Skip to main content
Erschienen in: Molecular Neurodegeneration 1/2014

Open Access 01.12.2014 | Research article

Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease

verfasst von: Véréna Landel, Kévin Baranger, Isabelle Virard, Béatrice Loriod, Michel Khrestchatisky, Santiago Rivera, Philippe Benech, François Féron

Erschienen in: Molecular Neurodegeneration | Ausgabe 1/2014

Abstract

Background

The 5XFAD early onset mouse model of Alzheimer’s disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9).

Results

Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways.

Conclusions

Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1750-1326-9-33) contains supplementary material, which is available to authorized users.
Philippe Benech and François Féron contributed equally to this work.

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

VL isolated the RNA, helped perform the microarray assay, analyzed the results and wrote the manuscript. KB bred and genotyped the mice, and carried out the qPCR analysis. BL performed the microarray assay. IV and SR participated in interpreting the data and writing the manuscript. PB analyzed the microarray data and wrote the manuscript. FF designed and coordinated the study, and helped to draft the manuscript. All authors read and approved the final manuscript.
Abkürzungen
5XFAD
A strain of transgenic mice that carry mutant human APP and human PSEN1 genes harbouring a total of five mutations linked to familial AD
AD
Alzheimer’s disease
APP
Amyloid precursor protein
Beta-amyloid peptide
Aβ42
Beta-amyloid peptide 1-42
DEG
Differentially expressed gene
FAD
Familial Alzheimer’s disease
FC
Fold change
GTPases
A large family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP)
IFN-γ
Interferon gamma
IPA
Ingenuity pathway analysis
ISG
Interferon stimulated gene
M1
One month
M4
Four months
M6
Six months
M9
Nine months
MHC
Major histocompatibility complex
NADPH
Reduced form of NADP+, i.e. nicotinamide adenine dinucleotide phosphate
NOX
NADPH oxidase complex
PSEN1
Presenilin-1
Thy1
Thymocyte antigen 1.

Background

Significant progress has been made uncovering the role of specific genes in Alzheimer’s disease (AD), yet little is known about the global molecular changes leading to neurodegeneration and brain dysfunction. One drawback comes from the fact that brain tissue from AD patients only becomes available post mortem, i.e. at very late stages of the disease. For this reason, transgenic AD mouse models are precious tools to gain insight into the spatio-temporal changes that may affect molecular cascades involved in disease progression.
The 5XFAD mouse model used in this study bears five mutations linked to familial forms of AD and recapitulates in a few months the main features of AD [1]. All these mutations act in an additive manner to boost the production of β-amyloid (Aβ) peptides, resulting from the processing of amyloid precursor protein (APP), in particular the 42 amino acid form, Aβ42 [26]. Compared with other models, 5XFAD mice display AD features much earlier. Though they do not present a clear tau pathology, they develop cerebral amyloid plaques and gliosis as early as 2 months of age [1]. Electrophysiological studies detected hippocampal synaptic dysfunctions in M6 5XFAD animals, concomitant with synaptic loss and memory deficits [722]. Progressive neuronal death has been described from M9 onwards in cortical layer 5 neurons and subiculum of 5XFAD mice [12, 23], a characteristic that is absent in most AD mouse models.
How these pathophysiological alterations correlate with global spatio-temporal changes in gene expression remains to be thoroughly evaluated. Few prior transcriptomic studies examined AD mouse models, usually at a single time point or in a single brain region [2429]. Only two studies investigated the transcriptome of 5XFAD mice, one using RNA-seq in frontal cortex and cerebellum of 7 week-old transgenic mice [30], the other using whole-brain next-generation sequencing to compare young (M3-6) versus old (M12) mice from 5XFAD and Tg4-42 strains [31].
Here, we carried out a longitudinal transcriptomic study on two major brain regions affected in AD, the hippocampus and the neocortex, obtained from 5XFAD female mice at presymptomatic (M1), prodromal-like (M4) and symptomatic stages (M6 and M9) of the pathology. We investigated how genes with a modulated expression are involved in functional networks through the use of two text-mining based softwares (Ingenuity and PredictSearch). Among the genes involved in these networks, a bibliographic search was performed to identify those reported in AD patients.
Our results indicate a tremendous shift in the transcriptional profile between M1 and M4 in both the cortex and hippocampus of 5XFAD mice, mainly characterized by an increase in inflammatory and immune markers. Moreover, they emphasize the predominant activation of microglia and transcriptional activities induced by interferon-γ (IFN-γ), likely through the expression of interferon regulatory factor 8 (IRF8), which stands out as a key transcriptional regulator in our study. The main IRF8 target pathways include antigen processing, antigen presentation and phagosome maturation, associated with a modulation of GTPase signaling. Interestingly, a high number of dysregulated genes are associated to AD, confirming that the 5XFAD model mirrors, at an early age, many aspects of this neurodegenerative disease.

Results and discussion

Temporal distribution of dysregulated genes reveals dramatic changes from M4 onwards

Figure 1 summarizes the global screening of gene expression analysis of cortex and hippocampus from 5XFAD compared with wild type mice at M1, M4, M6 and M9. The number of differentially expressed genes (DEGs) increases with age in both tissues (Figure 1A) with a drastic increase between M4 and M6 when considering the number of up- and down-regulated genes (Figure 1A and B).
At M1, twice as many genes are dysregulated in the hippocampus as in the cortex (Figure 1A), suggesting that distinct alterations occur in these two regions at that early stage, as described at the histological level [1]. Additionally, we observed many shared DEGs between cortex and hippocampus (Figure 1B), in particular at M4, when nearly 50% of the DEGs are common to both brain regions. By contrast, at M1, only 12% of the genes modulated in hippocampus overlap with those found in cortex (Figure 1B).
In order to evaluate the specificities at each studied stage, we looked at overlapping and non-overlapping DEGs in transgenic animals, from M1 to M9, separately in cortex and hippocampus. Interestingly, the expression of only 23 genes from the cortex and 55 from the hippocampus (Figure 1C and D, white areas) is modulated across all ages (Additional file 1: Table S1). Strikingly, the expression of an important number of genes (293 for the cortex; 278 for the hippocampus; Figure 1C and D, light orange areas) is altered through M4 to M9. Among those, 183 DEGs at M4, M6 and M9 are common to both tissues (Additional file 2: Table S2). Most of these genes are upregulated; only 3 of these DEGs show decreased expression at all three ages and in both regions, while 176 display an increased expression and 4 are inconsistently either up- or down-regulated in cortex or hippocampus (Additional file 2: Table S2).
To investigate whether these quantitative changes might reflect alterations of specific processes and/or pathways contributing to disease progression, we looked at the most upregulated genes in both tissues over time (Figure 2) using Ingenuity Pathway Analysis (IPA). Six out of the top ten upregulated genes from the cortex and four from the hippocampus at M4 also appear among the top ten upregulated genes at M6 and M9 (Figure 2). Inflammation and immunomodulation are the main affected processes in these tissues, as illustrated by changes in expression of Clec7a (coding for the dectin-1 protein), Cst7 (cystatin F), Itgax (Cd11c) and genes encoding chemokines Ccl3, Ccl4, Ccl6 and the glial fibrillary acidic protein (Gfap) (Table 1).
Table 1
Upregulated genes with their fold change related to inflammation and immune processes in the cortex and hippocampus of 5XFAD mice at M1, M4, M6 and M9
  
Cortex
Hippocampus
Gene
Probe
M1
M4
M6
M9
M1
M4
M6
M9
Clec7a
A51P246653
0.8
12.1
35.0
30.9
1.1
15.9
32.2
32.5
Cst7
A51P137419
1.0
74.7
63.5
140.2
1.3
100.5
118.4
145.8
Itgax
A51P303424
0.7
16.3
13.4
19.6
0.8
16.1
14.8
23.2
Ccl3
A51P140710
1.0
15.8
14.7
15.4
0.6
11.3
7.3
17.3
Ccl6
A51P460954
1.4
12.4
9.4
13.4
1.4
13.7
10.8
9.7
Gfap
A55P2157245
1.1
3.4
6.1
4.4
1.1
2.2
3.0
5.4
Gfap
A52P52303
1.1
5.2
8.4
5.0
1.1
2.8
3.1
4.5
Gfap
A55P2157250
1.2
8.1
8.6
11.8
0.9
4.0
8.0
3.5
Ccl4
A51P509573
0.9
9.0
7.3
9.9
0.9
12.7
10.7
11.3
Ttr
A65P19832
12.2
8.7
2.5
0.7
0.2
1.2
1.0
1.5
Kl
A52P439358
2.9
3.0
1.2
0.5
0.2
1.2
0.6
2.2
Fold changes are indicated in bold when FC > 1.5.
In contrast to these overlaps, the top ten upregulated genes in M1 animals are fundamentally distinct from those found in older animals (Figure 2). Only the transthyretin (Ttr) gene, encoding a transporter of thyroxin and retinol, is strongly upregulated in the cortex at both M1 and M4 (Figure 2). Ttr, previously identified as upregulated in the frontal cortex of young, presymptomatic 5XFAD mice [30, 31], is able to bind and sequester Aβ peptide, thereby preventing its aggregation and plaque formation [3234]. The finding that high levels of Ttr precede plaque deposition is corroborated by another study performed on Tg2576 transgenic mice, a model in which plaque deposition does not occur until M12 [35]. Moreover, Ttr was identified as a physiological target of APP, since its expression is increased by soluble extracellular APP processed products [34]. Interestingly, Klotho (Kl), encoding a hormone involved in aging processes such as oxidative stress and calcium homeostasis [3638], was similarly dysregulated. Both genes exhibit a similar expression profile in our transcriptomic study (Table 1), confirming that Ttr and Kl are co-regulated APP targets. In the cortex, their expression decreases progressively from M4 to M6 to reach, at M9, expression levels below those of wild type mice. Conversely, in the hippocampus of 5XFAD mice, their expression is repressed at M1 and upregulated at M9. Such differential expression patterns may highlight distinct temporally-regulated protective capacities, as observed in cultures of oxygen- and glucose-deprived astrocytes from cortex and hippocampus [39].IPA was then undertaken to investigate the most affected networks during the time course of disease progression. When considering all DEGs at M4, M6 and M9 (after the onset), processes associated to the dysregulated genes mainly relate to inflammatory and immune responses (Figure 3A). As an example, Figure 3B maps some genes associated to the complement, major histocompatibility complexes (MHCs) and toll-like receptors (TLRs).
Such a presence of immune markers in the hippocampus and cortex of the 5XFAD mice is not surprising since they are produced in neurons, astrocytes and resident microglia. In a healthy brain, they illustrate the “neuro-immune” system that exists in the central nervous system, where, for instance, complement cascade tags neurons destined to destruction [40]. With age and repeated insults, these processes may spiral out of control and lead to degeneration. Through the upregulation of inflammatory/immune markers, the 5XFAD brain recapitulates the dysfunction of the resident immune network seen in AD [41, 42].
In addition to inflammatory and immune changes, IPA identified functional links between genes affected from M6 onwards and neurological and psychological diseases (Figure 3A). Changes in genes associated with impaired cognitive functions are found to be a significant feature of M9. This is consistent with published studies reporting abnormal behaviors in 5XFAD mice starting at M6 and strongly consolidated by M9 [7, 12, 13, 19, 20, 43, 44].
These observations suggest that disrupting the intricate balance between neurons and surrounding immune cells may lead to neuronal dysfunction and cognitive deterioration [45, 46].

Establishment of neuroinflammation through activation of complement

A dramatic increase in inflammation stands out as the most striking transcriptomic result. Neuroinflammation is a well-known hallmark of AD and is characterized by the activation of astrocytes and microglia, which appears in the 5XFAD mouse model near and concomitantly to amyloid plaques [1]. In various types of brain insults, peripheral leukocytes infiltrate the injured brain [4749] and intensify the neuroinflammatory response through pro-inflammatory mediators, free radicals, lipid peroxidation and oxidative stress [5052]. Their infiltration is mediated, in part, by CD11/CD18 integrins expressed in neutrophils and monocytes/macrophages.
In our study, in addition to Cd11c-encoding gene Itgax, genes such as Itgam, Itgb3, and Itgb2, encoding respectively Cd11, Cd61 and Cd18, are all overexpressed in the 5XFAD mice (Table 2). Most of these integrins are transcriptionally induced by IL-1β and/or Aβ through TLR2-mediated signaling [53]. In keeping with this, we found an upregulated expression of Tlr2 at M4, M6 and M9 (Table 2). Increases in transcript levels of inflammatory markers such as Cd11b, Il-1β, Tnf-α and Tlr2 have already been observed in 6 months old 5XFAD mice [54].
Table 2
Upregulated genes related to complement activation in the cortex and hippocampus of 5XFAD mice at M1, M4, M6 and M9
  
Cortex
Hippocampus
Gene
Probe
M1
M4
M6
M9
M1
M4
M6
M9
Itgam
A55P1977929
0.9
1.5
1.2
1.9
1.1
2.0
1.8
1.6
Itgb2
A51P262208
1.0
2.5
2.6
3.4
1.0
2.3
2.4
2.5
Itgb3
A52P553890
0.9
1.3
2.0
1.5
0.9
1.8
1.9
3.0
Tlr2
A51P452629
1.0
2.7
3.6
3.3
0.6
3.2
3.6
5.1
C3
A51P110301
1.6
1.0
3.5
1.6
0.9
1.2
5.2
6.3
C4b
A55P2078633
1.1
2.6
9.0
3.7
0.8
2.6
4.0
5.6
C1qa
A51P181451
1.1
2.6
3.2
4.0
1.0
3.0
3.8
4.7
C1qb
A51P351860
1.0
2.3
2.9
3.2
1.0
2.6
5.1
2.9
C1qc
A51P102789
1.0
2.8
2.0
5.7
1.2
3.0
4.6
4.2
Fold changes are indicated in bold when FC > 1.5.
Moreover, the expression of several members of the complement, known immune effectors, is also upregulated, such as C3, C4, C1qa, C1qc and C1qb, which are all overexpressed in the cortex of AD patients [55]. CD18 interacts with CD11b or CD11c to form the C3 receptor (CR3) and C4 receptor (CR4), respectively. C3 and C4 ligands bind to their cognate receptors, C3R and C4R (Figure 4). Activation of these receptors is reportedly part of the complement-induced inflammation in AD mouse models and patients [5661] and influences microglia to adopt protective or deleterious phenotypes in AD [31, 62].
On the whole, our results point to a major raise in inflammation in the 5XFAD brain, linked to complement activation and presumably to immune cell infiltration, reminiscent of similar findings in AD patients and other mouse models [6368].

Altered expression of interferon gamma-induced genes

In a second approach, we applied more stringent criteria for gene selection (see Materials and methods) to identify functional networks highly modulated in our model: we focused on genes upregulated in both hippocampus and cortex, from M4 to M9 or at consecutive time points (M4/M6 and M6/M9). We then explored the published data on these dysregulated genes to map out the molecular and cellular players at stake. To this end, we used IPA as well as PredictSearch, another software for the design of functional networks [6974]. This combined analysis reveals numerous IFN-γ-induced genes, which belong to a larger set of genes known as interferon stimulated genes or ISGs (Figure 5). However, we did not observe any change in IFN-γ gene expression in our study. Although post-transcriptional regulation cannot be excluded, we can postulate that IFN-γ transcription occurs either transiently in brain cells or outside the brain, in peripheral blood cells. IFN-γ can be produced in the brain by glial cells [75]. However, several reports argue in favor of T cell infiltration in AD [63, 64]. In post mortem AD brain, peripheral T cells cluster around plaques in areas of important gliosis [7678]. Disruption of the blood-brain barrier has been reported in M8 5XFAD mice [79]. A recent study also demonstrates that a significant infiltration of T cells occurs in the brain of APP/PS1 transgenic mice and that these cells secrete IFN-γ [80]. In the same study, transferring Aβ-specific Th1 cells to APP/PS1 mice increased microglial activation and Aβ deposition and worsened cognitive performances in the Morris water maze. These observations warrant more studies to test the hypothesis that, in the 5XFAD brain, infiltrated T cells may potentially release IFN-γ, activate microglia and stimulate expression of IFN-γ induced genes.As described below, these genes are involved in the regulation of different processes, including immunity, inflammation and GTPase signaling (Figure 5).
Concerning the potential role of the immune system, major histocompatibility complex (MHC) genes are expressed in microglia upon cytokine stimulation in the inflamed brain [81] and both MHC class I and II are known to be upregulated in sporadic forms of human AD [82]. A role for MHC class II genes in the 5XFAD mice is supported by the parallel increase in the expression of Cd74 (Figure 5), which acts both as chaperone for MHC class II molecules and as receptor for MIF (macrophage migration inhibitory factor). CD74 is also increased in AD cases compared with age-matched controls, notably in neurofibrillary tangles-bearing neurons, amyloid plaques and microglia [83]. Thus, expression of MHC class II genes highlight the predominance of microglia activation in the 5XFAD mice. In response to IFN-γ, a rise in microglial MHC class II genes may enhance antigen presentation to T cells, which, in turn, might contribute to immune-mediated damages to neurons. Interestingly, at least at a certain stage of the disease, Cd74 expression may also denote a protective effect. Indeed, interaction of CD74 with MIF promotes a cell survival pathway and its interaction with APP blocks Aβ production [84, 85].
In our analysis, a second large cluster of genes induced by IFN-γ and dysregulated in 5XFAD brain encodes proteins with GTPase activity (Figure 5), such as Irgm1 and Irgm2 (members of the Immunity-Related GTPase family M [86]), Igtp/Irgm3 (IFN-γ induced GTPase), and Iigp1/Irga6 (interferon induced GTPase 1). Moreover, the expression of another GTPase gene, Gvin1 (very large interferon inducible 1) and two members of the guanylate-binding protein genes, Gbp2 and Gbp3, is also higher in 5XFAD animals. GBPs belong to another family of GTPases and are the most abundant proteins that accumulate in fibroblasts or macrophages in response to IFN-γ stimulation [87]. A number of other GTPases, not described to be regulated by IFN-γ, but related to TGF-β activity, are also overexpressed in our model.
GTPases such as Irgm1 regulate, during ischemic stroke, survival and neuronal autophagy [88], a process that eliminates dysfunctional cell components using lysosomes. Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting disruption of the blood-brain and blood-cerebrospinal fluid barriers [89]. In addition to controling cell death or survival [9092], murine IRGs affect protein aggregate formation and clearance [93, 94] and altogether, these functions engage the autophagic pathway [91].
A possible involvement of autophagy in 5XFAD animals is also supported by the increased expression of known targets of Tfeb, a transcriptional factor involved in lysosomal biogenesis [95, 96]. These Tfeb targets include Gusb (beta-glucuronidase), Naglu, Hexa, Hexb, and Ctsd[95, 97], which are greatly expressed in the 5XFAD mice from M4 to M9 in both cortex and hippocampus (Table 3). Interestingly, the expression of Gusb was upregulated in Aβ-resistant cells and might illustrate a protective effect against Aβ toxicity [98]. Moreover, a role for presenilins in regulating lysosomal function has been demonstrated [97] and several lines of evidence suggest that endosomes/lysosomes are involved in Aβ production [99, 100]. Thus, our results highlight the possible activation of the endosomal/lysosomal system in the 5XFAD brain, in keeping with observations in this model [101] and in human AD brains [102].
Table 3
Upregulated genes, fold changes, and associated functional categories for genes consistently dysregulated from M4 to M9
  
Cortex
Hippocampus
 
Gene
Probe
M1
M4
M6
M9
M1
M4
M6
M9
 
Gusb
A51P211491
0.9
2.5
3.2
3.2
1.1
3.0
3.6
3.9
Lysosomal biogenesis
Naglu
A52P504361
1.0
2.1
2.1
2.2
0.8
1.7
2.2
2.0
Hexa
A51P282667
1.1
1.9
2.0
2.3
1.2
1.7
2.3
2.4
Hexb
A51P453111
1.0
2.5
2.0
3.2
0.9
2.8
2.0
3.3
Ctsd
A65P13209
1.1
3.0
4.4
2.4
0.9
2.8
3.8
3.1
Tgfb1
A51P390715
1.1
1.8
1.7
2.3
0.8
2.3
2.6
1.6
TGF-β signaling
Tgfbr1
A51P2137206
1.1
1.5
1.7
1.7
0.8
1.6
1.4
1.9
Tgfbr2
A51P450573
1.0
1.9
2.1
2.3
1.0
2.2
2.0
3.7
Aif1
A51P400543
1.0
2.1
2.4
2.2
1.0
2.5
2.3
2.9
Markers of microglial activation
Ptprc
A55P1990324
1.0
2.0
1.7
2.0
1.0
2.0
2.1
2.5
Cd86
A55P1971951
0.9
1.8
2.3
2.5
1.1
2.5
3.0
3.5
Cd14
A51P172853
1.0
2.7
3.2
3.8
1.0
2.6
3.6
3.3
Igf1
A55P2031631
0.9
2.6
2.0
5.1
1.0
3.0
3.0
4.2
Protective activities
Osmr
A51P319460
0.9
1.6
2.7
3.1
0.7
2.5
3.0
5.3
Grn
A51P192800
0.9
2.5
2.3
2.6
1.1
2.2
3.0
2.5
Fold changes are indicated in bold when FC > 1.5.

Potential role of IRF8 in the expression of interferon gamma-regulated genes

We next explored in more detail which pathways were activated immediately downstream of IFN-γ in the 5XFAD brain. As detailed below, we discovered an unexpected downstream effector of IFN-γ: Interferon Regulatory Factor 8 (IRF8). Induction of MHC class I genes by IFN-γ generally depends on the JAK/STAT pathway that targets the ISRE (Interferon Stimulating Response Element) motif [103]. By contrast, the expression of MHC class II genes requires that the transcriptional factor CIITA forms a complex with DNA-binding factors targeting the MHC class II promoter [104]. The increased expression of both MHC class I and II genes observed in 5XFAD mice suggests that the two IFN-γ-signaling pathways are altered. However, among the factors known to participate in these pathways, only Stat3 and Socs3 display a significant upregulated expression in both tissues of 5XFAD mice, and not before M9. Therefore, it can be assumed that novel pathways explain the major rise in IFN-γ-induced genes.
Among interferon-stimulated genes, it is noteworthy that genes encoding transcription factors Irf5 and Irf8 are highly upregulated in the 5XFAD mice, from M4 to M9 (Figure 5). Irf8 stands out as a particularly interesting effector of IFN-γ. Expressed predominantly in hematopoietic cells and further increased upon treatment with IFN-γ [105107], Irf8 is required to propagate pro-inflammatory signals and to activate microglia [108]. IRF8 also instructs myeloid progenitors to become mononuclear phagocytes [109, 110]. A combination of genome-wide methods already confirmed the crucial role of IRF8 in regulating early immune response, including phagosome maturation, antigen processing and presentation [111, 112]. Interestingly, 5XFAD mice overexpress most of the Irf8 target genes supporting these processes (Figure 5). This strongly suggests that Irf8 accounts for the IFN-γ regulated processes described here and therefore represents a key player in the 5XFAD pathology.
Alternatively, IRF8 expression can also be induced through TGF-β [113], which is highly overexpressed in 5XFAD mice, along with transcripts for its receptors, Tgfbr1 and Tgfbr2 (Table 3). This pathway inhibits macrophages and suppresses microglial expression of MHC antigens [114, 115], and its activation in 5XFAD brain might therefore be a protective response against sustained microglial activation.

Involvement of NADPH oxidase (NOX) complex in microglial activation

The NOX complex contributes to persistent microglial activation and reactive oxygen species production, which leads to an increase in oxidative stress, regarded as an early sign of AD pathophysiology [116, 117]. Moreover, studies on different AD mouse models, including 5XFAD mice, reported increased levels of oxidative damage, which appear before Aβ deposition and therefore constitute an early event in disease pathogenesis [24, 44, 118, 119]. Actually, a recent proteomic analysis revealed that the most affected biological processes in M4 5XFAD hippocampus include cell redox homeostasis and response to oxidative stress [120].
In our study, most of the genes encoding NOX components as well as NOX associated factors, Fc receptors, Vav and Rac2, are overexpressed as early as M4 in 5XFAD mice (Figure 6). Of note, genes encoding the NOX subunits as well as Fcgr1a/CD64 (Fc fragment of IgG receptor, high affinity 1a) are regulated by IFN-γ [107, 121123]. Their co-expression is in line with the observation that clustering of Fcγ receptors activates VAV proteins (Rho/Rac guanine nucleotide exchange factors), leading to robust superoxide generation through NOX [124126].
Several studies provide strong evidence for the involvement of NOX and its downstream oxidative signaling pathway in the toxic effects elicited by Aβ. In AD brains, Aβ is thought to act on NOX in microglial cells, which produce neurotoxic superoxide [127]. Aβ also induces oxidative stress in hippocampal astrocytes through a mechanism sensitive to NOX inhibitors [128].
According to these observations, NOX activation can occur in either microglia or astrocytes. However, it is likely that, in our model, NOX is predominantly activated in microglia. Indeed, in addition to MHC class II genes and Cd74, markers of microglial inflammation are strongly overexpressed in 5XFAD mice (Table 3), notably Aif1/Iba1, Ptprc/Cd45, Cd68, Cd86 and Cd14[83, 129131]. In line with the microglial origin of NOX activation, expression of the Fcγ receptor-encoding genes is found around senile plaques and in ramified microglia, throughout the cortex and the white matter of normal and AD brains [132]. Furthermore, RAC2, which controls NOX activation by preferentially interacting with the NCF2/p67(phox) NOX subunit [133], is largely predominant in human phagocytes [134].

Microglial phagocytosis

Microglia/brain macrophages constitute about 12% of the cells in the central nervous system, and, in addition to antigen presentation, exhibit phagocytosis. Microglia can phagocytose Aβ fibrils in vitro and in vivo[135]. Nevertheless, Aβ phagocytosis is inefficient in AD brain despite the presence of abundant activated microglia [136]. One possible explanation may be that exposure of microglia to fibrillar Aβ in vitro can induce mechanisms distinct from those used by classical phagocytic receptors, FCGR1 and FCGR3, or complement receptors (Figure 7). This novel phagocytosis would require the interaction of microglia with CD36, ITGB6, and CD47 [137].
Phagocytosis of Aβ by microglia can be also mediated by CD14 [138], which is detected in brains of AD patients, or by CSF1 (macrophage colony stimulating factor 1) and its receptor, CSF1R (Figure 7). Interestingly, Csf1r signaling in injured neurons facilitates protection and survival [139]. The Csf1/Csf1r complex co-signals through Tyrobp, which, together with its receptor, Trem2, activates signal transduction leading to brain myelination and inflammation [140]. The signaling involving Csf1/Csf1r/Trem2/Tyrobp likely plays a role in the 5XFAD physiopathology since all the corresponding genes are strongly upregulated from M4 to M9 in cortex and hippocampus (Figure 7). Moreover, recent reports show that rare TREM2 variants predispose to AD [141, 142] and Trem2 mRNA and protein are increased in a transgenic mouse model of AD [141]. It has been proposed that these changes represent a response to rising levels of Aβ [141]. Localized to microglia around plaques and neurons in AD models, Trem2 controls two signaling pathways that regulate the reactive phenotype in microglia (Figure 7). The first of these pathways couples increases in Trem2 expression on microglia with enhanced phagocytosis [143145]. This could lead to the removal of cell debris and the clearance of Aβ in AD and promote the alternative “protective” activation state of microglia. The second Trem2 signaling pathway suppresses inflammatory reactivity and represses cytokine production and secretion [144], notably TLR- and FcR-induced TNF production [146, 147]. Thus, in addition to its protective role by activating phagocytosis of apoptotic neurons and Aβ, the predominant role of the TYROBP/TREM2 complex might be to inhibit, rather than to activate, the innate immune system.
Altogether, these transcriptional changes indicate that, in 5XFAD mice, microglial activation and the resulting phagocytosis are predominant processes, which are already initiated at M4 and maintained at least until M9.

Other neuroprotective activities

The 5XFAD transcriptomic data identified numerous genes involved in neuroprotective pathways. In addition to those already discussed, we found an upregulation of genes encoding Igf1 (insulin growth factor 1), Osmr (oncostatin M receptor) and Grn/Pgrn (granulin) (Table 3).
Insulin and IGF1 signaling is disturbed in AD brain and in 5XFAD hippocampus [120, 148, 149]. Igf1 can either protect or increase LPS-induced damage in the developing rat brain [150]. A possible explanation for these apparently contradictory observations may be that modulation of the cellular response to oxidative stress by Igf1 is cell-dependent [151]. Contrary to what has been observed in neurons [152], astrocyte-specific overexpression of IGF-1 protects hippocampal neurons [153].
Neuroprotection can also be elicited through OSM (oncostatin M), a cytokine with anti-inflammatory activities. In response to IL-1β or TNF-α, astrocytes produce prostaglandin E2, which then induces Osm expression in microglia [154]. Upon binding to a complex formed between its receptor, OSMR, and gp130 [155], OSM can in turn attenuate expression of IL-1β or TNF-α [156]. Therefore communications between microglia and astrocytes may account for the balance of protective and destructive actions by these cells. Although Osm expression levels were similar in 5XFAD and wild type mice, elevated expression of Osmr might increase the constitutive Osm activity detected in neurons, astrocytes and microglia [154]. Besides, the protective effect of Osm on neuronal cell death is mediated by the Jak/Stat3 signaling pathway [157]. In the 5XFAD brain, this neuroprotective effect may be attenuated through the OSM-induced upregulation of Socs3, a known inhibitor of Jak/Stat signaling [157].
Finally, GRN/PGRN, an AD marker [158], is involved in the modulation of the neuroinflammatory response. Supporting this role, microglia display increased Grn/Pgrn expression following a variety of acute and chronic insults to the central nervous system [159]. Grn/Pgrn can increase endocytosis of extracellular peptides such as Aβ and affects microglial proliferation, recruitment, differentiation, activation and phagocytosis [159]. Grn/Pgrn is a potent inhibitor of TNF-α and promotes the upregulation of anti-inflammatory cytokines such as Il-4, Il-10 and Il-5 [159]. Direct interaction of GRN/PGRN with the TNF receptor also blocks the pro-inflammatory actions of TNF-α [160]. However, GRN/PGRN can be cleaved by extracellular proteinases such as MMP-9, −12 and −14 to produce granulin/GRN peptides, which increase the expression of IL-1β, IL-8 and TNF-α [161, 162]. Therefore, a balance between PGRN and its processed form GRN may determine the contributions of certain cell types or subtypes to neuroprotection or neuroinflammation and their impact on the 5XFAD pathophysiology.

Limitations of the study

The aim of this study was to provide an overview of the main networks affected in 5XFAD brain, as revealed by intensive data mining on dysregulated genes observed in transcriptomic profiles. Such a global approach determines tendencies based on the design of networks rather than confirms individual gene modulation at the transcript or protein levels. Given the stringent criteria chosen to filter our data, most of the genes within the described networks are significantly modulated in both hippocampus and cortex from M4 to M9. Investigating the role of non-shared DEGs at given time points and analyzing specificities of each brain region is beyond the scope of this study, but deserves further investigation in order to elucidate the precise molecular mechanisms at play. Importantly, many DEGs and several signaling pathways, associated to AD, have been found to be misexpressed in the 5XFAD model by two independent studies [30, 31].
Further understanding of the signaling pathways affected in this mouse model, with the aim to link it to human AD, would entail broadening the study to additional brain regions. The entorhinal cortex, for instance, is known to be the site of early neuron loss in human AD and has recently been shown to be affected by amyloid deposition, as early as 2 months of age in both female and male 5XFAD mice [163].It would therefore be of great interest to investigate the transcriptomic profile of this brain region in future studies.
The study would also benefit from a comparison of transcriptomic profiles between female and male mice. Female 5XFAD animals are more affected at the histological and behavioural levels than male mice [9, 163], possibly as a consequence of decreased estrogen levels. Variations in estrogen levels can directly impact on transcriptomic profiles through modulation of the genome and signaling pathways. In the current study, IPA analysis revealed a large proportion of DEGs potentially regulated by estrogens and one of their receptors, ESR1 (data not shown). We also observed a dysregulated expression of genes directly linked to the effects of testosterone, reinforcing the idea that differential gene modulation during the time course of the disease could occur between male and female mice. Future studies should take hormonal impact into consideration.
Finally, based on the data presented here and in previous studies, there is no doubt that a fine understanding of pathogenesis necessitates deciphering early molecular events. As a result, it would be of great importance to enlarge the current study to a finely tuned time window that spans for M1 to M4, when histological markers start developing.
Despite such considerations, the data presented here offers, for the first time, the possibility to understand time-dependent variations in the inflammatory and immune pathways of the 5XFAD model. Altogether, these data confirm that this transgenic model, along with the generated dataset, is a valuable public resource for screening potential therapeutic molecules targeting dysregulated functions in AD.

Materials and methods

Animals

We used 5XFAD transgenic mice, which overexpress two transgenes bearing five mutations linked to familial AD: human APP (Swedish mutation K670N, M671L; Florida mutation I716V; London mutation V717I) and human presenilin 1 (PSEN1 M146L, L286V), under transcriptional control of the mouse Thy1 promoter. 5XFAD lines from the B6SJL genetic background were maintained by crossing hemizygous transgenic mice with B6SJL F1 breeders. These mice exhibit AD-related symptoms earlier than other animal models and amyloid deposition starts in the cortex and subiculum at 2 months of age [1]. Heterozygous female 5XFAD transgenic animals and wild type controls were obtained after breeding of progenitors purchased from the Jackson Laboratory. Genotyping was performed by PCR analysis of tail DNA in order to detect the human APP gene. Animal experiments were approved by the Ethics Committee of the Medical Faculty of Marseille and were carried out in accordance with the guidelines published in the European Communities Council Directive of November 24, 1986 (86/609/EEC). All efforts were made to reduce animal suffering and the number of mice.

RNA isolation

Brain tissues were collected from wild type and transgenic 5XFAD mice (n = 3 per group). At different designated time points (beginning of M1, M4, M6 and M9), mice were anesthetized with isoflurane and sacrificed to extract brain tissue. Hippocampus and neocortex samples were dissected, snap-frozen in liquid nitrogen and stored at −80°C until use. Total RNA was then isolated from frozen hippocampi and cortices using RNeasy Mini kit (Qiagen, Courtaboeuf, France), according to the manufacturer’s instructions. RNA concentration was determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific, ThermoFisher Scientific, Villebon sur Yvette, France) and RNA integrity assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Les Ulis, France).

Real-time quantitative PCR (qPCR)

Before performing microarray experiments, RNA samples extracted from the hippocampus of all animals (n = 3) in each group were tested with qPCR in order to quantify the expression of known markers of inflammation in 5XFAD mice. Total RNA (1 μg) was subjected to reverse transcription reaction to synthetize cDNA using oligo dT, RNase Out and M-MLV RT enzyme (Invitrogen, ThermoFisher Scientific, Villebon sur Yvette, France) according to the manufacturer’s instructions. Two genes, Gfap and Aif1, related to astrocytic and microglial activation respectively, and one housekeeping gene, Gapdh, were selected for pre-validation of samples.
Real-time qPCR experiments were carried out with the 7500 Fast Real-Time PCR system (Applied Biosystems, ThermoFisher Scientific, Villebon sur Yvette, France), using TaqMan® Fast Universal PCR Master Mix (2X) and the three TaqMan® Gene Expression Assays (Gfap, Mm01253033_m1; Aif1, Mm00479862_g1 and Gapdh, Mm99999915_g1). Experiments used 7.5 ng of previously prepared cDNA and samples were run in triplicates. Relative expression levels were determined according to the ΔΔCt method where the expression level of the mRNA of interest is given by 2-ΔΔCT where ΔΔCT = ΔCT target mRNA − ΔCT reference mRNA (Gapdh) in the same sample. Results are reported in Table 4 and compared to microarray data for these two genes of interest.
Table 4
RT qPCR results for two genes known to be upregulated in 5XFAD mice: comparison with the microarray results
 
qPCR
Microarray
Age
Gene
Wt 1
Wt 2
Wt 3
Tg 1
Tg 2
Tg 3
Fold change Tg/Wt
Wt
Tg
Fold change Tg/Wt
M1
Aif1
1.3
0.9
0.8
1.3
1.3
0.9
1.2
2098.9
2010.3
1.0
Gfap
1.5
0.9
0.7
1.3
1.4
0.8
1.2
6320.3
6827.6
1.1
M4
Aif1
1.1
1.1
0.9
2.8
1.7
1.3
3.1
2171.1
5335.4
2.5
Gfap
0.9
1.3
0.9
5.5
6.1
5.1
5.5
5381.9
15329.9
2.9
M6
Aif1
0.9
1.0
1.2
2.8
1.7
1.3
1.9
2427.4
5530.1
2.3
Gfap
1.1
1.0
0.9
3.9
5.6
4.2
4.5
5694.4
17759.7
3.1
M9
Aif1
1.4
0.9
0.8
2.6
2.0
2.3
2.3
2551.1
7422.3
2.9
Gfap
1.5
0.8
0.9
5.0
7.0
5.9
5.9
5172.5
23062.3
4.5
Before performing the microarray experiment, RNA from each wild type (Wt) and each transgenic (Tg) (n = 3 for each group) animal was tested independently by RT-qPCR for two genes known to be upregulated in 5XFAD mice: Aif1 and Gfap. This table compares results obtained by qPCR from each mouse with results obtained from the pooled RNA for all three animals in the microarray study. The qPCR and microarray gave similar fold changes, shown here in bold.

Microarray assay

Following qPCR pre-validation of individual animals for each time point and condition, RNA samples were pooled (n = 3) for microarray hybridization. Sample amplification, labeling, and hybridization were performed in line with the Agilent one-color microarray-base analysis (low input quick amp labeling) protocol (Agilent Technologies). Briefly, total RNA was reverse-transcribed into cDNA using the T7 promoter primer. The reaction intending to synthesize cyanine-3-labeled cRNA from cDNA was performed in a solution containing dNTP mix, T7 RNA polymerase and cyanine 3-dCTP and then incubated at 40°C for 2 hours. Labeled cRNA was purified and fragmented before hybridization on Agilent 8×60k Mouse Gene Expression Arrays (Agilent Technologies, ref: G4852A), containing 62 975 oligonucleotide probes, at 65°C for 17 hours. Raw microarray signals were scanned and extracted using Agilent Feature Extraction Software (Agilent Technologies). AgiND R package was used for quality control and normalization. Quantile methods and a background correction were applied for data normalization. Microarray data are available in the ArrayExpress database [164] under accession number E-MTAB-1937.

Microarray data analysis

Biological interpretation of the data was performed using two different programs. First, Ingenuity Pathway Analysis (IPA, Ingenuity Systems [165]) was used to identify biological functions from the lists of DEGs associated to transgenic animals. The main criteria to validate a differentially expressed gene was a fold change over 1.5 or under −1.5 when considering expression values in the transgenic group relative to the wild type control group. Upregulated and downregulated genes were analyzed in the same datasets to obtain the biologically relevant function categories. Right-tailed Fisher’s exact test was used to calculate a p-value determining the top statistically significant biological functions assigned to the data set.
Secondary analysis of the main metabolic pathways and their potential dysfunctions was performed using the Java/Perl software Predictsearch® (Laboratoire Genex [166]), which has been previously described [69, 74]. This software characterizes the pathways and functional networks in which the selected genes found to be up- or down-regulated are involved. For this mechanistic analysis, only genes not differentially expressed across all time points in wild type animals (ratio between 0.85 and 1.2) but upregulated in transgenic animals (ratio over 1.5) were considered. Predictsearch was then used to generate functional networks based on the total number of differentially expressed genes in both cortex and hippocampus.

Acknowledgements

This work was supported by CNRS, Aix Marseille University and grants from the French National Agency for Research (ANR) funding to FF, SR and MK (ADHOC, TIMPAD, PREVENTAD) within the frame of the French Alzheimer’s Plan. The work was also supported by grants from Fondation de l’Avenir to FF, and by “Fonds Européen de Développement Régional” FEDER in PACA. VL was recipient of a doctoral fellowship from the French Ministry of Research. KB was granted a research associate fellowship by the French Alzheimer’s Plan.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

