Skip to main content
Erschienen in: Tumor Biology 11/2016

20.09.2016 | Original Article

Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis

verfasst von: Tanwarat Sanvoranart, Aungkura Supokawej, Pakpoom Kheolamai, Yaowalak U-pratya, Niphon Poungvarin, Sith Sathornsumetee, Surapol Issaragrisil

Erschienen in: Tumor Biology | Ausgabe 11/2016

Einloggen, um Zugang zu erhalten

Abstract

Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.CrossRefPubMed
2.
Zurück zum Zitat Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed
3.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed
4.
Zurück zum Zitat Ostrom QT, Gittleman H, Liao P, et al. Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63.CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Liao P, et al. Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Urbanska K, Sokolowska J, Szmidt M, Sysa P. Glioblastoma multiforme—an overview. Contemp Oncol (Pozn). 2014;18:307–12. Urbanska K, Sokolowska J, Szmidt M, Sysa P. Glioblastoma multiforme—an overview. Contemp Oncol (Pozn). 2014;18:307–12.
6.
Zurück zum Zitat Bello MJ, Alonso ME, Aminoso C, et al. Hypermethylation of the DNA repair gene mgmt: association with tp53 g:C to a:T transitions in a series of 469 nervous system tumors. Mutat Res. 2004;554:23–32.CrossRefPubMed Bello MJ, Alonso ME, Aminoso C, et al. Hypermethylation of the DNA repair gene mgmt: association with tp53 g:C to a:T transitions in a series of 469 nervous system tumors. Mutat Res. 2004;554:23–32.CrossRefPubMed
7.
Zurück zum Zitat Kamiryo T, Tada K, Shiraishi S, et al. Correlation between promoter hypermethylation of the o6-methylguanine-deoxyribonucleic acid methyltransferase gene and prognosis in patients with high-grade astrocytic tumors treated with surgery, radiotherapy, and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea-based chemotherapy. Neurosurgery. 2004;54:349–57 .discussion 57CrossRefPubMed Kamiryo T, Tada K, Shiraishi S, et al. Correlation between promoter hypermethylation of the o6-methylguanine-deoxyribonucleic acid methyltransferase gene and prognosis in patients with high-grade astrocytic tumors treated with surgery, radiotherapy, and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea-based chemotherapy. Neurosurgery. 2004;54:349–57 .discussion 57CrossRefPubMed
8.
Zurück zum Zitat Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRefPubMed Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRefPubMed
10.
Zurück zum Zitat Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMed Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMed
11.
Zurück zum Zitat Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.CrossRefPubMed Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.CrossRefPubMed
12.
Zurück zum Zitat Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed
13.
Zurück zum Zitat Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed
14.
Zurück zum Zitat Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.CrossRefPubMedPubMedCentral Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Meyer M, Reimand J, Lan X, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. 2015;112:851–6.CrossRefPubMedPubMedCentral Meyer M, Reimand J, Lan X, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. 2015;112:851–6.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Johannessen TC, Wang J, Skaftnesmo KO, et al. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathol Appl Neurobiol. 2009;35:380–93.CrossRefPubMed Johannessen TC, Wang J, Skaftnesmo KO, et al. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathol Appl Neurobiol. 2009;35:380–93.CrossRefPubMed
17.
Zurück zum Zitat Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMedPubMedCentral Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Chen R, Nishimura MC, Bumbaca SM, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17:362–75.CrossRefPubMed Chen R, Nishimura MC, Bumbaca SM, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17:362–75.CrossRefPubMed
19.
Zurück zum Zitat Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMed Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMed
20.
Zurück zum Zitat Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.CrossRefPubMed Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.CrossRefPubMed
21.
Zurück zum Zitat Graef IA, Wang F, Charron F, et al. Neurotrophins and netrins require calcineurin/nfat signaling to stimulate outgrowth of embryonic axons. Cell. 2003;113:657–70.CrossRefPubMed Graef IA, Wang F, Charron F, et al. Neurotrophins and netrins require calcineurin/nfat signaling to stimulate outgrowth of embryonic axons. Cell. 2003;113:657–70.CrossRefPubMed
22.
Zurück zum Zitat Ming GL, Song HJ, Berninger B, et al. Camp-dependent growth cone guidance by netrin-1. Neuron. 1997;19:1225–35.CrossRefPubMed Ming GL, Song HJ, Berninger B, et al. Camp-dependent growth cone guidance by netrin-1. Neuron. 1997;19:1225–35.CrossRefPubMed
23.
Zurück zum Zitat Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans unc-6. Cell. 1994;78:409–24.CrossRefPubMed Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans unc-6. Cell. 1994;78:409–24.CrossRefPubMed
24.
Zurück zum Zitat Delloye-Bourgeois C, Brambilla E, Coissieux MM, et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. 2009;101:237–47.CrossRefPubMed Delloye-Bourgeois C, Brambilla E, Coissieux MM, et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. 2009;101:237–47.CrossRefPubMed
25.
Zurück zum Zitat Dumartin L, Quemener C, Laklai H, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;138:1595–606 .606 e1-8CrossRefPubMed Dumartin L, Quemener C, Laklai H, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;138:1595–606 .606 e1-8CrossRefPubMed
26.
Zurück zum Zitat Paradisi A, Maisse C, Coissieux MM, et al. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc Natl Acad Sci U S A. 2009;106:17146–51.CrossRefPubMedPubMedCentral Paradisi A, Maisse C, Coissieux MM, et al. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc Natl Acad Sci U S A. 2009;106:17146–51.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Qi Q, Li DY, Luo HR, et al. Netrin-1 exerts oncogenic activities through enhancing yes-associated protein stability. Proc Natl Acad Sci U S A. 2015;112:7255–60.CrossRefPubMedPubMedCentral Qi Q, Li DY, Luo HR, et al. Netrin-1 exerts oncogenic activities through enhancing yes-associated protein stability. Proc Natl Acad Sci U S A. 2015;112:7255–60.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Akino T, Han X, Nakayama H, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res. 2014;74:3716–26.CrossRefPubMedPubMedCentral Akino T, Han X, Nakayama H, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res. 2014;74:3716–26.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Mazelin L, Bernet A, Bonod-Bidaud C, et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature. 2004;431:80–4.CrossRefPubMed Mazelin L, Bernet A, Bonod-Bidaud C, et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature. 2004;431:80–4.CrossRefPubMed
30.
Zurück zum Zitat Delloye-Bourgeois C, Fitamant J, Paradisi A, et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med. 2009;206:833–47.CrossRefPubMedPubMedCentral Delloye-Bourgeois C, Fitamant J, Paradisi A, et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med. 2009;206:833–47.CrossRefPubMedPubMedCentral
31.
32.
Zurück zum Zitat Shimizu A, Nakayama H, Wang P, et al. Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of rhoa, cathepsin b, and camp-response element-binding protein. J Biol Chem. 2013;288:2210–22.CrossRefPubMed Shimizu A, Nakayama H, Wang P, et al. Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of rhoa, cathepsin b, and camp-response element-binding protein. J Biol Chem. 2013;288:2210–22.CrossRefPubMed
33.
Zurück zum Zitat Ylivinkka I, Hu Y, Chen P, et al. Netrin-1-induced activation of notch signaling mediates glioblastoma cell invasion. J Cell Sci. 2013;126:2459–69.CrossRefPubMed Ylivinkka I, Hu Y, Chen P, et al. Netrin-1-induced activation of notch signaling mediates glioblastoma cell invasion. J Cell Sci. 2013;126:2459–69.CrossRefPubMed
34.
Zurück zum Zitat Fitamant J, Guenebeaud C, Coissieux MM, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105:4850–5.CrossRefPubMedPubMedCentral Fitamant J, Guenebeaud C, Coissieux MM, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105:4850–5.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.CrossRefPubMed Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.CrossRefPubMed
36.
Zurück zum Zitat Goffart N, Kroonen J, Rogister B. Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers (Basel). 2013;5:1049–71.CrossRef Goffart N, Kroonen J, Rogister B. Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers (Basel). 2013;5:1049–71.CrossRef
37.
38.
Zurück zum Zitat Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.CrossRefPubMed Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.CrossRefPubMed
39.
Zurück zum Zitat Wang W, Reeves WB, Pays L, et al. Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. Am J Pathol. 2009;175:1010–8.CrossRefPubMedPubMedCentral Wang W, Reeves WB, Pays L, et al. Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. Am J Pathol. 2009;175:1010–8.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.CrossRefPubMed Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.CrossRefPubMed
41.
Zurück zum Zitat Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates th1/th2/th17 cytokine production and inflammation through unc5b receptor and protects kidney against ischemia-reperfusion injury. J Immunol. 2010;185:3750–8.CrossRefPubMed Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates th1/th2/th17 cytokine production and inflammation through unc5b receptor and protects kidney against ischemia-reperfusion injury. J Immunol. 2010;185:3750–8.CrossRefPubMed
42.
Zurück zum Zitat Tsuchiya A, Hayashi T, Deguchi K, et al. Expression of netrin-1 and its receptors dcc and neogenin in rat brain after ischemia. Brain Res. 2007;1159:1–7.CrossRefPubMed Tsuchiya A, Hayashi T, Deguchi K, et al. Expression of netrin-1 and its receptors dcc and neogenin in rat brain after ischemia. Brain Res. 2007;1159:1–7.CrossRefPubMed
43.
Zurück zum Zitat Mehlen P, Guenebeaud C. Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol. 2010;22:46–54.CrossRefPubMed Mehlen P, Guenebeaud C. Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol. 2010;22:46–54.CrossRefPubMed
44.
Zurück zum Zitat Forcet C, Stein E, Pays L, et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent mapk activation. Nature. 2002;417:443–7.CrossRefPubMed Forcet C, Stein E, Pays L, et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent mapk activation. Nature. 2002;417:443–7.CrossRefPubMed
45.
Zurück zum Zitat Shekarabi M, Moore SW, Tritsch NX, et al. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits cdc42, rac1, pak1, and n-wasp into an intracellular signaling complex that promotes growth cone expansion. J Neurosci. 2005;25:3132–41.CrossRefPubMed Shekarabi M, Moore SW, Tritsch NX, et al. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits cdc42, rac1, pak1, and n-wasp into an intracellular signaling complex that promotes growth cone expansion. J Neurosci. 2005;25:3132–41.CrossRefPubMed
46.
Zurück zum Zitat Liu G, Beggs H, Jurgensen C, et al. Netrin requires focal adhesion kinase and src family kinases for axon outgrowth and attraction. Nat Neurosci. 2004;7:1222–32.CrossRefPubMedPubMedCentral Liu G, Beggs H, Jurgensen C, et al. Netrin requires focal adhesion kinase and src family kinases for axon outgrowth and attraction. Nat Neurosci. 2004;7:1222–32.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Rajasekharan S, Bin JM, Antel JP, Kennedy TEA. Central role for rhoa during oligodendroglial maturation in the switch from netrin-1-mediated chemorepulsion to process elaboration. J Neurochem. 2010;113:1589–97.PubMed Rajasekharan S, Bin JM, Antel JP, Kennedy TEA. Central role for rhoa during oligodendroglial maturation in the switch from netrin-1-mediated chemorepulsion to process elaboration. J Neurochem. 2010;113:1589–97.PubMed
48.
Zurück zum Zitat Lepekhin EA, Eliasson C, Berthold CH, et al. Intermediate filaments regulate astrocyte motility. J Neurochem. 2001;79:617–25.CrossRefPubMed Lepekhin EA, Eliasson C, Berthold CH, et al. Intermediate filaments regulate astrocyte motility. J Neurochem. 2001;79:617–25.CrossRefPubMed
49.
Zurück zum Zitat Hagemann C, Anacker J, Ernestus RI, Vince GHA. Complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol. 2012;3:67–79.CrossRefPubMedPubMedCentral Hagemann C, Anacker J, Ernestus RI, Vince GHA. Complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol. 2012;3:67–79.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.CrossRefPubMed Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.CrossRefPubMed
51.
Zurück zum Zitat McCready J, Broaddus WC, Sykes V, Fillmore HL. Association of a single nucleotide polymorphism in the matrix metalloproteinase-1 promoter with glioblastoma. Int J Cancer. 2005;117:781–5.CrossRefPubMed McCready J, Broaddus WC, Sykes V, Fillmore HL. Association of a single nucleotide polymorphism in the matrix metalloproteinase-1 promoter with glioblastoma. Int J Cancer. 2005;117:781–5.CrossRefPubMed
52.
Zurück zum Zitat Komatsu K, Nakanishi Y, Nemoto N, et al. Expression and quantitative analysis of matrix metalloproteinase-2 and −9 in human gliomas. Brain Tumor Pathol. 2004;21:105–12.CrossRefPubMed Komatsu K, Nakanishi Y, Nemoto N, et al. Expression and quantitative analysis of matrix metalloproteinase-2 and −9 in human gliomas. Brain Tumor Pathol. 2004;21:105–12.CrossRefPubMed
53.
Zurück zum Zitat Wang M, Wang T, Liu S, et al. The expression of matrix metalloproteinase-2 and −9 in human gliomas of different pathological grades. Brain Tumor Pathol. 2003;20:65–72.CrossRefPubMed Wang M, Wang T, Liu S, et al. The expression of matrix metalloproteinase-2 and −9 in human gliomas of different pathological grades. Brain Tumor Pathol. 2003;20:65–72.CrossRefPubMed
54.
Zurück zum Zitat Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.CrossRefPubMed Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.CrossRefPubMed
55.
Zurück zum Zitat Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin b and mmp-9 gene expression in glioblastoma cell line via rna interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.CrossRefPubMed Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin b and mmp-9 gene expression in glioblastoma cell line via rna interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.CrossRefPubMed
56.
Zurück zum Zitat Eeckhout Y, Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin b, plasmin and kallikrein, and spontaneous activation. Biochem J. 1977;166:21–31.CrossRefPubMedPubMedCentral Eeckhout Y, Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin b, plasmin and kallikrein, and spontaneous activation. Biochem J. 1977;166:21–31.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Tu T, Zhang C, Yan H, et al. Cd146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res. 2015;25:275–87.CrossRefPubMedPubMedCentral Tu T, Zhang C, Yan H, et al. Cd146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res. 2015;25:275–87.CrossRefPubMedPubMedCentral
Metadaten
Titel
Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis
verfasst von
Tanwarat Sanvoranart
Aungkura Supokawej
Pakpoom Kheolamai
Yaowalak U-pratya
Niphon Poungvarin
Sith Sathornsumetee
Surapol Issaragrisil
Publikationsdatum
20.09.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 11/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5314-5

Weitere Artikel der Ausgabe 11/2016

Tumor Biology 11/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.