al. Novel perspectives in redox biology and pathophysiology of failing myocytes: modulation of the intramyocardial redox milieu for therapeutic interventions—a review article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. Oxid Med Cell Longev. 2016;2016:6353469.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389:1253–67.PubMedCrossRef Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389:1253–67.PubMedCrossRef
63.
Zurück zum Zitat Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, et al. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail. 2012;18:660–73.PubMedCrossRef Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, et al. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail. 2012;18:660–73.PubMedCrossRef
64.
Zurück zum Zitat Dietl A, Winkel I, Deutzmann R, Schröder J, Hupf J, Riegger G, et al. Interatrial differences of basal molecular set-up and changes in tachycardia-induced heart failure—a proteomic profiling study. Eur J Heart Fail. 2014;16:835–45. Dietl A, Winkel I, Deutzmann R, Schröder J, Hupf J, Riegger G, et al. Interatrial differences of basal molecular set-up and changes in tachycardia-induced heart failure—a proteomic profiling study. Eur J Heart Fail. 2014;16:835–45.
65.
Zurück zum Zitat Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59:359–71.PubMedCrossRef Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59:359–71.PubMedCrossRef
66.
Zurück zum Zitat Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol. 2015;11:156–63.PubMedCrossRef Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol. 2015;11:156–63.PubMedCrossRef
67.
Zurück zum Zitat Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017;113:411–21.PubMedCrossRef Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017;113:411–21.PubMedCrossRef
68.
Zurück zum Zitat Bers DM. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda). 2006;21:380–7. Bers DM. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda). 2006;21:380–7.
69.
Zurück zum Zitat Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, et al. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 2015;12:15–22.PubMedPubMedCentralCrossRef Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, et al. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 2015;12:15–22.PubMedPubMedCentralCrossRef
71.
72.
Zurück zum Zitat •• Dey S, Sidor A, O’Rourke B. Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem. 2016;291:11185–97. This paper highlights that the cellular antioxidative capacity is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. By genetic manipulation of heart-derived H9c2 cardiac myoblasts, it dissects the importance of specific antioxidant enzymes. Using novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensors of H 2 O 2 or oxidized glutathione, it reveales insights into the compartmentalized redox network and underscores the significance of mitochondrial metabolsim for cellular ROS handling. PubMedPubMedCentralCrossRef •• Dey S, Sidor A, O’Rourke B. Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem. 2016;291:11185–97. This paper highlights that the cellular antioxidative capacity is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. By genetic manipulation of heart-derived H9c2 cardiac myoblasts, it dissects the importance of specific antioxidant enzymes. Using novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensors of H 2 O 2 or oxidized glutathione, it reveales insights into the compartmentalized redox network and underscores the significance of mitochondrial metabolsim for cellular ROS handling. PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Maack C, Böhm M. Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol. 2011;58:83–6.PubMedCrossRef Maack C, Böhm M. Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol. 2011;58:83–6.PubMedCrossRef
74.
Zurück zum Zitat Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001–14.PubMedPubMedCentralCrossRef Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001–14.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Letts JA, Fiedorczuk K, Sazanov LA. The architecture of respiratory supercomplexes. Nature. 2016;537:644–8.PubMedCrossRef Letts JA, Fiedorczuk K, Sazanov LA. The architecture of respiratory supercomplexes. Nature. 2016;537:644–8.PubMedCrossRef
76.
77.
Zurück zum Zitat von Hardenberg A, Maack C. Mitochondrial Therapies in Heart Failure. Handb. Exp. Pharmacol. 2017;243:491–514. von Hardenberg A, Maack C. Mitochondrial Therapies in Heart Failure. Handb. Exp. Pharmacol. 2017;243:491–514.
78.
Zurück zum Zitat Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013;98:259–68.PubMedCrossRef Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013;98:259–68.PubMedCrossRef
79.
Zurück zum Zitat Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121:1606–13.PubMedPubMedCentralCrossRef Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121:1606–13.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Zhang H, Du Y, Zhang X, Lu J, Holmgren A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal. 2014;21:669–81.PubMedPubMedCentralCrossRef Zhang H, Du Y, Zhang X, Lu J, Holmgren A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal. 2014;21:669–81.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014;115:44–54.PubMedPubMedCentralCrossRef Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014;115:44–54.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119:2435–43.PubMedCrossRef Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119:2435–43.PubMedCrossRef
83.
Zurück zum Zitat Weber CR, Piacentino V, Houser SR, Bers DM. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation. 2003;108:2224–9.PubMedCrossRef Weber CR, Piacentino V, Houser SR, Bers DM. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation. 2003;108:2224–9.PubMedCrossRef
84.
85.
Zurück zum Zitat De Marchi U, Santo-Domingo J, Castelbou C, Sekler I, Wiederkehr A, Demaurex N. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J Biol Chem. 2014;289:20377–85.PubMedPubMedCentralCrossRef De Marchi U, Santo-Domingo J, Castelbou C, Sekler I, Wiederkehr A, Demaurex N. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J Biol Chem. 2014;289:20377–85.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B. Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res. 2003;93:46–53.PubMedPubMedCentralCrossRef Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B. Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res. 2003;93:46–53.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172–82.PubMedPubMedCentralCrossRef Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172–82.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Rydström J. Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta Bioenerg. 2006;1757:721–6.CrossRef Rydström J. Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta Bioenerg. 2006;1757:721–6.CrossRef
89.
Zurück zum Zitat Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96.PubMedCrossRef Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96.PubMedCrossRef
90.
Zurück zum Zitat Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc). 2005;70:222–30.CrossRef Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc). 2005;70:222–30.CrossRef
91.
Zurück zum Zitat Murphy MP, Smith RAJ. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.PubMedCrossRef Murphy MP, Smith RAJ. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.PubMedCrossRef
92.
Zurück zum Zitat James AM, Cochemé HM, Smith RAJ, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 2005;280:21295–312.PubMedCrossRef James AM, Cochemé HM, Smith RAJ, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 2005;280:21295–312.PubMedCrossRef
93.
Zurück zum Zitat Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–95.PubMedCrossRef Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–95.PubMedCrossRef
94.
Zurück zum Zitat Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322–8. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322–8.
95.
Zurück zum Zitat Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J. 2009;96:1388–98.PubMedPubMedCentralCrossRef Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J. 2009;96:1388–98.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Supinski GS, Murphy MP, Callahan LA. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1095–102.PubMedPubMedCentralCrossRef Supinski GS, Murphy MP, Callahan LA. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1095–102.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, et al. Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: prevention by the targeted antioxidant MitoQ. Free Radic Biol Med. 2010;49:748–56.PubMedCrossRef Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, et al. Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: prevention by the targeted antioxidant MitoQ. Free Radic Biol Med. 2010;49:748–56.PubMedCrossRef
98.
Zurück zum Zitat Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25:1670–4.PubMedCrossRef Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25:1670–4.PubMedCrossRef
99.
Zurück zum Zitat Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30:1019–26.PubMedCrossRef Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30:1019–26.PubMedCrossRef
100.
Zurück zum Zitat James AM, Sharpley MS, Manas A-RB, Frerman FE, Hirst J, Smith RAJ, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282:14708–18.PubMedCrossRef James AM, Sharpley MS, Manas A-RB, Frerman FE, Hirst J, Smith RAJ, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282:14708–18.PubMedCrossRef
