Skip to main content
Erschienen in:

01.06.2019 | Review

Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy?

verfasst von: Jan Cendelin, Annalisa Buffo, Hirokazu Hirai, Lorenzo Magrassi, Hiroshi Mitoma, Rachel Sherrard, Frantisek Vozeh, Mario Manto

Erschienen in: The Cerebellum | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Restoration of damaged central nervous system structures, functional recovery, and prevention of neuronal loss during neurodegenerative diseases are major objectives in cerebellar research. The highly organized anatomical structure of the cerebellum with numerous inputs/outputs, the complexity of cerebellar functions, and the large spectrum of cerebellar ataxias render therapies of cerebellar disorders highly challenging. There are currently several therapeutic approaches including motor rehabilitation, neuroprotective drugs, non-invasive cerebellar stimulation, molecularly based therapy targeting pathogenesis of the disease, and neurotransplantation. We discuss the goals and possible beneficial mechanisms of transplantation therapy for cerebellar damage and its limitations and factors determining outcome.
Literatur
1.
Zurück zum Zitat Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9.CrossRefPubMed Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9.CrossRefPubMed
2.
Zurück zum Zitat Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9:313–7.CrossRefPubMedPubMedCentral Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9:313–7.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Cendelin J. Transplantation and stem cell therapy for cerebellar degenerations. Cerebellum. 2016b;15:48–50.CrossRefPubMed Cendelin J. Transplantation and stem cell therapy for cerebellar degenerations. Cerebellum. 2016b;15:48–50.CrossRefPubMed
5.
Zurück zum Zitat Kumar A, Narayanan K, Chaudhary RK, Mishra S, Kumar S, Vinoth KJ, et al. Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol Neurobiol. 2017;54(9):7276–96.CrossRefPubMed Kumar A, Narayanan K, Chaudhary RK, Mishra S, Kumar S, Vinoth KJ, et al. Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol Neurobiol. 2017;54(9):7276–96.CrossRefPubMed
6.
Zurück zum Zitat Cendelin J, Mitoma H, Manto M. Neurotransplantation therapy and cerebellar reserve. CNS Neurol Disord Drug Targets. 2018a;17(3):172–83.CrossRefPubMed Cendelin J, Mitoma H, Manto M. Neurotransplantation therapy and cerebellar reserve. CNS Neurol Disord Drug Targets. 2018a;17(3):172–83.CrossRefPubMed
7.
Zurück zum Zitat Grade S, Gotz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regener Med. 2017;2:29.CrossRef Grade S, Gotz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regener Med. 2017;2:29.CrossRef
9.
Zurück zum Zitat Barker RA, Barrett J, Mason SL, Bjorklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12:84–91.CrossRefPubMed Barker RA, Barrett J, Mason SL, Bjorklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12:84–91.CrossRefPubMed
10.
Zurück zum Zitat Barker RA, Studer L, Cattaneo E, Takahashi J. G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. NPJ Park Dis. 2015;1:15017.CrossRef Barker RA, Studer L, Cattaneo E, Takahashi J. G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. NPJ Park Dis. 2015;1:15017.CrossRef
11.
Zurück zum Zitat Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3.CrossRefPubMed Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3.CrossRefPubMed
12.
Zurück zum Zitat Triarhou LC, Low WC, Ghetti B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol. 1987;176:145–54.CrossRefPubMed Triarhou LC, Low WC, Ghetti B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol. 1987;176:145–54.CrossRefPubMed
13.
Zurück zum Zitat Kohsaka S, Takayama H, Ueda T, Toya S, Tsukada Y. Reorganization of cerebellar cell suspension transplanted into the weaver mutant cerebellum and immunohistochemical detection of synaptic formation. Neurosci Res. 1988;6:162–6.CrossRefPubMed Kohsaka S, Takayama H, Ueda T, Toya S, Tsukada Y. Reorganization of cerebellar cell suspension transplanted into the weaver mutant cerebellum and immunohistochemical detection of synaptic formation. Neurosci Res. 1988;6:162–6.CrossRefPubMed
14.
Zurück zum Zitat Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.CrossRefPubMed Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.CrossRefPubMed
15.
Zurück zum Zitat Tomey DA, Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of lurcher mutant mice. Exp Neurol. 1993;122:165–70.CrossRefPubMed Tomey DA, Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of lurcher mutant mice. Exp Neurol. 1993;122:165–70.CrossRefPubMed
16.
Zurück zum Zitat Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52.CrossRefPubMed Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52.CrossRefPubMed
17.
