Skip to main content
Erschienen in: Journal of Gastrointestinal Cancer 2/2020

16.05.2019 | Editorial

Targeting the SPHK1/HIF1 Pathway to Inhibit Colorectal Cancer Stem Cells Niche

Erschienen in: Journal of Gastrointestinal Cancer | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Excerpt

Colorectal cancer (CRC) is one of the most common malignancies worldwide and is one of the major leading causes of death [1]. Many therapeutic methods have been used against colorectal cancer, e.g., chemotherapy (such as 5FU, oxaliplatin, leucovorin), and radiotherapy [2, 3], but despite therapeutic advances, drug resistance and metastases still occur in a high proportion of patients and the treatment process fails [4]. Several factors cause resistance in cancer cells, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial–mesenchymal transition or any combination of these mechanisms [5]. Recently, a small sub-population of tumor cells, termed cancer stem cells (CSCs), with infinite self-renewal potential and the capacity to differentiate into the diverse populations of cells that comprise a tumor, has caught the attention of researchers. They represent the root of cancer that must be eradicated in order to cure it [6]. Increasing evidence indicates that CSCs contribute to drug resistance because the intrinsic characteristics of CSCs include DNA repair capability and regulation of the survival pathway and its extrinsic characteristics or niche microenvironment include hypoxic conditions [7, 8]. Furthermore, many of the normal stem cell pathways such as the Hedgehog (Hh), Notch, and Wnt signaling pathways, which guide cellular proliferation, differentiation, and apoptosis, are also prominent in CSCs [9] while the hypoxia pathway is specific to CSCs and niche. Hypoxia occurs in growing tumors or when access to O2 in blood vessels is limited, and the hypoxia pathway guarantees the survival of the tumor. The hypoxia pathway is involved in angiogenesis, metastasis, invasion, and drug resistance [10]. Hypoxia-inducible factor (HIF-1α), a key transcriptional factor that plays a critical role in hypoxia-related signaling pathway, increases the expression of cell survival or anti-apoptotic genes such as Bcl-XL and decreases the expression of decoy receptors or pro-apoptotic genes such as DcR2 [11]. Hypoxia is an important pathway in CSCs and especially in niche, if hypoxia pathway is inhibited, the foundation of the life of cancer stem cells such as the survival and metastases and chemoresistance of cancer cells, will be insecure [12]. On the other hand, hypoxia pathway is under the control of Sphingosine kinase 1 or SPHK1 [13]. SPHK1 acts as a lipid kinase that phosphorylates sphingosine to sphingosine-1-phosphate (S1P) which is a new target in cancer therapy [14]. SPHK1 is capable of upregulating PI3K/mTOR/AKT pathway that causes cell survival and cell proliferation and it can also activates AKT and GSK3β then inactivates von Hippel-Lindau tumor suppressor protein (pVHL)-mediated ubiquitin proteasome machinery that a role in degredation of HIF-1α (Fig. 1)[15].
Literatur
1.
Zurück zum Zitat Figer A, Perez-Staub N, Carola E, Tournigand C, Lledo G, Flesch M, et al. FOLFOX in patients aged between 76 and 80 years with metastatic colorectal cancer. Cancer. 2007;110(12):2666–71.CrossRef Figer A, Perez-Staub N, Carola E, Tournigand C, Lledo G, Flesch M, et al. FOLFOX in patients aged between 76 and 80 years with metastatic colorectal cancer. Cancer. 2007;110(12):2666–71.CrossRef
2.
Zurück zum Zitat Shim BY, Lee KM, Cho H-M, Kim HJ, Cho HJ, Yang J, et al. Oxaliplatin/5-FU without leucovorin chemotherapy in metastatic colorectal Cancer. Cancer Re Treat. 2005;37(4):212–5.CrossRef Shim BY, Lee KM, Cho H-M, Kim HJ, Cho HJ, Yang J, et al. Oxaliplatin/5-FU without leucovorin chemotherapy in metastatic colorectal Cancer. Cancer Re Treat. 2005;37(4):212–5.CrossRef
3.
