Skip to main content
main-content

05.12.2018 | Magnetic Resonance Open Access

Technical challenges of quantitative chest MRI data analysis in a large cohort pediatric study

Zeitschrift:
European Radiology
Autoren:
Anh H. Nguyen, Adria Perez-Rovira, Piotr A. Wielopolski, Juan A. Hernandez Tamames, Liesbeth Duijts, Marleen de Bruijne, Andrea Aliverti, Francesca Pennati, Tetyana Ivanovska, Harm A. W. M. Tiddens, Pierluigi Ciet
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00330-018-5863-7) contains supplementary material, which is available to authorized users.
This paper has been presented to the European Conference of Radiology (ECR 2018) and awarded as the best scientific paper presentation in the section Pediatrics.

Abstract

Objectives

This study was conducted in order to evaluate the effect of geometric distortion (GD) on MRI lung volume quantification and evaluate available manual, semi-automated, and fully automated methods for lung segmentation.

Methods

A phantom was scanned with MRI and CT. GD was quantified as the difference in phantom’s volume between MRI and CT, with CT as gold standard. Dice scores were used to measure overlap in shapes. Furthermore, 11 subjects from a prospective population-based cohort study each underwent four chest MRI acquisitions. The resulting 44 MRI scans with 2D and 3D Gradwarp were used to test five segmentation methods. Intraclass correlation coefficient, Bland–Altman plots, Wilcoxon, Mann–Whitney U, and paired t tests were used for statistics.

Results

Using phantoms, volume differences between CT and MRI varied according to MRI positions and 2D and 3D Gradwarp correction. With the phantom located at the isocenter, MRI overestimated the volume relative to CT by 5.56 ± 1.16 to 6.99 ± 0.22% with body and torso coils, respectively. Higher Dice scores and smaller intraobject differences were found for 3D Gradwarp MR images. In subjects, semi-automated and fully automated segmentation tools showed high agreement with manual segmentations (ICC = 0.971–0.993 for end-inspiratory scans; ICC = 0.992–0.995 for end-expiratory scans). Manual segmentation time per scan was approximately 3–4 h and 2–3 min for fully automated methods.

Conclusions

Volume overestimation of MRI due to GD can be quantified. Semi-automated and fully automated segmentation methods allow accurate, reproducible, and fast lung volume quantification. Chest MRI can be a valid radiation-free imaging modality for lung segmentation and volume quantification in large cohort studies.

Key Points

• Geometric distortion varies according to MRI setting and patient positioning.
• Automated segmentation methods allow fast and accurate lung volume quantification.
• MRI is a valid radiation-free alternative to CT for quantitative data analysis.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Zusatzmaterial
ESM 1 (DOCX 1799 kb)
330_2018_5863_MOESM1_ESM.docx
Literatur
Über diesen Artikel

Neu im Fachgebiet Radiologie

11.01.2019 | Klinik aktuell | Nachrichten | Onlineartikel

Ein Fünftel mehr Organspender

09.01.2019 | IT für Ärzte | Nachrichten | Onlineartikel

AU-Bescheinigungen via Whatsapp

21.12.2018 | Gesundheitspolitik | Nachrichten | Onlineartikel

„Ärzte zu oft auf dem Golfplatz“

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise