Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2017

18.10.2017

Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing

verfasst von: Claire L. Soave, Tracey Guerin, Jinbao Liu, Q. Ping Dou

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.
Literatur
1.
2.
Zurück zum Zitat Hochstrasser, M. (1995). Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology, 7(2), 215–223.PubMedCrossRef Hochstrasser, M. (1995). Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology, 7(2), 215–223.PubMedCrossRef
3.
Zurück zum Zitat Goldberg, A. L., Akopian, T. N., Kisselev, A. F., Lee, D. H., & Rohrwild, M. (1997). New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biological Chemistry, 378(3–4), 131–140.PubMed Goldberg, A. L., Akopian, T. N., Kisselev, A. F., Lee, D. H., & Rohrwild, M. (1997). New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biological Chemistry, 378(3–4), 131–140.PubMed
4.
Zurück zum Zitat Dou, Q. P., & Zonder, J. A. (2014). Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Current Cancer Drug Targets, 14(6), 517–536.PubMedPubMedCentralCrossRef Dou, Q. P., & Zonder, J. A. (2014). Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Current Cancer Drug Targets, 14(6), 517–536.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Orlowski, R. Z. (1999). The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death & Differentiation, 6(4), 303.CrossRef Orlowski, R. Z. (1999). The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death & Differentiation, 6(4), 303.CrossRef
8.
Zurück zum Zitat Strous, G. J., & Govers, R. (1999). The ubiquitin-proteasome system and endocytosis. Journal of Cell Science, 112(10), 1417.PubMed Strous, G. J., & Govers, R. (1999). The ubiquitin-proteasome system and endocytosis. Journal of Cell Science, 112(10), 1417.PubMed
12.
Zurück zum Zitat Tu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.-G., & Wang, C.-Y. (2012). The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. International Journal of Clinical and Experimental Pathology, 5(8), 726–738.PubMedPubMedCentral Tu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.-G., & Wang, C.-Y. (2012). The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. International Journal of Clinical and Experimental Pathology, 5(8), 726–738.PubMedPubMedCentral
13.
Zurück zum Zitat Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K. R., Fregona, D., & Dou, Q. P. (2006). A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Research, 66(21), 10478–10486. https://doi.org/10.1158/0008-5472.can-06-3017.PubMedCrossRef Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K. R., Fregona, D., & Dou, Q. P. (2006). A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Research, 66(21), 10478–10486. https://​doi.​org/​10.​1158/​0008-5472.​can-06-3017.PubMedCrossRef
19.
Zurück zum Zitat Sigismund, S., Polo, S., & Di Fiore, P. P. (2004). Signaling through Monoubiquitination. In I. H. Madshus (Ed.), Signalling from internalized growth factor receptors (pp. 149–185). Berlin: Springer Berlin Heidelberg.CrossRef Sigismund, S., Polo, S., & Di Fiore, P. P. (2004). Signaling through Monoubiquitination. In I. H. Madshus (Ed.), Signalling from internalized growth factor receptors (pp. 149–185). Berlin: Springer Berlin Heidelberg.CrossRef
20.
Zurück zum Zitat Wood, A., Schneider, J., Dover, J., Johnston, M., & Shilatifard, A. (2003). The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. Journal of Biological Chemistry, 278(37), 34739–34742. https://doi.org/10.1074/jbc.C300269200.PubMedCrossRef Wood, A., Schneider, J., Dover, J., Johnston, M., & Shilatifard, A. (2003). The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. Journal of Biological Chemistry, 278(37), 34739–34742. https://​doi.​org/​10.​1074/​jbc.​C300269200.PubMedCrossRef
21.
Zurück zum Zitat Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L. H., et al. (2016). Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proceedings of the National Academy of Sciences, 113(32), E4639–E4647.CrossRef Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L. H., et al. (2016). Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proceedings of the National Academy of Sciences, 113(32), E4639–E4647.CrossRef
26.