Zurück zum Zitat Samadi P, Afshar S, Amini R, Najafi R, Mahdavinezhad A, Sedighi Pashaki A, et al. Let‐7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin‐like growth factor 1 receptor. 2018. Samadi P, Afshar S, Amini R, Najafi R, Mahdavinezhad A, Sedighi Pashaki A, et al. Let‐7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin‐like growth factor 1 receptor. 2018.
4.
Zurück zum Zitat Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 2016;7(10):11002.CrossRef Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 2016;7(10):11002.CrossRef
5.
Zurück zum Zitat Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–92.CrossRef Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–92.CrossRef
6.
Zurück zum Zitat Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest. 2010;120(1):41–50.CrossRef Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest. 2010;120(1):41–50.CrossRef
7.
Zurück zum Zitat Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3(2):65–75.CrossRef Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3(2):65–75.CrossRef
8.
Zurück zum Zitat Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, et al. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther. 2014;9(1):22–35.CrossRef Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, et al. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther. 2014;9(1):22–35.CrossRef
9.
Zurück zum Zitat O’Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O’Leary J, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7(12):1880–90.CrossRef O’Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O’Leary J, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7(12):1880–90.CrossRef
10.
Zurück zum Zitat Malik S. Biotechnology and production of anti-cancer compounds: Springer; 2017. Malik S. Biotechnology and production of anti-cancer compounds: Springer; 2017.
11.
Zurück zum Zitat Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int. 2015;15(1):2.CrossRef Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int. 2015;15(1):2.CrossRef
12.
Zurück zum Zitat De Francesco EM, Maggiolini M, Tanowitz HB, Sotgia F, Lisanti MP. Targeting hypoxic cancer stem cells (CSCs) with doxycycline: implications for optimizing anti-angiogenic therapy. Oncotarget. 2017;8(34):56126.CrossRef De Francesco EM, Maggiolini M, Tanowitz HB, Sotgia F, Lisanti MP. Targeting hypoxic cancer stem cells (CSCs) with doxycycline: implications for optimizing anti-angiogenic therapy. Oncotarget. 2017;8(34):56126.CrossRef
13.
Zurück zum Zitat Takabe K, Paugh SW, Milstien S, Spiegel SJPr. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. 2008;60(2):181–95. Takabe K, Paugh SW, Milstien S, Spiegel SJPr. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. 2008;60(2):181–95.
14.
Zurück zum Zitat Bouquerel P, Gstalder C, Müller D, Laurent J, Brizuela L, Sabbadini R, et al. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer. 2016;5(3):e209. Bouquerel P, Gstalder C, Müller D, Laurent J, Brizuela L, Sabbadini R, et al. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer. 2016;5(3):e209.
15.
Zurück zum Zitat Ader I, Malavaud B, Cuvillier O. When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res. 2009;69(9):3723–6.CrossRef Ader I, Malavaud B, Cuvillier O. When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res. 2009;69(9):3723–6.CrossRef
16.
Zurück zum Zitat Bae GE, Do S-I, Kim K, Park JH, Cho S, Kim H-SJAr. Increased Sphingosine Kinase 1 Expression Predicts Distant Metastasis and Poor Outcome in Patients With Colorectal Cancer. 2019;39(2):663–70. Bae GE, Do S-I, Kim K, Park JH, Cho S, Kim H-SJAr. Increased Sphingosine Kinase 1 Expression Predicts Distant Metastasis and Poor Outcome in Patients With Colorectal Cancer. 2019;39(2):663–70.
Metadaten
Titel
Targeting the SPHK1/HIF1 Pathway to Inhibit Colorectal Cancer Stem Cells Niche
Publikationsdatum
16.05.2019
Erschienen in
Journal of Gastrointestinal Cancer / Ausgabe 2/2020
Print ISSN: 1941-6628
Elektronische ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-019-00219-8

Weitere Artikel der Ausgabe 2/2020

Journal of Gastrointestinal Cancer 2/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.