Zurück zum Zitat Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec (Hoboken). 2009;292:1986–92.CrossRef Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec (Hoboken). 2009;292:1986–92.CrossRef
18.
Zurück zum Zitat Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7.CrossRefPubMed Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7.CrossRefPubMed
19.
Zurück zum Zitat Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014;558:154–8.CrossRefPubMed Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014;558:154–8.CrossRefPubMed
20.
Zurück zum Zitat Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-term development of embryonic cerebellar grafts in two strains of lurcher mice. Cerebellum. 2018b;17(4):428–37.CrossRefPubMed Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-term development of embryonic cerebellar grafts in two strains of lurcher mice. Cerebellum. 2018b;17(4):428–37.CrossRefPubMed
21.
Zurück zum Zitat Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.CrossRefPubMedPubMedCentral Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Roybon L, Ma Z, Asztely F, Fosum A, Jacobsen SE, Brundin P, et al. Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells. 2006;24:1594–604.CrossRefPubMed Roybon L, Ma Z, Asztely F, Fosum A, Jacobsen SE, Brundin P, et al. Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells. 2006;24:1594–604.CrossRefPubMed
23.
Zurück zum Zitat Sidman RL, Li J, Stewart GR, Clarke J, Yang W, Snyder EY, et al. Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res. 2007;1140:195–204.CrossRefPubMed Sidman RL, Li J, Stewart GR, Clarke J, Yang W, Snyder EY, et al. Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res. 2007;1140:195–204.CrossRefPubMed
24.
Zurück zum Zitat Chen KA, Lanuto D, Zheng T, Steindler DA. Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells. 2009;27:1625–34.CrossRefPubMedPubMedCentral Chen KA, Lanuto D, Zheng T, Steindler DA. Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells. 2009;27:1625–34.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35.CrossRefPubMedPubMedCentral Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Jaderstad J, Jaderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, et al. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A. 2010;107:5184–9.CrossRefPubMedPubMedCentral Jaderstad J, Jaderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, et al. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A. 2010;107:5184–9.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Takayama H, Kohsaka S, Shinozaki T, Inoue H, Toya S, Ueda T, et al. Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse. Neurosci Lett. 1987;79:246–50.CrossRefPubMed Takayama H, Kohsaka S, Shinozaki T, Inoue H, Toya S, Ueda T, et al. Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse. Neurosci Lett. 1987;79:246–50.CrossRefPubMed
28.
Zurück zum Zitat Takayama H, Toya S, Shinozaki T, Inoue H, Otani M, Kohsaka S, et al. Possible synapse formation by embryonic cerebellar tissue grafted into the cerebellum of the weaver mutant mouse. Acta Neurochir Suppl. 1988;43:154–8.PubMed Takayama H, Toya S, Shinozaki T, Inoue H, Otani M, Kohsaka S, et al. Possible synapse formation by embryonic cerebellar tissue grafted into the cerebellum of the weaver mutant mouse. Acta Neurochir Suppl. 1988;43:154–8.PubMed
29.
Zurück zum Zitat Gardette R, Alvarado-Mallart RM, Crepel F, Sotelo C. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells into the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience. 1988;24:777–89.CrossRefPubMed Gardette R, Alvarado-Mallart RM, Crepel F, Sotelo C. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells into the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience. 1988;24:777–89.CrossRefPubMed
30.
Zurück zum Zitat Sotelo C, Alvarado-Mallart RM. The reconstruction of cerebellar circuits. Trends Neurosci. 1991;14:350–5.CrossRefPubMed Sotelo C, Alvarado-Mallart RM. The reconstruction of cerebellar circuits. Trends Neurosci. 1991;14:350–5.CrossRefPubMed
31.
Zurück zum Zitat Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32.CrossRefPubMed Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32.CrossRefPubMed
32.
Zurück zum Zitat Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77.CrossRefPubMed Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77.CrossRefPubMed
33.
Zurück zum Zitat Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.CrossRefPubMed Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.CrossRefPubMed
34.
Zurück zum Zitat Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic lurcher mice. Cerebellum. 2015;14:632–41.CrossRefPubMed Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic lurcher mice. Cerebellum. 2015;14:632–41.CrossRefPubMed
35.
Zurück zum Zitat Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis. 2017;102:49–59.CrossRefPubMed Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis. 2017;102:49–59.CrossRefPubMed
36.
Zurück zum Zitat Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann-Pick type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett. 2005;381:234–6.CrossRefPubMed Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann-Pick type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett. 2005;381:234–6.CrossRefPubMed
37.