Zurück zum Zitat Chen, D., Frezza, M., Schmitt, S., Kanwar, J., & Dou, Q. P. (2011). Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Current Cancer Drug Targets, 11(3), 239–253.PubMedPubMedCentralCrossRef Chen, D., Frezza, M., Schmitt, S., Kanwar, J., & Dou, Q. P. (2011). Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Current Cancer Drug Targets, 11(3), 239–253.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Andreas Schweitzer, A. A., Rudack, T., Beck, F., Pfeifer, G., Plitzko, J. M., Sakata, E., Schulten, K., Forster, F., & Baumeister, W. (2016). Structure of the human 26S proteasome at a resolution of 3.9 Å. Proceedings of the National Academy of Sciences of the United States. https://doi.org/10.1073/pnas.1608050113. Andreas Schweitzer, A. A., Rudack, T., Beck, F., Pfeifer, G., Plitzko, J. M., Sakata, E., Schulten, K., Forster, F., & Baumeister, W. (2016). Structure of the human 26S proteasome at a resolution of 3.9 Å. Proceedings of the National Academy of Sciences of the United States. https://​doi.​org/​10.​1073/​pnas.​1608050113.
36.
Zurück zum Zitat Adams, J., & Kauffman, M. (2004). Development of the proteasome inhibitor Velcade (bortezomib). Cancer Investigation, 22(2), 304–311.PubMedCrossRef Adams, J., & Kauffman, M. (2004). Development of the proteasome inhibitor Velcade (bortezomib). Cancer Investigation, 22(2), 304–311.PubMedCrossRef
39.
Zurück zum Zitat Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., et al. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7071–7075.PubMedPubMedCentralCrossRef Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., et al. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7071–7075.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Muerkoster, S. S., Brosch, M., et al. (2009). Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28(45), 3983–3996. https://doi.org/10.1038/onc.2009.264.PubMedCrossRef Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Muerkoster, S. S., Brosch, M., et al. (2009). Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28(45), 3983–3996. https://​doi.​org/​10.​1038/​onc.​2009.​264.PubMedCrossRef
42.
Zurück zum Zitat Delic, J., Masdehors, P., Omura, S., Cosset, J. M., Dumont, J., Binet, J. L., et al. (1998). The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. British Journal of Cancer, 77(7), 1103–1107.PubMedPubMedCentralCrossRef Delic, J., Masdehors, P., Omura, S., Cosset, J. M., Dumont, J., Binet, J. L., et al. (1998). The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. British Journal of Cancer, 77(7), 1103–1107.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat LeBlanc, R., Catley, L. P., Hideshima, T., Lentzsch, S., Mitsiades, C. S., Mitsiades, N., et al. (2002). Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Research, 62(17), 4996–5000.PubMed LeBlanc, R., Catley, L. P., Hideshima, T., Lentzsch, S., Mitsiades, C. S., Mitsiades, N., et al. (2002). Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Research, 62(17), 4996–5000.PubMed
44.
Zurück zum Zitat An, B., Goldfarb, R. H., Siman, R., & Dou, Q. P. (1998 Dec). Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death and Differentiation, 5(12), 1062–7545.PubMedCrossRef An, B., Goldfarb, R. H., Siman, R., & Dou, Q. P. (1998 Dec). Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death and Differentiation, 5(12), 1062–7545.PubMedCrossRef
53.
Zurück zum Zitat Drexler, H. C. A. (1997). Activation of the cell death program by inhibition of proteasome function. Proceedings of the National Academy of Sciences of the United States of America, 94(3), 855–860.PubMedPubMedCentralCrossRef Drexler, H. C. A. (1997). Activation of the cell death program by inhibition of proteasome function. Proceedings of the National Academy of Sciences of the United States of America, 94(3), 855–860.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Nam, S., Smith, D. M., & Dou, Q. P. (2001). Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G<sub>1</sub> arrest and apoptosis. Cancer Epidemiology Biomarkers & Prevention, 10(10), 1083. Nam, S., Smith, D. M., & Dou, Q. P. (2001). Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G<sub>1</sub> arrest and apoptosis. Cancer Epidemiology Biomarkers & Prevention, 10(10), 1083.
57.