VL isolated the RNA, helped perform the microarray assay, analyzed the results and wrote the manuscript. KB bred and genotyped the mice, and carried out the qPCR analysis. BL performed the microarray assay. IV and SR participated in interpreting the data and writing the manuscript. PB analyzed the microarray data and wrote the manuscript. FF designed and coordinated the study, and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006, 26: 10129-10140.PubMed Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006, 26: 10129-10140.PubMed
2.
Zurück zum Zitat Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297: 353-356.PubMed Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297: 353-356.PubMed
3.
Zurück zum Zitat Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT, Yang T, Holtzman DM, Cirrito JR, Selkoe DJ: Dynamic analysis of amyloid beta-protein in behaving mice reveals opposing changes in ISF versus parenchymal Abeta during age-related plaque formation. J Neurosci. 2011, 31: 15861-15869.PubMedCentralPubMed Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT, Yang T, Holtzman DM, Cirrito JR, Selkoe DJ: Dynamic analysis of amyloid beta-protein in behaving mice reveals opposing changes in ISF versus parenchymal Abeta during age-related plaque formation. J Neurosci. 2011, 31: 15861-15869.PubMedCentralPubMed
4.
Zurück zum Zitat Masters CL, Selkoe DJ: Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Biol Med. 2012, 2: a006262- Masters CL, Selkoe DJ: Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Biol Med. 2012, 2: a006262-
5.
Zurück zum Zitat Mucke L, Selkoe DJ: Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Biol Med. 2012, 2: a006338- Mucke L, Selkoe DJ: Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Biol Med. 2012, 2: a006338-
6.
Zurück zum Zitat Rice HC, Young-Pearse TL, Selkoe DJ: Systematic evaluation of candidate ligands regulating ectodomain shedding of amyloid precursor protein. Biochemistry. 2013, 52: 3264-3277.PubMed Rice HC, Young-Pearse TL, Selkoe DJ: Systematic evaluation of candidate ligands regulating ectodomain shedding of amyloid precursor protein. Biochemistry. 2013, 52: 3264-3277.PubMed
7.
Zurück zum Zitat Kimura R, Ohno M: Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 2009, 33: 229-235.PubMedCentralPubMed Kimura R, Ohno M: Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 2009, 33: 229-235.PubMedCentralPubMed
8.
Zurück zum Zitat Crouzin N, Baranger K, Cavalier M, Marchalant Y, Cohen-Solal C, Roman FS, Khrestchatisky M, Rivera S, Feron F, Vignes M: Area-specific alterations of synaptic plasticity in the 5XFAD mouse model of Alzheimer's disease: dissociation between somatosensory cortex and hippocampus. PLoS One. 2013, 8: e74667-PubMedCentralPubMed Crouzin N, Baranger K, Cavalier M, Marchalant Y, Cohen-Solal C, Roman FS, Khrestchatisky M, Rivera S, Feron F, Vignes M: Area-specific alterations of synaptic plasticity in the 5XFAD mouse model of Alzheimer's disease: dissociation between somatosensory cortex and hippocampus. PLoS One. 2013, 8: e74667-PubMedCentralPubMed
9.
Zurück zum Zitat Devi L, Alldred MJ, Ginsberg SD, Ohno M: Sex- and brain region-specific acceleration of beta-amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease. Mol Brain. 2010, 3: 34-PubMedCentralPubMed Devi L, Alldred MJ, Ginsberg SD, Ohno M: Sex- and brain region-specific acceleration of beta-amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease. Mol Brain. 2010, 3: 34-PubMedCentralPubMed
10.
Zurück zum Zitat Devi L, Ohno M: Phospho-eIF2alpha level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLoS One. 2010, 5: e12974-PubMedCentralPubMed Devi L, Ohno M: Phospho-eIF2alpha level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLoS One. 2010, 5: e12974-PubMedCentralPubMed
11.
Zurück zum Zitat Joyashiki E, Matsuya Y, Tohda C: Sominone improves memory impairments and increases axonal density in Alzheimer's disease model mice, 5XFAD. Int J Neurosci. 2011, 121: 181-190.PubMed Joyashiki E, Matsuya Y, Tohda C: Sominone improves memory impairments and increases axonal density in Alzheimer's disease model mice, 5XFAD. Int J Neurosci. 2011, 121: 181-190.PubMed
12.
Zurück zum Zitat Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O: Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging. 2012, 33: 196-e129-140PubMed Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O: Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging. 2012, 33: 196-e129-140PubMed
13.
Zurück zum Zitat Devi L, Ohno M: Mechanisms that lessen benefits of beta-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry. 2013, 3: e284-PubMedCentralPubMed Devi L, Ohno M: Mechanisms that lessen benefits of beta-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry. 2013, 3: e284-PubMedCentralPubMed
14.
Zurück zum Zitat Girard SD, Baranger K, Gauthier C, Jacquet M, Bernard A, Escoffier G, Marchetti E, Khrestchatisky M, Rivera S, Roman FS: Evidence for early cognitive impairment related to frontal cortex in the 5XFAD mouse model of Alzheimer's disease. J Alzheimers Dis. 2013, 33: 781-796.PubMed Girard SD, Baranger K, Gauthier C, Jacquet M, Bernard A, Escoffier G, Marchetti E, Khrestchatisky M, Rivera S, Roman FS: Evidence for early cognitive impairment related to frontal cortex in the 5XFAD mouse model of Alzheimer's disease. J Alzheimers Dis. 2013, 33: 781-796.PubMed
15.
Zurück zum Zitat Giannoni P, Gaven F, de Bundel D, Baranger K, Marchetti-Gauthier E, Roman FS, Valjent E, Marin P, Bockaert J, Rivera S, Claeysen S: Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Front Aging Neurosci. 2013, 5: 96-PubMedCentralPubMed Giannoni P, Gaven F, de Bundel D, Baranger K, Marchetti-Gauthier E, Roman FS, Valjent E, Marin P, Bockaert J, Rivera S, Claeysen S: Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Front Aging Neurosci. 2013, 5: 96-PubMedCentralPubMed
16.
Zurück zum Zitat Hongpaisan J, Sun MK, Alkon DL: PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer's disease transgenic mice. J Neurosci. 2011, 31: 630-643.PubMed Hongpaisan J, Sun MK, Alkon DL: PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer's disease transgenic mice. J Neurosci. 2011, 31: 630-643.PubMed
17.
Zurück zum Zitat Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX: Beta-secretase-1 elevation in transgenic mouse models of Alzheimer's disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009, 30: 2271-2283.PubMedCentralPubMed Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX: Beta-secretase-1 elevation in transgenic mouse models of Alzheimer's disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009, 30: 2271-2283.PubMedCentralPubMed
18.
Zurück zum Zitat Shao CY, Mirra SS, Sait HB, Sacktor TC, Sigurdsson EM: Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau pathology in transgenic mouse models of Alzheimer's disease. Acta Neuropathol. 2011, 122: 285-292.PubMedCentralPubMed Shao CY, Mirra SS, Sait HB, Sacktor TC, Sigurdsson EM: Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau pathology in transgenic mouse models of Alzheimer's disease. Acta Neuropathol. 2011, 122: 285-292.PubMedCentralPubMed
19.
Zurück zum Zitat Ohno M: Failures to reconsolidate memory in a mouse model of Alzheimer's disease. Neurobiol Learn Mem. 2009, 92: 455-459.PubMedCentralPubMed Ohno M: Failures to reconsolidate memory in a mouse model of Alzheimer's disease. Neurobiol Learn Mem. 2009, 92: 455-459.PubMedCentralPubMed
20.
Zurück zum Zitat Girard SD, Jacquet M, Baranger K, Migliorati M, Escoffier G, Bernard A, Khrestchatisky M, Feron F, Rivera S, Roman FS, Marchetti E: Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse model of Alzheimer's disease. Hippocampus. 2014, 24: 762-772.PubMed Girard SD, Jacquet M, Baranger K, Migliorati M, Escoffier G, Bernard A, Khrestchatisky M, Feron F, Rivera S, Roman FS, Marchetti E: Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse model of Alzheimer's disease. Hippocampus. 2014, 24: 762-772.PubMed
21.
Zurück zum Zitat Crowe SE, Ellis-Davies GC: Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct Funct. 2014, 219: 571-580.PubMedCentralPubMed Crowe SE, Ellis-Davies GC: Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct Funct. 2014, 219: 571-580.PubMedCentralPubMed
22.
Zurück zum Zitat Buskila Y, Crowe SE, Ellis-Davies GC: Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience. 2013, 254: 152-159.PubMedCentralPubMed Buskila Y, Crowe SE, Ellis-Davies GC: Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience. 2013, 254: 152-159.PubMedCentralPubMed
23.
Zurück zum Zitat Eimer WA, Vassar R: Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol Neurodegener. 2013, 8: 2-PubMedCentralPubMed Eimer WA, Vassar R: Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol Neurodegener. 2013, 8: 2-PubMedCentralPubMed
24.
Zurück zum Zitat Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J: Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet. 2004, 13: 1225-1240.PubMed Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J: Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet. 2004, 13: 1225-1240.PubMed
25.
Zurück zum Zitat Unger T, Korade Z, Lazarov O, Terrano D, Schor NF, Sisodia SS, Mirnics K: Transcriptome differences between the frontal cortex and hippocampus of wild-type and humanized presenilin-1 transgenic mice. Am J Geriatr Psychiatry. 2005, 13: 1041-1051.PubMed Unger T, Korade Z, Lazarov O, Terrano D, Schor NF, Sisodia SS, Mirnics K: Transcriptome differences between the frontal cortex and hippocampus of wild-type and humanized presenilin-1 transgenic mice. Am J Geriatr Psychiatry. 2005, 13: 1041-1051.PubMed
26.
Zurück zum Zitat Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M, Terrano D, Douglass KC, Schor NF, Sisodia SS: Presenilin-1-dependent transcriptome changes. J Neurosci. 2005, 25: 1571-1578.PubMed Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M, Terrano D, Douglass KC, Schor NF, Sisodia SS: Presenilin-1-dependent transcriptome changes. J Neurosci. 2005, 25: 1571-1578.PubMed
27.
Zurück zum Zitat Chen SQ, Cai Q, Shen YY, Wang PJ, Teng GJ, Zhang W, Zang FC: Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice. Behav Brain Res. 2012, 235: 1-6.PubMed Chen SQ, Cai Q, Shen YY, Wang PJ, Teng GJ, Zhang W, Zang FC: Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice. Behav Brain Res. 2012, 235: 1-6.PubMed
28.
Zurück zum Zitat Kim TK, Lee JE, Park SK, Lee KW, Seo JS, Im JY, Kim ST, Lee JY, Kim YH, Lee JK, Han PL: Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease. Exp Mol Med. 2012, 44: 492-502.PubMedCentralPubMed Kim TK, Lee JE, Park SK, Lee KW, Seo JS, Im JY, Kim ST, Lee JY, Kim YH, Lee JK, Han PL: Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease. Exp Mol Med. 2012, 44: 492-502.PubMedCentralPubMed
29.
Zurück zum Zitat Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL: Early and sustained altered expression of aging-related genes in young 3xTg-AD mice. Cell death Disease. 2014, 5: e1054-PubMedCentralPubMed Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL: Early and sustained altered expression of aging-related genes in young 3xTg-AD mice. Cell death Disease. 2014, 5: e1054-PubMedCentralPubMed
30.
Zurück zum Zitat Kim KH, Moon M, Yu SB, Mook-Jung I, Kim JI: RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. J Alzheimers Dis. 2012, 29: 793-808.PubMed Kim KH, Moon M, Yu SB, Mook-Jung I, Kim JI: RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. J Alzheimers Dis. 2012, 29: 793-808.PubMed
31.
Zurück zum Zitat Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauss A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA: Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci. 2014, 6: 75-PubMedCentralPubMed Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauss A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA: Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci. 2014, 6: 75-PubMedCentralPubMed
32.
Zurück zum Zitat Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK, Michael GZ, Talafous J, Eisenberg M, Saunders AM, Roses AD, Goldaberg D: Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc Natl Acad Sci U S A. 1994, 91: 8368-8372.PubMedCentralPubMed Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK, Michael GZ, Talafous J, Eisenberg M, Saunders AM, Roses AD, Goldaberg D: Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc Natl Acad Sci U S A. 1994, 91: 8368-8372.PubMedCentralPubMed
33.
Zurück zum Zitat Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS: Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci. 2007, 27: 7006-7010.PubMed Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS: Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci. 2007, 27: 7006-7010.PubMed
34.
Zurück zum Zitat Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Sudhof TC, Zheng H: Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc Natl Acad Sci U S A. 2010, 107: 17362-17367.PubMedCentralPubMed Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Sudhof TC, Zheng H: Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc Natl Acad Sci U S A. 2010, 107: 17362-17367.PubMedCentralPubMed
35.
Zurück zum Zitat Stein TD, Johnson JA: Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci. 2002, 22: 7380-7388.PubMed Stein TD, Johnson JA: Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci. 2002, 22: 7380-7388.PubMed
36.
Zurück zum Zitat Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997, 390: 45-51.PubMed Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997, 390: 45-51.PubMed
37.
Zurück zum Zitat Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M: Suppression of aging in mice by the hormone Klotho. Science. 2005, 309: 1829-1833.PubMedCentralPubMed Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M: Suppression of aging in mice by the hormone Klotho. Science. 2005, 309: 1829-1833.PubMedCentralPubMed
38.
Zurück zum Zitat Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimuri T, Nabeshima Y: Alpha-Klotho as a regulator of calcium homeostasis. Science. 2007, 316: 1615-1618.PubMed Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimuri T, Nabeshima Y: Alpha-Klotho as a regulator of calcium homeostasis. Science. 2007, 316: 1615-1618.PubMed
39.
Zurück zum Zitat Xu L, Sapolsky RM, Giffard RG: Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol. 2001, 169: 416-424.PubMed Xu L, Sapolsky RM, Giffard RG: Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol. 2001, 169: 416-424.PubMed
40.
Zurück zum Zitat Zabel MK, Kirsch WM: From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev. 2013, 12: 749-756.PubMedCentralPubMed Zabel MK, Kirsch WM: From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev. 2013, 12: 749-756.PubMedCentralPubMed
41.
Zurück zum Zitat Mosher KI, Wyss-Coray T: Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol. 2014, 88: 594-604.PubMedCentralPubMed Mosher KI, Wyss-Coray T: Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol. 2014, 88: 594-604.PubMedCentralPubMed
42.
Zurück zum Zitat Streit WJ, Xue QS: Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014, 29C: 93-96. Streit WJ, Xue QS: Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014, 29C: 93-96.
43.
Zurück zum Zitat Devi L, Ohno M: Genetic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer's disease model mice. Eur J Neurosci. 2010, 31: 110-118.PubMedCentralPubMed Devi L, Ohno M: Genetic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer's disease model mice. Eur J Neurosci. 2010, 31: 110-118.PubMedCentralPubMed
44.
Zurück zum Zitat Devi L, Ohno M: Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Neurobiol Dis. 2012, 45: 417-424.PubMedCentralPubMed Devi L, Ohno M: Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Neurobiol Dis. 2012, 45: 417-424.PubMedCentralPubMed
45.
Zurück zum Zitat Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M: Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A. 2010, 107: 20518-20522.PubMedCentralPubMed Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M: Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A. 2010, 107: 20518-20522.PubMedCentralPubMed
46.
Zurück zum Zitat Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M: Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010, 68: 360-368.PubMed Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M: Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010, 68: 360-368.PubMed
47.
Zurück zum Zitat Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG: Does neuroinflammation fan the flame in neurodegenerative diseases?. Mol Neurodegener. 2009, 4: 47-PubMedCentralPubMed Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG: Does neuroinflammation fan the flame in neurodegenerative diseases?. Mol Neurodegener. 2009, 4: 47-PubMedCentralPubMed
48.
Zurück zum Zitat Kadhim HJ, Duchateau J, Sebire G: Cytokines and brain injury: invited review. J Intensive Care Med. 2008, 23: 236-249.PubMed Kadhim HJ, Duchateau J, Sebire G: Cytokines and brain injury: invited review. J Intensive Care Med. 2008, 23: 236-249.PubMed
49.
Zurück zum Zitat Laird MD, Vender JR, Dhandapani KM: Opposing roles for reactive astrocytes following traumatic brain injury. Neuro-Signals. 2008, 16: 154-164.PubMed Laird MD, Vender JR, Dhandapani KM: Opposing roles for reactive astrocytes following traumatic brain injury. Neuro-Signals. 2008, 16: 154-164.PubMed
50.
Zurück zum Zitat Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T: Modulation of immune response by head injury. Injury. 2007, 38: 1392-1400.PubMed Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T: Modulation of immune response by head injury. Injury. 2007, 38: 1392-1400.PubMed
51.
Zurück zum Zitat Schmidt OI, Heyde CE, Ertel W, Stahel PF: Closed head injury–an inflammatory disease?. Brain Res Brain Res Rev. 2005, 48: 388-399.PubMed Schmidt OI, Heyde CE, Ertel W, Stahel PF: Closed head injury–an inflammatory disease?. Brain Res Brain Res Rev. 2005, 48: 388-399.PubMed
52.
Zurück zum Zitat Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A: A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma. 2012, 29: 2375-2392.PubMed Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A: A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma. 2012, 29: 2375-2392.PubMed
53.
Zurück zum Zitat Jana M, Palencia CA, Pahan K: Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease. J Immunol. 2008, 181: 7254-7262.PubMedCentralPubMed Jana M, Palencia CA, Pahan K: Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease. J Immunol. 2008, 181: 7254-7262.PubMedCentralPubMed
54.
Zurück zum Zitat Hillmann A, Hahn S, Schilling S, Hoffmann T, Demuth HU, Bulic B, Schneider-Axmann T, Bayer TA, Weggen S, Wirths O: No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging. 2012, 33: 833-e839-850PubMed Hillmann A, Hahn S, Schilling S, Hoffmann T, Demuth HU, Bulic B, Schneider-Axmann T, Bayer TA, Weggen S, Wirths O: No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging. 2012, 33: 833-e839-850PubMed
55.
Zurück zum Zitat McGeer PL, Akiyama H, Itagaki S, McGeer EG: Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett. 1989, 107: 341-346.PubMed McGeer PL, Akiyama H, Itagaki S, McGeer EG: Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett. 1989, 107: 341-346.PubMed
56.
Zurück zum Zitat Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ: Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation. 2011, 8: 4-PubMedCentralPubMed Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ: Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation. 2011, 8: 4-PubMedCentralPubMed
57.
Zurück zum Zitat Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, Blennow K, Hansson O, Zetterberg H: Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm. 2012, 119: 789-797.PubMed Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, Blennow K, Hansson O, Zetterberg H: Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm. 2012, 119: 789-797.PubMed
58.
Zurück zum Zitat Bergamaschini L, Canziani S, Bottasso B, Cugno M, Braidotti P, Agostoni A: Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin Exp Immunol. 1999, 115: 526-533.PubMedCentralPubMed Bergamaschini L, Canziani S, Bottasso B, Cugno M, Braidotti P, Agostoni A: Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin Exp Immunol. 1999, 115: 526-533.PubMedCentralPubMed
59.
Zurück zum Zitat Bergamaschini L, Donarini C, Gobbo G, Parnetti L, Gallai V: Activation of complement and contact system in Alzheimer's disease. Mech Ageing Dev. 2001, 122: 1971-1983.PubMed Bergamaschini L, Donarini C, Gobbo G, Parnetti L, Gallai V: Activation of complement and contact system in Alzheimer's disease. Mech Ageing Dev. 2001, 122: 1971-1983.PubMed
60.
Zurück zum Zitat Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ: Neuroprotection from complement-mediated inflammatory damage. Ann N Y Acad Sci. 2004, 1035: 147-164.PubMed Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ: Neuroprotection from complement-mediated inflammatory damage. Ann N Y Acad Sci. 2004, 1035: 147-164.PubMed
61.
Zurück zum Zitat Zanjani H, Finch CE, Kemper C, Atkinson J, McKeel D, Morris JC, Price JL: Complement activation in very early Alzheimer disease. Alzheimer Dis Assoc Disord. 2005, 19: 55-66.PubMed Zanjani H, Finch CE, Kemper C, Atkinson J, McKeel D, Morris JC, Price JL: Complement activation in very early Alzheimer disease. Alzheimer Dis Assoc Disord. 2005, 19: 55-66.PubMed
62.
Zurück zum Zitat Crehan H, Hardy J, Pocock J: Microglia, Alzheimer's disease, and complement. Int J Alzheimers Dis. 2012, 2012: 983640-PubMedCentralPubMed Crehan H, Hardy J, Pocock J: Microglia, Alzheimer's disease, and complement. Int J Alzheimers Dis. 2012, 2012: 983640-PubMedCentralPubMed
63.
Zurück zum Zitat Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K: Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J Neuroimmunol. 2002, 124: 83-92.PubMed Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K: Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J Neuroimmunol. 2002, 124: 83-92.PubMed
64.
Zurück zum Zitat Town T, Tan J, Flavell RA, Mullan M: T-cells in Alzheimer's disease. Neruomol Med. 2005, 7: 255-264. Town T, Tan J, Flavell RA, Mullan M: T-cells in Alzheimer's disease. Neruomol Med. 2005, 7: 255-264.
65.
Zurück zum Zitat Rodrigues MC, Sanberg PR, Cruz LE, Garbuzova-Davis S: The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol. 2014, 269: 1-8.PubMed Rodrigues MC, Sanberg PR, Cruz LE, Garbuzova-Davis S: The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol. 2014, 269: 1-8.PubMed
66.
Zurück zum Zitat Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I, Piancone F, Calabrese E, Nemni R, Clerici M: Neuroinflammation and brain functional disconnection in Alzheimer's disease. Front Aging Neurosci. 2013, 5: 81-PubMedCentralPubMed Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I, Piancone F, Calabrese E, Nemni R, Clerici M: Neuroinflammation and brain functional disconnection in Alzheimer's disease. Front Aging Neurosci. 2013, 5: 81-PubMedCentralPubMed
67.
Zurück zum Zitat Shen Y, Yang L, Li R: What does complement do in Alzheimer's disease? Old molecules with new insights. Transl Neurodegeneration. 2013, 2: 21- Shen Y, Yang L, Li R: What does complement do in Alzheimer's disease? Old molecules with new insights. Transl Neurodegeneration. 2013, 2: 21-
68.
Zurück zum Zitat Veerhuis R: Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr Alzheimer Res. 2011, 8: 34-58.PubMed Veerhuis R: Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr Alzheimer Res. 2011, 8: 34-58.PubMed
69.
Zurück zum Zitat Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol. 2007, 103: 538-545.PubMed Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol. 2007, 103: 538-545.PubMed
70.
Zurück zum Zitat Barrey E, Mucher E, Jeansoule N, Larcher T, Guigand L, Herszberg B, Chaffaux S, Guerin G, Mata X, Benech P, Canale M, Alibert O, Maltere P, Gidrol X: Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions. BMC Vet Res. 2009, 5: 29-PubMedCentralPubMed Barrey E, Mucher E, Jeansoule N, Larcher T, Guigand L, Herszberg B, Chaffaux S, Guerin G, Mata X, Benech P, Canale M, Alibert O, Maltere P, Gidrol X: Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions. BMC Vet Res. 2009, 5: 29-PubMedCentralPubMed
71.
Zurück zum Zitat Terrier B, Joly F, Vazquez T, Benech P, Rosenzwajg M, Carpentier W, Garrido M, Ghillani-Dalbin P, Klatzmann D, Cacoub P, Saadoun D: Expansion of functionally anergic CD21-/low marginal zone-like B cell clones in hepatitis C virus infection-related autoimmunity. J Immunol. 2011, 187: 6550-6563.PubMed Terrier B, Joly F, Vazquez T, Benech P, Rosenzwajg M, Carpentier W, Garrido M, Ghillani-Dalbin P, Klatzmann D, Cacoub P, Saadoun D: Expansion of functionally anergic CD21-/low marginal zone-like B cell clones in hepatitis C virus infection-related autoimmunity. J Immunol. 2011, 187: 6550-6563.PubMed
72.
Zurück zum Zitat Barrey E, Jayr L, Mucher E, Gospodnetic S, Joly F, Benech P, Alibert O, Gidrol X, Mata X, Vaiman A, Guerin G: Transcriptome analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation. Anim Genet. 2012, 43: 271-281.PubMed Barrey E, Jayr L, Mucher E, Gospodnetic S, Joly F, Benech P, Alibert O, Gidrol X, Mata X, Vaiman A, Guerin G: Transcriptome analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation. Anim Genet. 2012, 43: 271-281.PubMed
73.
Zurück zum Zitat Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E: Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genet. 2012, 5: 29- Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E: Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genet. 2012, 5: 29-
74.
Zurück zum Zitat Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, Boucraut J, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics. 2007, 7: 769-780.PubMed Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, Boucraut J, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics. 2007, 7: 769-780.PubMed
75.
Zurück zum Zitat Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A: Production of interferon-gamma by microglia. Mult Scler. 2006, 12: 558-564.PubMed Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A: Production of interferon-gamma by microglia. Mult Scler. 2006, 12: 558-564.PubMed
76.
Zurück zum Zitat Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE, Das P: IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol. 2010, 184: 5333-5343.PubMedCentralPubMed Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE, Das P: IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol. 2010, 184: 5333-5343.PubMedCentralPubMed
77.
Zurück zum Zitat Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP: Th17 cell-mediated neuroinflammation is involved in neurodegeneration of abeta1-42-induced Alzheimer's disease model rats. PLoS One. 2013, 8: e75786-PubMedCentralPubMed Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP: Th17 cell-mediated neuroinflammation is involved in neurodegeneration of abeta1-42-induced Alzheimer's disease model rats. PLoS One. 2013, 8: e75786-PubMedCentralPubMed
78.
Zurück zum Zitat Lynch MA: The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease. Immunology. 2013, 141: 292-301. Lynch MA: The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease. Immunology. 2013, 141: 292-301.
79.
Zurück zum Zitat Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I: Abeta(1)(−)(4)(2)-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca(2)(+)-calcineurin signaling. J Neurosci. 2012, 32: 8845-8854.PubMed Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I: Abeta(1)(−)(4)(2)-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca(2)(+)-calcineurin signaling. J Neurosci. 2012, 32: 8845-8854.PubMed
80.
Zurück zum Zitat Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA: IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J Immunol. 2013, 190: 2241-2251.PubMed Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA: IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J Immunol. 2013, 190: 2241-2251.PubMed
81.
Zurück zum Zitat O'Keefe GM, Nguyen VT, Benveniste EN: Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: Implications in neurological diseases. J Neurovirol. 2002, 8: 496-512.PubMed O'Keefe GM, Nguyen VT, Benveniste EN: Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: Implications in neurological diseases. J Neurovirol. 2002, 8: 496-512.PubMed
82.
Zurück zum Zitat Tooyama I, Kimura H, Akiyama H, McGeer PL: Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer's disease. Brain Res. 1990, 523: 273-280.PubMed Tooyama I, Kimura H, Akiyama H, McGeer PL: Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer's disease. Brain Res. 1990, 523: 273-280.PubMed
83.
Zurück zum Zitat Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G: Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease. Mol Neurodegener. 2008, 3: 13-PubMedCentralPubMed Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G: Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease. Mol Neurodegener. 2008, 3: 13-PubMedCentralPubMed
84.
Zurück zum Zitat Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, Shachar I: Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem. 2008, 283: 2784-2792.PubMed Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, Shachar I: Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem. 2008, 283: 2784-2792.PubMed
85.
Zurück zum Zitat Matsuda S, Matsuda Y, D'Adamio L: CD74 interacts with APP and suppresses the production of Abeta. Mol Neurodegener. 2009, 4: 41-PubMedCentralPubMed Matsuda S, Matsuda Y, D'Adamio L: CD74 interacts with APP and suppresses the production of Abeta. Mol Neurodegener. 2009, 4: 41-PubMedCentralPubMed
86.
Zurück zum Zitat Bekpen C, Xavier RJ, Eichler EE: Human IRGM gene "to be or not to be". Semin Immunopathol. 2010, 32: 437-444.PubMed Bekpen C, Xavier RJ, Eichler EE: Human IRGM gene "to be or not to be". Semin Immunopathol. 2010, 32: 437-444.PubMed
87.
Zurück zum Zitat Taylor GA, Feng CG, Sher A: p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol. 2004, 4: 100-109.PubMed Taylor GA, Feng CG, Sher A: p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol. 2004, 4: 100-109.PubMed
88.
Zurück zum Zitat He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, Pei C, Ren H, Li H, Li R, Xu H: Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy. 2012, 8: 1621-1627.PubMedCentralPubMed He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, Pei C, Ren H, Li H, Li R, Xu H: Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy. 2012, 8: 1621-1627.PubMedCentralPubMed
89.
Zurück zum Zitat Wang C, Wang C, Dong H, Wu XM, Wang C, Xia F, Li G, Jia X, He S, Jiang X, Li H, Xu H: Immune-related GTPase Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting the disruption of blood–brain barrier and blood-cerebrospinal fluid barrier. Mol Immunol. 2013, 53: 43-51.PubMed Wang C, Wang C, Dong H, Wu XM, Wang C, Xia F, Li G, Jia X, He S, Jiang X, Li H, Xu H: Immune-related GTPase Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting the disruption of blood–brain barrier and blood-cerebrospinal fluid barrier. Mol Immunol. 2013, 53: 43-51.PubMed
90.
Zurück zum Zitat Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA: The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell. 2008, 2: 83-89.PubMedCentralPubMed Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA: The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell. 2008, 2: 83-89.PubMedCentralPubMed
91.
Zurück zum Zitat Zhao YO, Khaminets A, Hunn JP, Howard JC: Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 2009, 5: e1000288-PubMedCentralPubMed Zhao YO, Khaminets A, Hunn JP, Howard JC: Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 2009, 5: e1000288-PubMedCentralPubMed
92.
Zurück zum Zitat Xu H, Wu ZY, Fang F, Guo L, Chen D, Chen JX, Stern D, Taylor GA, Jiang H, Yan SS: Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells. FASEB J. 2010, 24: 1583-1592.PubMedCentralPubMed Xu H, Wu ZY, Fang F, Guo L, Chen D, Chen JX, Stern D, Taylor GA, Jiang H, Yan SS: Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells. FASEB J. 2010, 24: 1583-1592.PubMedCentralPubMed
93.
Zurück zum Zitat Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN, Coers J, Starnbach MN, Hunn JP, Howard JC, Feng CG, Sher A, Taylor GA: Balance of Irgm protein activities determines IFN-gamma-induced host defense. J Leukoc Biol. 2009, 85: 877-885.PubMedCentralPubMed Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN, Coers J, Starnbach MN, Hunn JP, Howard JC, Feng CG, Sher A, Taylor GA: Balance of Irgm protein activities determines IFN-gamma-induced host defense. J Leukoc Biol. 2009, 85: 877-885.PubMedCentralPubMed
94.
Zurück zum Zitat Hunn JP, Howard JC: The mouse resistance protein Irgm1 (LRG-47): a regulator or an effector of pathogen defense?. PLoS Pathog. 2010, 6: e1001008-PubMedCentralPubMed Hunn JP, Howard JC: The mouse resistance protein Irgm1 (LRG-47): a regulator or an effector of pathogen defense?. PLoS Pathog. 2010, 6: e1001008-PubMedCentralPubMed
95.
Zurück zum Zitat Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A: A gene network regulating lysosomal biogenesis and function. Science. 2009, 325: 473-477.PubMed Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A: A gene network regulating lysosomal biogenesis and function. Science. 2009, 325: 473-477.PubMed
96.
Zurück zum Zitat Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A: TFEB links autophagy to lysosomal biogenesis. Science. 2011, 332: 1429-1433.PubMedCentralPubMed Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A: TFEB links autophagy to lysosomal biogenesis. Science. 2011, 332: 1429-1433.PubMedCentralPubMed
97.
Zurück zum Zitat Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K, Sisodia SS: A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012, 32: 8633-8648.PubMedCentralPubMed Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K, Sisodia SS: A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012, 32: 8633-8648.PubMedCentralPubMed
98.
Zurück zum Zitat Li Y, Xu C, Schubert D: The up-regulation of endosomal-lysosomal components in amyloid beta-resistant cells. J Neurochem. 1999, 73: 1477-1482.PubMed Li Y, Xu C, Schubert D: The up-regulation of endosomal-lysosomal components in amyloid beta-resistant cells. J Neurochem. 1999, 73: 1477-1482.PubMed
99.
Zurück zum Zitat Pasternak SH, Callahan JW, Mahuran DJ: The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis. 2004, 6: 53-65.PubMed Pasternak SH, Callahan JW, Mahuran DJ: The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis. 2004, 6: 53-65.PubMed
100.
Zurück zum Zitat Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R: The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013, 126: 329-352.PubMedCentralPubMed Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R: The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013, 126: 329-352.PubMedCentralPubMed
101.
Zurück zum Zitat Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H: Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem. 2013, 288: 1295-1306.PubMedCentralPubMed Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H: Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem. 2013, 288: 1295-1306.PubMedCentralPubMed
102.
Zurück zum Zitat Nixon RA, Cataldo AM, Mathews PM: The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res. 2000, 25: 1161-1172.PubMed Nixon RA, Cataldo AM, Mathews PM: The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res. 2000, 25: 1161-1172.PubMed
103.
Zurück zum Zitat Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ: Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity. 1997, 6: 601-611.PubMed Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ: Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity. 1997, 6: 601-611.PubMed
104.
Zurück zum Zitat Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B: Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1. Immunity. 1998, 8: 157-166.PubMed Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B: Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1. Immunity. 1998, 8: 157-166.PubMed
105.
Zurück zum Zitat Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, Flanagan JR, Appella E, Ozato K: An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc Natl Acad Sci U S A. 1990, 87: 3743-3747.PubMedCentralPubMed Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, Flanagan JR, Appella E, Ozato K: An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc Natl Acad Sci U S A. 1990, 87: 3743-3747.PubMedCentralPubMed
106.
Zurück zum Zitat Weisz A, Kirchhoff S, Levi BZ: IFN consensus sequence binding protein (ICSBP) is a conditional repressor of IFN inducible promoters. Int Immunol. 1994, 6: 1125-1131.PubMed Weisz A, Kirchhoff S, Levi BZ: IFN consensus sequence binding protein (ICSBP) is a conditional repressor of IFN inducible promoters. Int Immunol. 1994, 6: 1125-1131.PubMed
107.
Zurück zum Zitat Perez C, Wietzerbin J, Benech PD: Two cis-DNA elements involved in myeloid-cell-specific expression and gamma interferon (IFN-gamma) activation of the human high-affinity Fc gamma receptor gene: a novel IFN regulatory mechanism. Mol Cell Biol. 1993, 13: 2182-2192.PubMedCentralPubMed Perez C, Wietzerbin J, Benech PD: Two cis-DNA elements involved in myeloid-cell-specific expression and gamma interferon (IFN-gamma) activation of the human high-affinity Fc gamma receptor gene: a novel IFN regulatory mechanism. Mol Cell Biol. 1993, 13: 2182-2192.PubMedCentralPubMed
108.
Zurück zum Zitat Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue K: IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Reports. 2012, 1: 334-340.PubMedCentralPubMed Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue K: IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Reports. 2012, 1: 334-340.PubMedCentralPubMed
109.
Zurück zum Zitat Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol. 2008, 26: 535-584.PubMed Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol. 2008, 26: 535-584.PubMed
110.
111.
Zurück zum Zitat Marquis JF, Kapoustina O, Langlais D, Ruddy R, Dufour CR, Kim BH, MacMicking JD, Giguere V, Gros P: Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 2011, 7: e1002097-PubMedCentralPubMed Marquis JF, Kapoustina O, Langlais D, Ruddy R, Dufour CR, Kim BH, MacMicking JD, Giguere V, Gros P: Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 2011, 7: e1002097-PubMedCentralPubMed
112.
Zurück zum Zitat Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P: Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog. 2013, 9: e1003491-PubMedCentralPubMed Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P: Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog. 2013, 9: e1003491-PubMedCentralPubMed
113.
Zurück zum Zitat Ju XS, Ruau D, Jantti P, Sere K, Becker C, Wiercinska E, Bartz C, Erdmann B, Dooley S, Zenke M: Transforming growth factor beta1 up-regulates interferon regulatory factor 8 during dendritic cell development. Eur J Immunol. 2007, 37: 1174-1183.PubMed Ju XS, Ruau D, Jantti P, Sere K, Becker C, Wiercinska E, Bartz C, Erdmann B, Dooley S, Zenke M: Transforming growth factor beta1 up-regulates interferon regulatory factor 8 during dendritic cell development. Eur J Immunol. 2007, 37: 1174-1183.PubMed
114.
Zurück zum Zitat Suzumura A, Sawada M, Yamamoto H, Marunouchi T: Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol. 1993, 151: 2150-2158.PubMed Suzumura A, Sawada M, Yamamoto H, Marunouchi T: Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol. 1993, 151: 2150-2158.PubMed
115.
Zurück zum Zitat Frei K, Lins H, Schwerdel C, Fontana A: Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol. 1994, 152: 2720-2728.PubMed Frei K, Lins H, Schwerdel C, Fontana A: Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol. 1994, 152: 2720-2728.PubMed
116.
Zurück zum Zitat Qin L, Crews FT: NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation. 2012, 9: 5-PubMedCentralPubMed Qin L, Crews FT: NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation. 2012, 9: 5-PubMedCentralPubMed
117.
Zurück zum Zitat Qin L, Liu Y, Hong JS, Crews FT: NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia. 2013, 61: 855-868.PubMedCentralPubMed Qin L, Liu Y, Hong JS, Crews FT: NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia. 2013, 61: 855-868.PubMedCentralPubMed
118.
Zurück zum Zitat Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM: Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001, 21: 4183-4187.PubMed Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM: Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001, 21: 4183-4187.PubMed
119.
Zurück zum Zitat Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ: Mitochondrial alterations near amyloid plaques in an Alzheimer's disease mouse model. J Neurosci. 2013, 33: 17042-17051.PubMedCentralPubMed Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ: Mitochondrial alterations near amyloid plaques in an Alzheimer's disease mouse model. J Neurosci. 2013, 33: 17042-17051.PubMedCentralPubMed
120.
Zurück zum Zitat Hong I, Kang T, Yoo Y, Park R, Lee J, Lee S, Kim J, Song B, Kim SY, Moon M, Yun KN, Kim JY, Mook-Jung I, Park YM, Choi S: Quantitative proteomic analysis of the hippocampus in the 5XFAD mouse model at early stages of Alzheimer's disease pathology. J Alzheimers Dis. 2013, 36: 321-334.PubMed Hong I, Kang T, Yoo Y, Park R, Lee J, Lee S, Kim J, Song B, Kim SY, Moon M, Yun KN, Kim JY, Mook-Jung I, Park YM, Choi S: Quantitative proteomic analysis of the hippocampus in the 5XFAD mouse model at early stages of Alzheimer's disease pathology. J Alzheimers Dis. 2013, 36: 321-334.PubMed