Zurück zum Zitat Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.CrossRefPubMed Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.CrossRefPubMed
38.
Zurück zum Zitat Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells. 2010;28:821–31.CrossRefPubMed Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells. 2010;28:821–31.CrossRefPubMed
39.
Zurück zum Zitat Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014;13:323–30.CrossRefPubMed Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014;13:323–30.CrossRefPubMed
40.
Zurück zum Zitat Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain. 2015;138:320–35.CrossRefPubMed Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain. 2015;138:320–35.CrossRefPubMed
42.
Zurück zum Zitat Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 2010;340:357–69.CrossRefPubMed Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 2010;340:357–69.CrossRefPubMed
43.
Zurück zum Zitat Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, et al. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep. 2017;7:4153.CrossRefPubMedPubMedCentral Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, et al. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep. 2017;7:4153.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Reidling JC, Relano-Gines A, Holley SM, Ochaba J, Moore C, Fury B, et al. Human neural stem cell transplantation rescues functional deficits in R6/2 and Q140 Huntington’s disease mice. Stem Cell Rep. 2018;10:58–72.CrossRef Reidling JC, Relano-Gines A, Holley SM, Ochaba J, Moore C, Fury B, et al. Human neural stem cell transplantation rescues functional deficits in R6/2 and Q140 Huntington’s disease mice. Stem Cell Rep. 2018;10:58–72.CrossRef
45.
Zurück zum Zitat Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci. 2002;22:1316–27.CrossRefPubMed Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci. 2002;22:1316–27.CrossRefPubMed
46.
Zurück zum Zitat Huang Y, Ko H, Cheung ZH, Yung KK, Yao T, Wang JJ, et al. Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol. 2012;233:791–8.CrossRefPubMed Huang Y, Ko H, Cheung ZH, Yung KK, Yao T, Wang JJ, et al. Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol. 2012;233:791–8.CrossRefPubMed
47.
Zurück zum Zitat Watson LM, Wong MM, Becker EB. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol. 2015;5:150056.CrossRefPubMedPubMedCentral Watson LM, Wong MM, Becker EB. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol. 2015;5:150056.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Wong MMK, Watson LM, Becker EBE. Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. J Neurol Neuromedicine. 2017;2:11–5.CrossRefPubMedPubMedCentral Wong MMK, Watson LM, Becker EBE. Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. J Neurol Neuromedicine. 2017;2:11–5.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Su HL, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol. 2006;290:287–96.CrossRefPubMed Su HL, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol. 2006;290:287–96.CrossRefPubMed
51.
Zurück zum Zitat Tao O, Shimazaki T, Okada Y, Naka H, Kohda K, Yuzaki M, et al. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J Neurosci Res. 2010;88:234–47.CrossRefPubMed Tao O, Shimazaki T, Okada Y, Naka H, Kohda K, Yuzaki M, et al. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J Neurosci Res. 2010;88:234–47.CrossRefPubMed
52.
Zurück zum Zitat Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci. 2010;13:1171–80.CrossRefPubMed Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci. 2010;13:1171–80.CrossRefPubMed
53.
Zurück zum Zitat Higuera GA, Iaffaldano G, Bedar M, Shpak G, Broersen R, Munshi ST, et al. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum. Sci Rep. 2017;7:8863.CrossRefPubMedPubMedCentral Higuera GA, Iaffaldano G, Bedar M, Shpak G, Broersen R, Munshi ST, et al. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum. Sci Rep. 2017;7:8863.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Wang S, Wang B, Pan N, Fu L, Wang C, Song G, et al. Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons. Sci Rep. 2015;5:9232.CrossRefPubMedPubMedCentral Wang S, Wang B, Pan N, Fu L, Wang C, Song G, et al. Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons. Sci Rep. 2015;5:9232.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, et al. Vulnerability of Purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep. 2016;17:1482–90.CrossRefPubMed Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, et al. Vulnerability of Purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep. 2016;17:1482–90.CrossRefPubMed
56.
Zurück zum Zitat Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry. 2018;23:2167–83.CrossRefPubMedPubMedCentral Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry. 2018;23:2167–83.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10:537–50.CrossRefPubMed Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10:537–50.CrossRefPubMed
58.
Zurück zum Zitat Watson LM, Wong MMK, Vowles J, Cowley SA, Becker EBE. A simplified method for generating Purkinje cells from human-induced pluripotent stem cells. Cerebellum. 2018;17:419–27.CrossRefPubMedPubMedCentral Watson LM, Wong MMK, Vowles J, Cowley SA, Becker EBE. A simplified method for generating Purkinje cells from human-induced pluripotent stem cells. Cerebellum. 2018;17:419–27.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22:7132–46.CrossRefPubMed Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22:7132–46.CrossRefPubMed
60.
Zurück zum Zitat Zhang W, Lee WH, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat Med. 1996;2:65–71.CrossRefPubMed Zhang W, Lee WH, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat Med. 1996;2:65–71.CrossRefPubMed
62.
Zurück zum Zitat Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.CrossRefPubMed Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.CrossRefPubMed
63.
Zurück zum Zitat Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.CrossRefPubMedPubMedCentral Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cells. 2014;15:653–65.CrossRef Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cells. 2014;15:653–65.CrossRef
65.
Zurück zum Zitat Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, Espuny-Camacho I, Gaspard N, Saha B, et al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron. 2015;85:982–97.CrossRefPubMed Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, Espuny-Camacho I, Gaspard N, Saha B, et al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron. 2015;85:982–97.CrossRefPubMed
66.
Zurück zum Zitat Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol. 2015;33:204–9.CrossRefPubMedPubMedCentral Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol. 2015;33:204–9.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Falkner S, Grade S, Dimou L, Conzelmann KK, Bonhoeffer T, Gotz M, et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature. 2016;539:248–53.CrossRefPubMed Falkner S, Grade S, Dimou L, Conzelmann KK, Bonhoeffer T, Gotz M, et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature. 2016;539:248–53.CrossRefPubMed
68.
Zurück zum Zitat Faedo A, Laporta A, Segnali A, Galimberti M, Besusso D, Cesana E, et al. Differentiation of human telencephalic progenitor cells into MSNs by inducible expression of Gsx2 and Ebf1. Proc Natl Acad Sci U S A. 2017;114:E1234–e42.CrossRefPubMedPubMedCentral Faedo A, Laporta A, Segnali A, Galimberti M, Besusso D, Cesana E, et al. Differentiation of human telencephalic progenitor cells into MSNs by inducible expression of Gsx2 and Ebf1. Proc Natl Acad Sci U S A. 2017;114:E1234–e42.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 2017;548:592–6.CrossRefPubMed Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 2017;548:592–6.CrossRefPubMed
70.
Zurück zum Zitat Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33.CrossRefPubMed Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33.CrossRefPubMed
71.
Zurück zum Zitat Miyata T, Nakajima K, Aruga J, Takahashi S, Ikenaka K, Mikoshiba K, et al. Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J Comp Neurol. 1996;372:215–28.CrossRefPubMed Miyata T, Nakajima K, Aruga J, Takahashi S, Ikenaka K, Mikoshiba K, et al. Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J Comp Neurol. 1996;372:215–28.CrossRefPubMed
72.
Zurück zum Zitat Miyata T, Nakajima K, Mikoshiba K, Ogawa M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci. 1997;17:3599–609.CrossRefPubMed Miyata T, Nakajima K, Mikoshiba K, Ogawa M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci. 1997;17:3599–609.CrossRefPubMed
73.
Zurück zum Zitat Rosenfeld JV, Richards LJ, Bartlett PF. Mutant mouse cerebellum does not provide specific signals for the selective migration and development of transplanted Purkinje cells. Neurosci Lett. 1993;155:19–23.CrossRefPubMed Rosenfeld JV, Richards LJ, Bartlett PF. Mutant mouse cerebellum does not provide specific signals for the selective migration and development of transplanted Purkinje cells. Neurosci Lett. 1993;155:19–23.CrossRefPubMed
74.
Zurück zum Zitat de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in Purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One. 2009;4:e6848.CrossRefPubMedPubMedCentral de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in Purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One. 2009;4:e6848.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Kordower JH, Goetz CG, Chu Y, Halliday GM, Nicholson DA, Musial TF, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46–57.CrossRefPubMedPubMedCentral Kordower JH, Goetz CG, Chu Y, Halliday GM, Nicholson DA, Musial TF, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46–57.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.CrossRef Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.CrossRef
77.
Zurück zum Zitat Krampera M, Franchini M, Pizzolo G, Aprili G. Mesenchymal stem cells: from biology to clinical use. Blood Transfus. 2007;5:120–9.PubMedPubMedCentral Krampera M, Franchini M, Pizzolo G, Aprili G. Mesenchymal stem cells: from biology to clinical use. Blood Transfus. 2007;5:120–9.PubMedPubMedCentral
78.
Zurück zum Zitat Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137:503–19.CrossRefPubMed Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137:503–19.CrossRefPubMed
79.
Zurück zum Zitat Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 2017;11:55.PubMedPubMedCentral Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 2017;11:55.PubMedPubMedCentral
80.
Zurück zum Zitat Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol. 2018;233:3982–99.CrossRefPubMed Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol. 2018;233:3982–99.CrossRefPubMed
81.
Zurück zum Zitat Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18:54.CrossRefPubMedPubMedCentral Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18:54.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Mieda T, Suto N, Iizuka A, Matsuura S, Iizuka H, Takagishi K, et al. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice. J Neurosci Res. 2016;94:246–52.CrossRefPubMed Mieda T, Suto N, Iizuka A, Matsuura S, Iizuka H, Takagishi K, et al. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice. J Neurosci Res. 2016;94:246–52.CrossRefPubMed
83.
Zurück zum Zitat Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, et al. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci. 2011;47:61–70.CrossRefPubMedPubMedCentral Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, et al. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci. 2011;47:61–70.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25:1307–16.CrossRefPubMed Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25:1307–16.CrossRefPubMed
85.
Zurück zum Zitat Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, et al. Fusion of human fetal mesenchymal stem cells with “degenerating” cerebellar neurons in spinocerebellar ataxia type 1 model mice. PLoS One. 2016;11:e0164202.CrossRefPubMedPubMedCentral Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, et al. Fusion of human fetal mesenchymal stem cells with “degenerating” cerebellar neurons in spinocerebellar ataxia type 1 model mice. PLoS One. 2016;11:e0164202.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66.CrossRefPubMed Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66.CrossRefPubMed
87.
Zurück zum Zitat Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, Corbel SY, et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol. 2008;10:575–83.CrossRefPubMedPubMedCentral Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, Corbel SY, et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol. 2008;10:575–83.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Magrassi L, Grimaldi P, Ibatici A, Corselli M, Ciardelli L, Castello S, et al. Induction and survival of binucleated Purkinje neurons by selective damage and aging. J Neurosci. 2007;27:9885–92.CrossRefPubMedPubMedCentral Magrassi L, Grimaldi P, Ibatici A, Corselli M, Ciardelli L, Castello S, et al. Induction and survival of binucleated Purkinje neurons by selective damage and aging. J Neurosci. 2007;27:9885–92.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Park HW, Chang JW, Yang YS, Oh W, Hwang JH, Kim DG, et al. The effect of donor-dependent administration of human umbilical cord blood-derived mesenchymal stem cells following focal cerebral ischemia in rats. Exp Neurol. 2015;24:358–65. Park HW, Chang JW, Yang YS, Oh W, Hwang JH, Kim DG, et al. The effect of donor-dependent administration of human umbilical cord blood-derived mesenchymal stem cells following focal cerebral ischemia in rats. Exp Neurol. 2015;24:358–65.
90.
Zurück zum Zitat Sherrard RM, Bower AJ. Climbing fiber development: do neurotrophins have a part to play? Cerebellum. 2002;1:265–75.CrossRefPubMed Sherrard RM, Bower AJ. Climbing fiber development: do neurotrophins have a part to play? Cerebellum. 2002;1:265–75.CrossRefPubMed
91.
Zurück zum Zitat Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3:63–70.CrossRefPubMed Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3:63–70.CrossRefPubMed
92.
Zurück zum Zitat Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.CrossRefPubMed Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.CrossRefPubMed
93.
Zurück zum Zitat Eisenman LM, Schalekamp MP, Voogd J. Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Brain Res Dev Brain Res. 1991;60:261–6.CrossRefPubMed Eisenman LM, Schalekamp MP, Voogd J. Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Brain Res Dev Brain Res. 1991;60:261–6.CrossRefPubMed
94.
Zurück zum Zitat Goffinet AM. The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol. 1983;168:73–86.CrossRefPubMed Goffinet AM. The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol. 1983;168:73–86.CrossRefPubMed
96.
Zurück zum Zitat Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39:131–82.CrossRefPubMed Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39:131–82.CrossRefPubMed
97.
Zurück zum Zitat Sotelo C, Dusart I. Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience. 2009;162:589–600.CrossRefPubMed Sotelo C, Dusart I. Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience. 2009;162:589–600.CrossRefPubMed
98.
Zurück zum Zitat Torres-Aleman I, Pons S, Arevalo MA. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res. 1994;39:117–26.CrossRefPubMed Torres-Aleman I, Pons S, Arevalo MA. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res. 1994;39:117–26.CrossRefPubMed
99.