Zurück zum Zitat Adams, J. (2003). Potential for proteasome inhibition in the treatment of cancer. Drug Discovery Today, 8(7), 307–315.PubMedCrossRef Adams, J. (2003). Potential for proteasome inhibition in the treatment of cancer. Drug Discovery Today, 8(7), 307–315.PubMedCrossRef
61.
Zurück zum Zitat Buac, D., Shen, M., Schmitt, S., Kona, F. R., Deshmukh, R., Zhang, Z., et al. (2013). From bortezomib to other inhibitors of the proteasome and beyond. Current Pharmaceutical Design, 19(22), 4025–4038.PubMedPubMedCentralCrossRef Buac, D., Shen, M., Schmitt, S., Kona, F. R., Deshmukh, R., Zhang, Z., et al. (2013). From bortezomib to other inhibitors of the proteasome and beyond. Current Pharmaceutical Design, 19(22), 4025–4038.PubMedPubMedCentralCrossRef
62.
67.
Zurück zum Zitat Yang, C. S., & Landau, J. M. (2000). Effects of tea consumption on nutrition and health. The Journal of Nutrition, 130(10), 2409–2412.PubMed Yang, C. S., & Landau, J. M. (2000). Effects of tea consumption on nutrition and health. The Journal of Nutrition, 130(10), 2409–2412.PubMed
69.
Zurück zum Zitat Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6(3), 243–250.PubMedCrossRef Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6(3), 243–250.PubMedCrossRef
71.
Zurück zum Zitat Landis-Piwowar, K., Chen, D., Chan, T. H., & Dou, Q. P. (2010). Inhibition of catechol-O-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (−)-EGCG. Oncology Reports, 24(2), 563–569.PubMedPubMedCentral Landis-Piwowar, K., Chen, D., Chan, T. H., & Dou, Q. P. (2010). Inhibition of catechol-O-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (−)-EGCG. Oncology Reports, 24(2), 563–569.PubMedPubMedCentral
73.
Zurück zum Zitat Kanwar, J., Mohammad, I., Yang, H., Huo, C., Chan, T. H., & Dou, Q. P. (2010). Computational modeling of the potential interactions of the proteasome β5 subunit and catechol-O-methyltransferase-resistant EGCG analogs. International Journal of Molecular Medicine, 26(2), 209–215.PubMedPubMedCentral Kanwar, J., Mohammad, I., Yang, H., Huo, C., Chan, T. H., & Dou, Q. P. (2010). Computational modeling of the potential interactions of the proteasome β5 subunit and catechol-O-methyltransferase-resistant EGCG analogs. International Journal of Molecular Medicine, 26(2), 209–215.PubMedPubMedCentral
75.
Zurück zum Zitat Kazi, A., Daniel, K. G., Smith, D. M., Kumar, N. B., & Dou, Q. P. (2003). Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochemical Pharmacology, 66(6), 965–976.PubMedCrossRef Kazi, A., Daniel, K. G., Smith, D. M., Kumar, N. B., & Dou, Q. P. (2003). Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochemical Pharmacology, 66(6), 965–976.PubMedCrossRef
80.
Zurück zum Zitat Chen, D., Landis-Piwowar, K. R., Chen, M. S., & Dou, Q. P. (2007). Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts. Breast Cancer Research, 9(6), R80.PubMedPubMedCentralCrossRef Chen, D., Landis-Piwowar, K. R., Chen, M. S., & Dou, Q. P. (2007). Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts. Breast Cancer Research, 9(6), R80.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Ergil, K. V., Kramer, E. J., & Ng, A. T. (2002). Chinese herbal medicines. Western Journal of Medicine, 176(4), 275–279.PubMedPubMedCentral Ergil, K. V., Kramer, E. J., & Ng, A. T. (2002). Chinese herbal medicines. Western Journal of Medicine, 176(4), 275–279.PubMedPubMedCentral
85.
Zurück zum Zitat Raja, S. M., Clubb, R. J., Ortega-Cava, C., Williams, S. H., Bailey, T. A., Duan, L., et al. (2011). Anticancer activity of celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers. Cancer Biology & Therapy, 11(2), 263–276. https://doi.org/10.4161/cbt.11.2.13959.CrossRef Raja, S. M., Clubb, R. J., Ortega-Cava, C., Williams, S. H., Bailey, T. A., Duan, L., et al. (2011). Anticancer activity of celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers. Cancer Biology & Therapy, 11(2), 263–276. https://​doi.​org/​10.​4161/​cbt.​11.​2.​13959.CrossRef
90.
Zurück zum Zitat Lu, L., Kanwar, J., Schmitt, S., Cui, Q. C., Zhang, C., Zhao, C., et al. (2011). Inhibition of tumor cellular proteasome activity by triptolide extracted from the Chinese medicinal plant 'thunder god vine'. Anticancer Research, 31(1), 1–10.PubMedPubMedCentral Lu, L., Kanwar, J., Schmitt, S., Cui, Q. C., Zhang, C., Zhao, C., et al. (2011). Inhibition of tumor cellular proteasome activity by triptolide extracted from the Chinese medicinal plant 'thunder god vine'. Anticancer Research, 31(1), 1–10.PubMedPubMedCentral
96.
Zurück zum Zitat Wan, S. B., Yang, H., Zhou, Z., Cui, Q. C., Chen, D., Kanwar, J., et al. (2010). Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors. International Journal of Molecular Medicine, 26(4), 447–455.PubMedPubMedCentral Wan, S. B., Yang, H., Zhou, Z., Cui, Q. C., Chen, D., Kanwar, J., et al. (2010). Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors. International Journal of Molecular Medicine, 26(4), 447–455.PubMedPubMedCentral
100.
Zurück zum Zitat Zhou, Z. T., & W. J. (2007). Phase I human tolerability trial of gambogic acid. Chin J New Drugs, 16(1), 679–682. Zhou, Z. T., & W. J. (2007). Phase I human tolerability trial of gambogic acid. Chin J New Drugs, 16(1), 679–682.
112.
Zurück zum Zitat Chen, X., Shi, X., Zhao, C., Li, X., Lan, X., Liu, S., et al. (2014). Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget, 5(19), 9118–9132. 10.18632/oncotarget.2361.PubMedPubMedCentralCrossRef Chen, X., Shi, X., Zhao, C., Li, X., Lan, X., Liu, S., et al. (2014). Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget, 5(19), 9118–9132. 10.​18632/​oncotarget.​2361.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Brem, S. S., Zagzag, D., Tsanaclis, A. M., Gately, S., Elkouby, M. P., & Brien, S. E. (1990). Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. The American Journal of Pathology, 137(5), 1121–1142.PubMedPubMedCentral Brem, S. S., Zagzag, D., Tsanaclis, A. M., Gately, S., Elkouby, M. P., & Brien, S. E. (1990). Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. The American Journal of Pathology, 137(5), 1121–1142.PubMedPubMedCentral
128.
Zurück zum Zitat Rizk, S. L., & Sky-Peck, H. H. (1984). Comparison between concentrations of trace elements in normal and neoplastic human breast tissue. Cancer Research, 44(11), 5390–5394.PubMed Rizk, S. L., & Sky-Peck, H. H. (1984). Comparison between concentrations of trace elements in normal and neoplastic human breast tissue. Cancer Research, 44(11), 5390–5394.PubMed
129.
Zurück zum Zitat Huang, Y. L., Sheu, J. Y., & Lin, T. H. (1999). Association between oxidative stress and changes of trace elements in patients with breast cancer. Clinical Biochemistry, 32(2), 131–136.PubMedCrossRef Huang, Y. L., Sheu, J. Y., & Lin, T. H. (1999). Association between oxidative stress and changes of trace elements in patients with breast cancer. Clinical Biochemistry, 32(2), 131–136.PubMedCrossRef
130.
Zurück zum Zitat Habib, F. K., Dembinski, T. C., & Stitch, S. R. (1980). The zinc and copper content of blood leucocytes and plasma from patients with benign and malignant prostates. Clinica Chimica Acta, 104(3), 329–335.CrossRef Habib, F. K., Dembinski, T. C., & Stitch, S. R. (1980). The zinc and copper content of blood leucocytes and plasma from patients with benign and malignant prostates. Clinica Chimica Acta, 104(3), 329–335.CrossRef
131.
Zurück zum Zitat Nayak, S. B., Bhat, V. R., Upadhyay, D., & Udupa, S. L. (2003). Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian Journal of Physiology and Pharmacology, 47(1), 108–110.PubMed Nayak, S. B., Bhat, V. R., Upadhyay, D., & Udupa, S. L. (2003). Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian Journal of Physiology and Pharmacology, 47(1), 108–110.PubMed
132.
Zurück zum Zitat Diez, M., Arroyo, M., Cerdan, F. J., Munoz, M., Martin, M. A., & Balibrea, J. L. (1989). Serum and tissue trace metal levels in lung cancer. Oncology, 46(4), 230–234.PubMedCrossRef Diez, M., Arroyo, M., Cerdan, F. J., Munoz, M., Martin, M. A., & Balibrea, J. L. (1989). Serum and tissue trace metal levels in lung cancer. Oncology, 46(4), 230–234.PubMedCrossRef
133.
Zurück zum Zitat Turecky, L., Kalina, P., Uhlikova, E., Namerova, S., & Krizko, J. (1984). Serum ceruloplasmin and copper levels in patients with primary brain tumors. Klinische Wochenschrift, 62(4), 187–189.PubMedCrossRef Turecky, L., Kalina, P., Uhlikova, E., Namerova, S., & Krizko, J. (1984). Serum ceruloplasmin and copper levels in patients with primary brain tumors. Klinische Wochenschrift, 62(4), 187–189.PubMedCrossRef
135.
Zurück zum Zitat Zhai, S., Yang, L., Cui, Q. C., Sun, Y., Dou, Q. P., & Yan, B. (2010). Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. Journal of Biological Inorganic Chemistry, 15(2), 259–269. https://doi.org/10.1007/s00775-009-0594-5.PubMedCrossRef Zhai, S., Yang, L., Cui, Q. C., Sun, Y., Dou, Q. P., & Yan, B. (2010). Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. Journal of Biological Inorganic Chemistry, 15(2), 259–269. https://​doi.​org/​10.​1007/​s00775-009-0594-5.PubMedCrossRef
138.
Zurück zum Zitat Pang, H., Chen, D., Cui, Q. C., & Dou, Q. P. (2007). Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. International Journal of Molecular Medicine, 19(5), 809–816.PubMed Pang, H., Chen, D., Cui, Q. C., & Dou, Q. P. (2007). Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. International Journal of Molecular Medicine, 19(5), 809–816.PubMed
144.
Zurück zum Zitat Zhao, C., Chen, X., Yang, C., Zang, D., Lan, X., Liao, S., et al. (2017). Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget, 8(8), 13942–13956. 10.18632/oncotarget.14572.PubMedPubMedCentral Zhao, C., Chen, X., Yang, C., Zang, D., Lan, X., Liao, S., et al. (2017). Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget, 8(8), 13942–13956. 10.​18632/​oncotarget.​14572.PubMedPubMedCentral
146.
Zurück zum Zitat Tomasello, M. F., Nardon, C., Lanza, V., Di Natale, G., Pettenuzzo, N., Salmaso, S., et al. (2017). New comprehensive studies of a gold(III) dithiocarbamate complex with proven anticancer properties: aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway. European Journal of Medicinal Chemistry, 138, 115–127. https://doi.org/10.1016/j.ejmech.2017.06.013.PubMedCrossRef Tomasello, M. F., Nardon, C., Lanza, V., Di Natale, G., Pettenuzzo, N., Salmaso, S., et al. (2017). New comprehensive studies of a gold(III) dithiocarbamate complex with proven anticancer properties: aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway. European Journal of Medicinal Chemistry, 138, 115–127. https://​doi.​org/​10.​1016/​j.​ejmech.​2017.​06.​013.PubMedCrossRef
Metadaten
Titel
Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing
verfasst von
Claire L. Soave
Tracey Guerin
Jinbao Liu
Q. Ping Dou
Publikationsdatum
18.10.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9705-x

Weitere Artikel der Ausgabe 4/2017

Cancer and Metastasis Reviews 4/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.