101.
Zurück zum Zitat Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal. 2007;9:1825–36.PubMedCrossRef Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal. 2007;9:1825–36.PubMedCrossRef
102.
Zurück zum Zitat Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171:2029–50.PubMedPubMedCentralCrossRef Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171:2029–50.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24:1250–61.PubMedPubMedCentralCrossRef Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24:1250–61.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Dai D-F, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, et al. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013;6:1067–76.PubMedCrossRef Dai D-F, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, et al. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013;6:1067–76.PubMedCrossRef
105.
Zurück zum Zitat Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A, et al. EMBRACE STEMI study: a phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J. 2016;37:1296–303.PubMedCrossRef Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A, et al. EMBRACE STEMI study: a phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J. 2016;37:1296–303.PubMedCrossRef
106.
Zurück zum Zitat Silva FSG, Simoes RF, Couto R, Oliveira PJ. Targeting mitochondria in cardiovascular diseases. Curr Pharm Des. 2016;22:5698–717.PubMedCrossRef Silva FSG, Simoes RF, Couto R, Oliveira PJ. Targeting mitochondria in cardiovascular diseases. Curr Pharm Des. 2016;22:5698–717.PubMedCrossRef
107.
108.
Zurück zum Zitat Mailloux RJ. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22:4763–79.PubMedCrossRef Mailloux RJ. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22:4763–79.PubMedCrossRef
109.
Zurück zum Zitat Ajith TA, Jayakumar TG. Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol. 2014;6:1091–9.PubMedPubMedCentralCrossRef Ajith TA, Jayakumar TG. Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol. 2014;6:1091–9.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Fetisova EK, Chernyak BV, Korshunova GA, Muntyan MS, Skulachev VP. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem. 2017;24:1–1.CrossRef Fetisova EK, Chernyak BV, Korshunova GA, Muntyan MS, Skulachev VP. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem. 2017;24:1–1.CrossRef
111.
Zurück zum Zitat Reddy AP, Reddy PH. Mitochondria-targeted molecules as potential drugs to treat patients with Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:173–201.PubMedCrossRef Reddy AP, Reddy PH. Mitochondria-targeted molecules as potential drugs to treat patients with Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:173–201.PubMedCrossRef
112.
Zurück zum Zitat Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta. 2016;1863:1066–1077. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta. 2016;1863:1066–1077.
113.
Zurück zum Zitat Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231:2570–81.PubMedCrossRef Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231:2570–81.PubMedCrossRef
114.
Zurück zum Zitat Chiesi M, Schwaller R, Eichenberger K. Structural dependency of the inhibitory action of benzodiazepines and related compounds on the mitochondrial Na+-Ca2+ exchanger. Biochem Pharmacol. 1988;37:4399–403.PubMedCrossRef Chiesi M, Schwaller R, Eichenberger K. Structural dependency of the inhibitory action of benzodiazepines and related compounds on the mitochondrial Na+-Ca2+ exchanger. Biochem Pharmacol. 1988;37:4399–403.PubMedCrossRef
115.
Zurück zum Zitat Cox DA, Conforti L, Sperelakis N, Matlib MA. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol. 1993;21:595–9.PubMedCrossRef Cox DA, Conforti L, Sperelakis N, Matlib MA. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol. 1993;21:595–9.PubMedCrossRef
116.
Zurück zum Zitat Liu T, O’Rourke B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 2008;103:279–88.PubMedPubMedCentralCrossRef Liu T, O’Rourke B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 2008;103:279–88.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat • Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014;115:44–54. This paper shows that targeting mitochondrial ion transporters to re-calibrate the energy supply and demand mismatch can prevent maladaptive cardiac remodeling, left ventricular dysfunction and lethal arrhythmias in a guinea pig model of heart failure. It adds further evidence on an in vivo basis to the concept that the elevation of cytosolic sodium concentrations in failing cardiac myocytes contributes to maladaptive remodeling and heart failure development by decreasing mitochondrial calcium uptake . PubMedPubMedCentralCrossRef • Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014;115:44–54. This paper shows that targeting mitochondrial ion transporters to re-calibrate the energy supply and demand mismatch can prevent maladaptive cardiac remodeling, left ventricular dysfunction and lethal arrhythmias in a guinea pig model of heart failure. It adds further evidence on an in vivo basis to the concept that the elevation of cytosolic sodium concentrations in failing cardiac myocytes contributes to maladaptive remodeling and heart failure development by decreasing mitochondrial calcium uptake . PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Choudhary V, Kaddour-Djebbar I, Alaisami R, Kumar M, Bollag W. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells. Int J Oncol. 2014;44:1767–73.PubMed Choudhary V, Kaddour-Djebbar I, Alaisami R, Kumar M, Bollag W. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells. Int J Oncol. 2014;44:1767–73.PubMed
120.
Zurück zum Zitat Ruiz A, Alberdi E, Matute C. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis. 2014;5:e1156.PubMedPubMedCentralCrossRef Ruiz A, Alberdi E, Matute C. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis. 2014;5:e1156.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Pieske B, Houser SR. [Na+]i handling in the failing human heart. Cardiovasc Res. 2003;57:874–86.PubMedCrossRef Pieske B, Houser SR. [Na+]i handling in the failing human heart. Cardiovasc Res. 2003;57:874–86.PubMedCrossRef
122.
Zurück zum Zitat Wagner S, Dybkova N, Rasenack ECL, Jacobshagen C, Fabritz L, Kirchhof P, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116:3127–38.PubMedPubMedCentralCrossRef Wagner S, Dybkova N, Rasenack ECL, Jacobshagen C, Fabritz L, Kirchhof P, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116:3127–38.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Maltsev VA, Silverman N, Sabbah HN, Undrovinas AI. Chronic heart failure slows late sodium current in human and canine ventricular myocytes: implications for repolarization variability. Eur J Heart Fail. 2007;9:219–27.PubMedCrossRef Maltsev VA, Silverman N, Sabbah HN, Undrovinas AI. Chronic heart failure slows late sodium current in human and canine ventricular myocytes: implications for repolarization variability. Eur J Heart Fail. 2007;9:219–27.PubMedCrossRef
124.
Zurück zum Zitat Sossalla S, Maurer U, Schotola H, Hartmann N, Didié M, Zimmermann W-H, et al. Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current. Basic Res Cardiol. 2011;106:263–72.PubMedCrossRef Sossalla S, Maurer U, Schotola H, Hartmann N, Didié M, Zimmermann W-H, et al. Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current. Basic Res Cardiol. 2011;106:263–72.PubMedCrossRef
125.
Zurück zum Zitat Viatchenko-Karpinski S, Kornyeyev D, El-Bizri N, Budas G, Fan P, Jiang Z, et al. Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. J Mol Cell Cardiol. 2014;76:247–56.PubMedCrossRef Viatchenko-Karpinski S, Kornyeyev D, El-Bizri N, Budas G, Fan P, Jiang Z, et al. Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. J Mol Cell Cardiol. 2014;76:247–56.PubMedCrossRef
126.
Zurück zum Zitat Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, et al. Reactive oxygen species-activated Ca/calmodulin kinase II is required for late INa augmentation leading to cellular Na and Ca overload. Circ Res. 2011;108:555–65.PubMedPubMedCentralCrossRef Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, et al. Reactive oxygen species-activated Ca/calmodulin kinase II is required for late INa augmentation leading to cellular Na and Ca overload. Circ Res. 2011;108:555–65.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Yang Z, Kirton HM, Al-Owais M, Thireau J, Richard S, Peers C, et al. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid. Redox Signal. 2016; ahead of print. doi:10.1089/ars.2015.6485. Yang Z, Kirton HM, Al-Owais M, Thireau J, Richard S, Peers C, et al. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid. Redox Signal. 2016; ahead of print. doi:10.​1089/​ars.​2015.​6485.
128.
Zurück zum Zitat Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non-ST-segment elevation acute coronary syndrome. Circulation. 2007;116 Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non-ST-segment elevation acute coronary syndrome. Circulation. 2007;116
129.
Zurück zum Zitat Banerjee K, Ghosh RK, Kamatam S, Banerjee A, Gupta A. Role of ranolazine in cardiovascular disease and diabetes: exploring beyond angina. Int J Cardiol. 2017;227:556–64.PubMedCrossRef Banerjee K, Ghosh RK, Kamatam S, Banerjee A, Gupta A. Role of ranolazine in cardiovascular disease and diabetes: exploring beyond angina. Int J Cardiol. 2017;227:556–64.PubMedCrossRef
130.
Zurück zum Zitat Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17(Suppl 1):S169–77.PubMedPubMedCentralCrossRef Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17(Suppl 1):S169–77.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br. J. Pharmacol. 2017; ahead of print doi:10.1111/bph.13791. Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br. J. Pharmacol. 2017; ahead of print doi:10.​1111/​bph.​13791.
132.
Zurück zum Zitat Sossalla S, Wagner S, Rasenack ECL, Ruff H, Weber SL, Schöndube FA, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45:32–43.PubMedCrossRef Sossalla S, Wagner S, Rasenack ECL, Ruff H, Weber SL, Schöndube FA, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45:32–43.PubMedCrossRef
133.
Zurück zum Zitat Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino T, et al. Ranolazine prevents phenotype development in a mouse model of hypertrophic cardiomyopathy clinical perspective. Circ Hear Fail. 2017;10:e003565.CrossRef Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino T, et al. Ranolazine prevents phenotype development in a mouse model of hypertrophic cardiomyopathy clinical perspective. Circ Hear Fail. 2017;10:e003565.CrossRef
134.
Zurück zum Zitat Flenner F, Friedrich FW, Ungeheuer N, Christ T, Geertz B, Reischmann S, et al. Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovasc Res. 2016;109:90–102.PubMedCrossRef Flenner F, Friedrich FW, Ungeheuer N, Christ T, Geertz B, Reischmann S, et al. Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovasc Res. 2016;109:90–102.PubMedCrossRef
135.
Zurück zum Zitat Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127:575–84.PubMedCrossRef Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127:575–84.PubMedCrossRef
136.
Zurück zum Zitat Morrow DA, Scirica BM, Sabatine MS, de Lemos JA, Murphy SA, Jarolim P, et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (metabolic efficiency with ranolazine for less ischemia in non-ST elevation acute coronary-thrombolysis in myocardial infarction 36) trial. J Am Coll Cardiol. 2010;55:1189–96.PubMedCrossRef Morrow DA, Scirica BM, Sabatine MS, de Lemos JA, Murphy SA, Jarolim P, et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (metabolic efficiency with ranolazine for less ischemia in non-ST elevation acute coronary-thrombolysis in myocardial infarction 36) trial. J Am Coll Cardiol. 2010;55:1189–96.PubMedCrossRef
137.
Zurück zum Zitat Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S, Sander J, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 2013;1:115–22.PubMedCrossRef Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S, Sander J, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 2013;1:115–22.PubMedCrossRef
138.
Zurück zum Zitat Rayner-Hartley E, Sedlak T. Ranolazine: a contemporary review. J Am Heart Assoc. 2016;5 Rayner-Hartley E, Sedlak T. Ranolazine: a contemporary review. J Am Heart Assoc. 2016;5
139.
Zurück zum Zitat Maier LS, Sossalla S. The late Na current as a therapeutic target: where are we? J Mol Cell Cardiol. 2013;61:44–50.PubMedCrossRef Maier LS, Sossalla S. The late Na current as a therapeutic target: where are we? J Mol Cell Cardiol. 2013;61:44–50.PubMedCrossRef
140.
Zurück zum Zitat Sossalla S, Maier LS. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol Ther. 2012;133:311–23.PubMedCrossRef Sossalla S, Maier LS. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol Ther. 2012;133:311–23.PubMedCrossRef
141.
Zurück zum Zitat Yang P-C, Song Y, Giles WR, Horvath B, Chen-Izu Y, Belardinelli L, et al. A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+ current. J Physiol. 2015;593:1429–42.PubMedPubMedCentralCrossRef Yang P-C, Song Y, Giles WR, Horvath B, Chen-Izu Y, Belardinelli L, et al. A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+ current. J Physiol. 2015;593:1429–42.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Yang P-C, El-Bizri N, Romero L, Giles WR, Rajamani S, Belardinelli L, et al. A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. J Mol Cell Cardiol. 2016;99:151–61.PubMedPubMedCentralCrossRef Yang P-C, El-Bizri N, Romero L, Giles WR, Rajamani S, Belardinelli L, et al. A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. J Mol Cell Cardiol. 2016;99:151–61.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Baczko I, Liknes D, Yang W, Hamming KC, Searle G, Jaeger K, et al. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. Br J Pharmacol. 2014;171:92–106.PubMedCrossRef Baczko I, Liknes D, Yang W, Hamming KC, Searle G, Jaeger K, et al. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. Br J Pharmacol. 2014;171:92–106.PubMedCrossRef
144.
Zurück zum Zitat •• Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60:568–73. This paper makes the interesting observation that empagliflozin may have off-target effects on cardiac myocytes, reducing cytosolic sodium and increasing mitochondrial calcium. Whether this effect contributes to the beneficial effects of empagliflozin on the development of heart failure in patients with diabetes is currently still unresolved. PubMedCrossRef •• Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60:568–73. This paper makes the interesting observation that empagliflozin may have off-target effects on cardiac myocytes, reducing cytosolic sodium and increasing mitochondrial calcium. Whether this effect contributes to the beneficial effects of empagliflozin on the development of heart failure in patients with diabetes is currently still unresolved. PubMedCrossRef
145.
Zurück zum Zitat Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14:83–90.PubMedCrossRef Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14:83–90.PubMedCrossRef
146.
Zurück zum Zitat Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12:78–89.PubMedCrossRef Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12:78–89.PubMedCrossRef
147.
Zurück zum Zitat Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84.PubMedCrossRef Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84.PubMedCrossRef
148.
Zurück zum Zitat Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRef Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRef
149.
Zurück zum Zitat Perrone-Filardi P, Avogaro A, Bonora E, Colivicchi F, Fioretto P, Maggioni A Pietro, et al. Mechanisms linking empagliflozin to cardiovascular and renal protection. Int. J. Cardiol. 2017;241:450–456. Perrone-Filardi P, Avogaro A, Bonora E, Colivicchi F, Fioretto P, Maggioni A Pietro, et al. Mechanisms linking empagliflozin to cardiovascular and renal protection. Int. J. Cardiol. 2017;241:450–456.
150.
Zurück zum Zitat Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus. Circulation. 2016;134:752–72.PubMedCrossRef Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus. Circulation. 2016;134:752–72.PubMedCrossRef
151.
Zurück zum Zitat Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive MedicationNovelty and significance. Hypertension. 2016;68:1355–64.PubMedCrossRef Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive MedicationNovelty and significance. Hypertension. 2016;68:1355–64.PubMedCrossRef
152.
Zurück zum Zitat Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–8.PubMedCrossRef Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–8.PubMedCrossRef
153.
Zurück zum Zitat Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.PubMedCrossRef Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.PubMedCrossRef
154.
Zurück zum Zitat Baartscheer A, Schumacher CA, van Borren MMGJ, Belterman CNW, Coronel R, Fiolet JWT. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015–24.PubMedCrossRef Baartscheer A, Schumacher CA, van Borren MMGJ, Belterman CNW, Coronel R, Fiolet JWT. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015–24.PubMedCrossRef
155.
Zurück zum Zitat Tanaka A, Shimabukuro M, Okada Y, Taguchi I, Yamaoka-Tojo M, Tomiyama H, et al. Rationale and design of a multicenter placebo-controlled double-blind randomized trial to evaluate the effect of empagliflozin on endothelial function: the EMBLEM trial. Cardiovasc Diabetol. 2017;16:48.PubMedPubMedCentralCrossRef Tanaka A, Shimabukuro M, Okada Y, Taguchi I, Yamaoka-Tojo M, Tomiyama H, et al. Rationale and design of a multicenter placebo-controlled double-blind randomized trial to evaluate the effect of empagliflozin on endothelial function: the EMBLEM trial. Cardiovasc Diabetol. 2017;16:48.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Sobotta MC, Liou W, Stöcker S, Talwar D, Oehler M, Ruppert T, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol. 2015;11:64–70.PubMedCrossRef Sobotta MC, Liou W, Stöcker S, Talwar D, Oehler M, Ruppert T, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol. 2015;11:64–70.PubMedCrossRef
157.
Zurück zum Zitat Wadley AJ, Aldred S, Coles SJ. An unexplored role for peroxiredoxin in exercise-induced redox signalling? Redox Biol. 2016;8:51–8.PubMedCrossRef Wadley AJ, Aldred S, Coles SJ. An unexplored role for peroxiredoxin in exercise-induced redox signalling? Redox Biol. 2016;8:51–8.PubMedCrossRef
158.
Zurück zum Zitat Jarvis RM, Hughes SM, Ledgerwood EC. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med. 2012;53:1522–30.PubMedCrossRef Jarvis RM, Hughes SM, Ledgerwood EC. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med. 2012;53:1522–30.PubMedCrossRef
159.
Zurück zum Zitat Wood ZA, Schröder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.PubMedCrossRef Wood ZA, Schröder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.PubMedCrossRef
160.
Zurück zum Zitat Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br. J. Pharmacol. 2017; ahead of print doi:10.1111/bph.13825. Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br. J. Pharmacol. 2017; ahead of print doi:10.​1111/​bph.​13825.
161.
Zurück zum Zitat Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion. 2017;33:72–83.PubMedCrossRef Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion. 2017;33:72–83.PubMedCrossRef
162.
Zurück zum Zitat Boronat S, Domènech A, Hidalgo E. Proteomic characterization of reversible thiol oxidations in proteomes and proteins. Antioxid Redox Signal. 2017;26:329–44.PubMedCrossRef Boronat S, Domènech A, Hidalgo E. Proteomic characterization of reversible thiol oxidations in proteomes and proteins. Antioxid Redox Signal. 2017;26:329–44.PubMedCrossRef
163.
Zurück zum Zitat Duan J, Gaffrey MJ, Qian W-J. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol. BioSyst. 2017;13:816–829. Duan J, Gaffrey MJ, Qian W-J. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol. BioSyst. 2017;13:816–829.
165.
Zurück zum Zitat Qin L, Reger AS, Guo E, Yang MP, Zwart P, Casteel DE, et al. Structures of cGMP-dependent protein kinase (PKG) Iα leucine zippers reveal an Interchain disulfide bond important for dimer stability. Biochemistry. 2015;54:4419–22.PubMedPubMedCentralCrossRef Qin L, Reger AS, Guo E, Yang MP, Zwart P, Casteel DE, et al. Structures of cGMP-dependent protein kinase (PKG) Iα leucine zippers reveal an Interchain disulfide bond important for dimer stability. Biochemistry. 2015;54:4419–22.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schröder E, et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science. 2007;317:1393–7.PubMedCrossRef Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schröder E, et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science. 2007;317:1393–7.PubMedCrossRef
167.
Zurück zum Zitat Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C, Eaton P, et al. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J Clin Invest. 2015;125:2468–72.PubMedPubMedCentralCrossRef Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C, Eaton P, et al. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J Clin Invest. 2015;125:2468–72.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, et al. Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem. 2006;281:21827–36.PubMedCrossRef Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, et al. Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem. 2006;281:21827–36.PubMedCrossRef
169.
Zurück zum Zitat Burgoyne JR, Rudyk O, Cho H, Prysyazhna O, Hathaway N, Weeks A, et al. Deficient angiogenesis in redox-dead Cys17Ser PKARIα knock-in mice. Nat Commun. 2015;6:7920.PubMedCrossRef Burgoyne JR, Rudyk O, Cho H, Prysyazhna O, Hathaway N, Weeks A, et al. Deficient angiogenesis in redox-dead Cys17Ser PKARIα knock-in mice. Nat Commun. 2015;6:7920.PubMedCrossRef
170.
Zurück zum Zitat Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS. Modeling local X-ROS and calcium signaling in the heart. Biophys J. 2015;109:2037–50.PubMedPubMedCentralCrossRef Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS. Modeling local X-ROS and calcium signaling in the heart. Biophys J. 2015;109:2037–50.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie L-H, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res. 2013;112:651–63.PubMedCrossRef Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie L-H, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res. 2013;112:651–63.PubMedCrossRef
172.
Zurück zum Zitat Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res. 2013;112:1135–49.PubMedCrossRef Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res. 2013;112:1135–49.PubMedCrossRef
Metadaten
Titel
Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure
verfasst von
Alexander Dietl
Christoph Maack
Publikationsdatum
27.06.2017
Verlag
Springer US
Erschienen in
Current Heart Failure Reports / Ausgabe 4/2017
Print ISSN: 1546-9530
Elektronische ISSN: 1546-9549
DOI
https://doi.org/10.1007/s11897-017-0347-7

Weitere Artikel der Ausgabe 4/2017

Current Heart Failure Reports 4/2017 Zur Ausgabe

Pathophysiology of Myocardial Failure (Inder Anand and Maria Patarroyo-Aponte, Section Editors)

Treatment of Hyperkalemia in Heart Failure

Clinical Trials (J Butler, Section Editor)

Novel Endpoints for Heart Failure Clinical Trials

Pharmacologic Therapy (W H W Tang, Section Editor)

Therapeutic Strategies Targeting Inherited Cardiomyopathies

Comorbidities of Heart Failure (C Angermann and F Edelmann, Section Editors)

Inflammation – Cause or Consequence of Heart Failure or Both?

Pathophysiology of Myocardial Failure (Inder Anand and Maria Patarroyo-Aponte, Section Editors)

SGLT-2 Inhibitors in Heart Failure: Implications for the Kidneys

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.