Zurück zum Zitat Nieto-Bona MP, Garcia-Segura LM, Torres-Aleman I. Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. Int J Dev Neurosci. 1997;15:749–54.CrossRefPubMed Nieto-Bona MP, Garcia-Segura LM, Torres-Aleman I. Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. Int J Dev Neurosci. 1997;15:749–54.CrossRefPubMed
100.
Zurück zum Zitat Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci. 2007;27:2472–82.CrossRefPubMedPubMedCentral Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci. 2007;27:2472–82.CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, et al. BDNF stimulates migration of cerebellar granule cells. Development. 2002;129:1435–42.PubMed Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, et al. BDNF stimulates migration of cerebellar granule cells. Development. 2002;129:1435–42.PubMed
102.
Zurück zum Zitat Tsutsui K, Ukena K, Sakamoto H, Okuyama S, Haraguchi S. Biosynthesis, mode of action, and functional significance of neurosteroids in the Purkinje cell. Front Endocrinol. 2011;2:61. Tsutsui K, Ukena K, Sakamoto H, Okuyama S, Haraguchi S. Biosynthesis, mode of action, and functional significance of neurosteroids in the Purkinje cell. Front Endocrinol. 2011;2:61.
103.
Zurück zum Zitat Chen S, Hillman DE. Marked reorganization of Purkinje cell dendrites and spines in adult rat following vacating of synapses due to deafferentation. Brain Res. 1982;245:131–5.CrossRefPubMed Chen S, Hillman DE. Marked reorganization of Purkinje cell dendrites and spines in adult rat following vacating of synapses due to deafferentation. Brain Res. 1982;245:131–5.CrossRefPubMed
104.
Zurück zum Zitat Shimada A, Mason CA, Morrison ME. TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci. 1998;18:8559–70.CrossRefPubMed Shimada A, Mason CA, Morrison ME. TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci. 1998;18:8559–70.CrossRefPubMed
105.
Zurück zum Zitat Ohira K, Funatsu N, Nakamura S, Hayashi M. Expression of BDNF and TrkB receptor subtypes in the postnatal developing Purkinje cells of monkey cerebellum. Gene Expr Patterns. 2004;4:257–61.CrossRefPubMed Ohira K, Funatsu N, Nakamura S, Hayashi M. Expression of BDNF and TrkB receptor subtypes in the postnatal developing Purkinje cells of monkey cerebellum. Gene Expr Patterns. 2004;4:257–61.CrossRefPubMed
106.
Zurück zum Zitat Lei L, Parada LF. Transcriptional regulation of Trk family neurotrophin receptors. Cell Mol Life Sci. 2007;64:522–32.CrossRefPubMed Lei L, Parada LF. Transcriptional regulation of Trk family neurotrophin receptors. Cell Mol Life Sci. 2007;64:522–32.CrossRefPubMed
107.
Zurück zum Zitat Rossi F, Wiklund L, van der Want JJ, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. J Comp Neurol. 1991;308:513–35.CrossRefPubMed Rossi F, Wiklund L, van der Want JJ, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. J Comp Neurol. 1991;308:513–35.CrossRefPubMed
108.
Zurück zum Zitat Dhar M, Brenner JM, Sakimura K, Kano M, Nishiyama H. Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nat Commun. 2016;7:12938.CrossRefPubMedPubMedCentral Dhar M, Brenner JM, Sakimura K, Kano M, Nishiyama H. Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nat Commun. 2016;7:12938.CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Dixon KJ, Sherrard RM. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells. Exp Neurol. 2006;202:44–56.CrossRefPubMed Dixon KJ, Sherrard RM. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells. Exp Neurol. 2006;202:44–56.CrossRefPubMed
110.
Zurück zum Zitat Sherrard RM, Bower AJ. IGF-1 induces neonatal climbing-fibre plasticity in the mature rat cerebellum. Neuroreport. 2003;14:1713–6.CrossRefPubMed Sherrard RM, Bower AJ. IGF-1 induces neonatal climbing-fibre plasticity in the mature rat cerebellum. Neuroreport. 2003;14:1713–6.CrossRefPubMed
111.
Zurück zum Zitat Willson ML, McElnea C, Mariani J, Lohof AM, Sherrard RM. BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill. Brain. 2008;131:1099–112.CrossRefPubMed Willson ML, McElnea C, Mariani J, Lohof AM, Sherrard RM. BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill. Brain. 2008;131:1099–112.CrossRefPubMed
112.
Zurück zum Zitat Sherrard RM, Dixon KJ, Bakouche J, Rodger J, Lemaigre-Dubreuil Y, Mariani J. Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination. Dev Neurobiol. 2009;69:647–62.CrossRefPubMed Sherrard RM, Dixon KJ, Bakouche J, Rodger J, Lemaigre-Dubreuil Y, Mariani J. Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination. Dev Neurobiol. 2009;69:647–62.CrossRefPubMed
113.
Zurück zum Zitat Letellier M, Bailly Y, Demais V, Sherrard RM, Mariani J, Lohof AM. Reinnervation of late postnatal Purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation. J Neurosci. 2007;27:5373–83.CrossRefPubMedPubMedCentral Letellier M, Bailly Y, Demais V, Sherrard RM, Mariani J, Lohof AM. Reinnervation of late postnatal Purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation. J Neurosci. 2007;27:5373–83.CrossRefPubMedPubMedCentral
114.
Zurück zum Zitat Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR. Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci. 2000;20:Rc107.CrossRefPubMed Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR. Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci. 2000;20:Rc107.CrossRefPubMed
115.
Zurück zum Zitat Bosman LW, Hartmann J, Barski JJ, Lepier A, Noll-Hussong M, Reichardt LF, et al. Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biol. 2006;35:87–101.CrossRefPubMed Bosman LW, Hartmann J, Barski JJ, Lepier A, Noll-Hussong M, Reichardt LF, et al. Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biol. 2006;35:87–101.CrossRefPubMed
116.
Zurück zum Zitat Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, et al. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun. 2017;8:195.CrossRefPubMedPubMedCentral Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, et al. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun. 2017;8:195.CrossRefPubMedPubMedCentral
117.
Zurück zum Zitat Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140370.CrossRef Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140370.CrossRef
118.
Zurück zum Zitat Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med. 1995;332:1118–24.CrossRefPubMed Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med. 1995;332:1118–24.CrossRefPubMed
119.
120.
Zurück zum Zitat Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol. 2000;48:689–95.CrossRefPubMed Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol. 2000;48:689–95.CrossRefPubMed
121.
Zurück zum Zitat Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–9.CrossRefPubMed Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–9.CrossRefPubMed
122.
Zurück zum Zitat Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–14.CrossRefPubMed Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–14.CrossRefPubMed
123.
Zurück zum Zitat Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain. 2005;128:2977–86.CrossRefPubMed Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain. 2005;128:2977–86.CrossRefPubMed
124.
Zurück zum Zitat Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 2006;12:1259–68.CrossRefPubMed Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 2006;12:1259–68.CrossRefPubMed
125.
Zurück zum Zitat Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A. 2002;99:2344–9.CrossRefPubMedPubMedCentral Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A. 2002;99:2344–9.CrossRefPubMedPubMedCentral
126.
Zurück zum Zitat Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells. 2006;24:763–71.CrossRefPubMed Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells. 2006;24:763–71.CrossRefPubMed
127.
Zurück zum Zitat Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol. 2004;167:723–34.CrossRefPubMedPubMedCentral Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol. 2004;167:723–34.CrossRefPubMedPubMedCentral
128.
Zurück zum Zitat Parish CL, Parisi S, Persico MG, Arenas E, Minchiotti G. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson’s disease. Stem Cells. 2005;23:471–6.CrossRefPubMed Parish CL, Parisi S, Persico MG, Arenas E, Minchiotti G. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson’s disease. Stem Cells. 2005;23:471–6.CrossRefPubMed
129.
Zurück zum Zitat Xiao B, Ng HH, Takahashi R, Tan EK. Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry. 2016;87:697–702.CrossRefPubMedPubMedCentral Xiao B, Ng HH, Takahashi R, Tan EK. Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry. 2016;87:697–702.CrossRefPubMedPubMedCentral
130.
Zurück zum Zitat Krystkowiak P, Gaura V, Labalette M, Rialland A, Remy P, Peschanski M, et al. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS One. 2007;2:e166.CrossRefPubMedPubMedCentral Krystkowiak P, Gaura V, Labalette M, Rialland A, Remy P, Peschanski M, et al. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS One. 2007;2:e166.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Morizane A, Li JY, Brundin P. From bench to bed: the potential of stem cells for the treatment of Parkinson’s disease. Cell Tissue Res. 2008;331:323–36.CrossRefPubMed Morizane A, Li JY, Brundin P. From bench to bed: the potential of stem cells for the treatment of Parkinson’s disease. Cell Tissue Res. 2008;331:323–36.CrossRefPubMed
132.
Zurück zum Zitat Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol. 2002;52:628–34.CrossRefPubMed Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol. 2002;52:628–34.CrossRefPubMed
133.
Zurück zum Zitat Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008a;14:504–6.CrossRefPubMed Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008a;14:504–6.CrossRefPubMed
134.
Zurück zum Zitat Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord. 2008b;23:2303–6.CrossRefPubMed Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord. 2008b;23:2303–6.CrossRefPubMed
135.
136.
Zurück zum Zitat Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28:12713–24.CrossRefPubMedPubMedCentral Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28:12713–24.CrossRefPubMedPubMedCentral
137.
Zurück zum Zitat Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Bottcher M, et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet. 2009;18:4282–95.CrossRefPubMed Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Bottcher M, et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet. 2009;18:4282–95.CrossRefPubMed
138.
Zurück zum Zitat Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.CrossRefPubMedPubMedCentral Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.CrossRefPubMedPubMedCentral
139.
Zurück zum Zitat Furrer SA, Waldherr SM, Mohanachandran MS, Baughn TD, Nguyen KT, Sopher BL, et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum Mol Genet. 2013;22:890–903.CrossRefPubMed Furrer SA, Waldherr SM, Mohanachandran MS, Baughn TD, Nguyen KT, Sopher BL, et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum Mol Genet. 2013;22:890–903.CrossRefPubMed
140.
Zurück zum Zitat Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, et al. Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain. 2013;136:1732–45.CrossRefPubMed Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, et al. Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain. 2013;136:1732–45.CrossRefPubMed
141.
Zurück zum Zitat Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, et al. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One. 2013;8:e52396.CrossRefPubMedPubMedCentral Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, et al. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One. 2013;8:e52396.CrossRefPubMedPubMedCentral
142.
Zurück zum Zitat Rodriguez-Lebron E, Costa Mdo C, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, et al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther. 2013;21:1909–18.CrossRefPubMedPubMedCentral Rodriguez-Lebron E, Costa Mdo C, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, et al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther. 2013;21:1909–18.CrossRefPubMedPubMedCentral
143.
Zurück zum Zitat Wang HL, Hu SH, Chou AH, Wang SS, Weng YH, Yeh TH. H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology. 2013;70:1–11.CrossRefPubMed Wang HL, Hu SH, Chou AH, Wang SS, Weng YH, Yeh TH. H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology. 2013;70:1–11.CrossRefPubMed
144.
Zurück zum Zitat Ramachandran PS, Bhattarai S, Singh P, Boudreau RL, Thompson S, Laspada AR, et al. RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLoS One. 2014;9:e95362.CrossRefPubMedPubMedCentral Ramachandran PS, Bhattarai S, Singh P, Boudreau RL, Thompson S, Laspada AR, et al. RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLoS One. 2014;9:e95362.CrossRefPubMedPubMedCentral
145.
Zurück zum Zitat Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claassen J, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13:248–68.CrossRefPubMedPubMedCentral Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claassen J, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13:248–68.CrossRefPubMedPubMedCentral
147.
Zurück zum Zitat Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord. 2015;30:1701–5.CrossRefPubMed Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord. 2015;30:1701–5.CrossRefPubMed
148.
Zurück zum Zitat Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10:242–50.CrossRefPubMed Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10:242–50.CrossRefPubMed
Metadaten
Titel
Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy?
verfasst von
Jan Cendelin
Annalisa Buffo
Hirokazu Hirai
Lorenzo Magrassi
Hiroshi Mitoma
Rachel Sherrard
Frantisek Vozeh
Mario Manto
Publikationsdatum
01.06.2019
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 3/2019
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-018-0999-1

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

„Wir wollen die Bedeutung von Gen- und Umwelteinflüssen besser verstehen“

Eine Mutation in einem einzelnen Gen kann bei Mäusen eine Art Bipolarstörung auslösen. PD Dr. Jan Deussing vom Max-Planck-Institut für Psychiatrie in München sieht in solchen Tiermodellen eine Möglichkeit, den Ursachen der Erkrankung auf den Grund zu gehen.

Suizidassistenz erhöht Suizidzahlen: Aktuelle Ergebnisse der geplanten S3-Leitlinie

Erstmals wird in Deutschland eine S3-Leitlinie zum Thema Suizidalität erarbeitet. Ziel ist es, die Versorgung in suizidalen Krisen durch einheitliche Standards zu verbessern. Erste Ergebnisse der bisherigen Leitlinienarbeit wurden auf dem DGPPN-Kongress vorgestellt.

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.