121.
Zurück zum Zitat Errante PR, Frazao JB, Condino-Neto A: The use of interferon-gamma therapy in chronic granulomatous disease. Recent Patents Anti-infective drug Dis. 2008, 3: 225-230. Errante PR, Frazao JB, Condino-Neto A: The use of interferon-gamma therapy in chronic granulomatous disease. Recent Patents Anti-infective drug Dis. 2008, 3: 225-230.
122.
Zurück zum Zitat Manea A, Tanase LI, Raicu M, Simionescu M: Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2010, 30: 105-112.PubMed Manea A, Tanase LI, Raicu M, Simionescu M: Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2010, 30: 105-112.PubMed
123.
Zurück zum Zitat Marchi LF, Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Mantovani B: In vitro activation of mouse neutrophils by recombinant human interferon-gamma: increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines. Int Immunopharmacol. 2014, 18: 228-235.PubMed Marchi LF, Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Mantovani B: In vitro activation of mouse neutrophils by recombinant human interferon-gamma: increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines. Int Immunopharmacol. 2014, 18: 228-235.PubMed
124.
Zurück zum Zitat Matute JD, Arias AA, Dinauer MC, Patino PJ: p40phox: the last NADPH oxidase subunit. Blood Cells Mol Dis. 2005, 35: 291-302.PubMed Matute JD, Arias AA, Dinauer MC, Patino PJ: p40phox: the last NADPH oxidase subunit. Blood Cells Mol Dis. 2005, 35: 291-302.PubMed
125.
Zurück zum Zitat Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, Dinauer MC: Fc gamma R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood. 2008, 112: 3867-3877.PubMedCentralPubMed Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, Dinauer MC: Fc gamma R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood. 2008, 112: 3867-3877.PubMedCentralPubMed
126.
Zurück zum Zitat Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN: Vav proteins in neutrophils are required for FcgammaR-mediated signaling to Rac GTPases and nicotinamide adenine dinucleotide phosphate oxidase component p40(phox). J Immunol. 2006, 177: 6388-6397.PubMed Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN: Vav proteins in neutrophils are required for FcgammaR-mediated signaling to Rac GTPases and nicotinamide adenine dinucleotide phosphate oxidase component p40(phox). J Immunol. 2006, 177: 6388-6397.PubMed
127.
Zurück zum Zitat Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S: Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun. 2000, 273: 5-9.PubMed Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S: Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun. 2000, 273: 5-9.PubMed
128.
Zurück zum Zitat Abramov AY, Canevari L, Duchen MR: Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004, 24: 565-575.PubMed Abramov AY, Canevari L, Duchen MR: Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004, 24: 565-575.PubMed
129.
Zurück zum Zitat Ponomarev ED, Shriver LP, Dittel BN: CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol. 2006, 176: 1402-1410.PubMed Ponomarev ED, Shriver LP, Dittel BN: CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol. 2006, 176: 1402-1410.PubMed
130.
Zurück zum Zitat Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B: Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer's disease: morphometric study and review of the literature. Folia Neuropathol. 2012, 50: 74-84.PubMed Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B: Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer's disease: morphometric study and review of the literature. Folia Neuropathol. 2012, 50: 74-84.PubMed
131.
Zurück zum Zitat Walker FR, Nilsson M, Jones K: Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013, 14: 1262-1276.PubMed Walker FR, Nilsson M, Jones K: Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013, 14: 1262-1276.PubMed
132.
Zurück zum Zitat Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C: Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer's disease. J Neuroimmunol. 1993, 48: 71-79.PubMed Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C: Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer's disease. J Neuroimmunol. 1993, 48: 71-79.PubMed
133.
Zurück zum Zitat Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G: The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem. 1996, 271: 83-88.PubMed Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G: The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem. 1996, 271: 83-88.PubMed
134.
Zurück zum Zitat Dorseuil O, Vazquez A, Lang P, Bertoglio J, Gacon G, Leca G: Inhibition of superoxide production in B lymphocytes by rac antisense oligonucleotides. J Biol Chem. 1992, 267: 20540-20542.PubMed Dorseuil O, Vazquez A, Lang P, Bertoglio J, Gacon G, Leca G: Inhibition of superoxide production in B lymphocytes by rac antisense oligonucleotides. J Biol Chem. 1992, 267: 20540-20542.PubMed
135.
Zurück zum Zitat Rogers J, Lue LF: Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem Int. 2001, 39: 333-340.PubMed Rogers J, Lue LF: Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem Int. 2001, 39: 333-340.PubMed
136.
Zurück zum Zitat Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiapelli F, Bernard G: Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J Alzheimers Dis. 2005, 7: 221-232. discussion 255–262PubMed Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiapelli F, Bernard G: Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J Alzheimers Dis. 2005, 7: 221-232. discussion 255–262PubMed
137.
Zurück zum Zitat Koenigsknecht J, Landreth G: Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci. 2004, 24: 9838-9846.PubMed Koenigsknecht J, Landreth G: Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci. 2004, 24: 9838-9846.PubMed
138.
Zurück zum Zitat Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K: LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain. 2005, 128: 1778-1789.PubMed Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K: LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain. 2005, 128: 1778-1789.PubMed
139.
Zurück zum Zitat Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T: Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013, 210: 157-172.PubMedCentralPubMed Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T: Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013, 210: 157-172.PubMedCentralPubMed
140.
Zurück zum Zitat Neumann H, Daly MJ: Variant TREM2 as risk factor for Alzheimer's disease. N Engl J Med. 2013, 368: 182-184.PubMed Neumann H, Daly MJ: Variant TREM2 as risk factor for Alzheimer's disease. N Engl J Med. 2013, 368: 182-184.PubMed
141.
Zurück zum Zitat Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Lupton MK, Ryten M, Brown K, Lowe J, Ridge PG, Hammer MB, Wakutani Y, Hazrati L, Proitsi P, Newhouse S, Lohmann E, Erginel-Unaltuna N, Medway C, Hanagasi H, Troakes C, Gurvit H, Bilgic B, Al-Sarraj S, Benitez B, Cooper B, Carrell D, et al: TREM2 variants in Alzheimer's disease. N Engl J Med. 2013, 368: 117-127.PubMedCentralPubMed Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Lupton MK, Ryten M, Brown K, Lowe J, Ridge PG, Hammer MB, Wakutani Y, Hazrati L, Proitsi P, Newhouse S, Lohmann E, Erginel-Unaltuna N, Medway C, Hanagasi H, Troakes C, Gurvit H, Bilgic B, Al-Sarraj S, Benitez B, Cooper B, Carrell D, et al: TREM2 variants in Alzheimer's disease. N Engl J Med. 2013, 368: 117-127.PubMedCentralPubMed
142.
Zurück zum Zitat Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K: Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med. 2013, 368: 107-116.PubMedCentralPubMed Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K: Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med. 2013, 368: 107-116.PubMedCentralPubMed
143.
Zurück zum Zitat Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H: TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007, 4: e124-PubMedCentralPubMed Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H: TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007, 4: e124-PubMedCentralPubMed
144.
Zurück zum Zitat Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P: Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007, 37: 1290-1301.PubMed Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P: Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007, 37: 1290-1301.PubMed
145.
Zurück zum Zitat Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T: TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008, 56: 1438-1447.PubMed Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T: TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008, 56: 1438-1447.PubMed
146.
Zurück zum Zitat Hamerman JA, Tchao NK, Lowell CA, Lanier LL: Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol. 2005, 6: 579-586.PubMedCentralPubMed Hamerman JA, Tchao NK, Lowell CA, Lanier LL: Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol. 2005, 6: 579-586.PubMedCentralPubMed
147.
Zurück zum Zitat Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL: Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006, 177: 2051-2055.PubMed Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL: Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006, 177: 2051-2055.PubMed
148.
Zurück zum Zitat Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM: Increased circulating insulin-like growth factor-1 in late-onset Alzheimer's disease. J Alzheimers Dis. 2007, 12: 285-290.PubMed Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM: Increased circulating insulin-like growth factor-1 in late-onset Alzheimer's disease. J Alzheimers Dis. 2007, 12: 285-290.PubMed
149.
Zurück zum Zitat Freude S, Schilbach K, Schubert M: The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease: from model organisms to human disease. Curr Alzheimer Res. 2009, 6: 213-223.PubMed Freude S, Schilbach K, Schubert M: The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease: from model organisms to human disease. Curr Alzheimer Res. 2009, 6: 213-223.PubMed
150.
Zurück zum Zitat Pang Y, Zheng B, Campbell LR, Fan LW, Cai Z, Rhodes PG: IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain. Pediatr Res. 2010, 67: 579-584.PubMedCentralPubMed Pang Y, Zheng B, Campbell LR, Fan LW, Cai Z, Rhodes PG: IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain. Pediatr Res. 2010, 67: 579-584.PubMedCentralPubMed
151.
Zurück zum Zitat Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ: Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol. 1999, 39: 536-546.PubMed Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ: Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol. 1999, 39: 536-546.PubMed
152.
Zurück zum Zitat Davila D, Torres-Aleman I: Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell. 2008, 19: 2014-2025.PubMedCentralPubMed Davila D, Torres-Aleman I: Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell. 2008, 19: 2014-2025.PubMedCentralPubMed
153.
Zurück zum Zitat Madathil SK, Carlson SW, Brelsfoard JM, Ye P, D'Ercole AJ, Saatman KE: Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice. PLoS One. 2013, 8: e67204-PubMedCentralPubMed Madathil SK, Carlson SW, Brelsfoard JM, Ye P, D'Ercole AJ, Saatman KE: Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice. PLoS One. 2013, 8: e67204-PubMedCentralPubMed
154.
Zurück zum Zitat Repovic P, Benveniste EN: Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci. 2002, 22: 5334-5343.PubMed Repovic P, Benveniste EN: Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci. 2002, 22: 5334-5343.PubMed
155.
Zurück zum Zitat Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL: Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J. 2006, 20: 2369-2371.PubMed Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL: Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J. 2006, 20: 2369-2371.PubMed
156.
Zurück zum Zitat Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S: Prostaglandin E(2) induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol. 2012, 189: 2563-2573.PubMedCentralPubMed Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S: Prostaglandin E(2) induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol. 2012, 189: 2563-2573.PubMedCentralPubMed
157.
Zurück zum Zitat Park KW, Nozell SE, Benveniste EN: Protective role of STAT3 in NMDA and glutamate-induced neuronal death: negative regulatory effect of SOCS3. PLoS One. 2012, 7: e50874-PubMedCentralPubMed Park KW, Nozell SE, Benveniste EN: Protective role of STAT3 in NMDA and glutamate-induced neuronal death: negative regulatory effect of SOCS3. PLoS One. 2012, 7: e50874-PubMedCentralPubMed
158.
Zurück zum Zitat Sleegers K, Brouwers N, Van Broeckhoven C: Role of progranulin as a biomarker for Alzheimer's disease. Biomark Med. 2010, 4: 37-50.PubMed Sleegers K, Brouwers N, Van Broeckhoven C: Role of progranulin as a biomarker for Alzheimer's disease. Biomark Med. 2010, 4: 37-50.PubMed
159.
Zurück zum Zitat Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M, Kulkarni V, Crispino J, Hering H, Hutton M: Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011, 178: 284-295.PubMedCentralPubMed Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M, Kulkarni V, Crispino J, Hering H, Hutton M: Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011, 178: 284-295.PubMedCentralPubMed
160.
Zurück zum Zitat Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L, Su J, Yin F, Ding AH, Zanin-Zhorov A, Dustin ML, Tao J, Craft J, Yin Z, Feng JQ, Abramson SB, Yu XP, Liu CJ: The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011, 332: 478-484.PubMedCentralPubMed Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L, Su J, Yin F, Ding AH, Zanin-Zhorov A, Dustin ML, Tao J, Craft J, Yin Z, Feng JQ, Abramson SB, Yu XP, Liu CJ: The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011, 332: 478-484.PubMedCentralPubMed
161.
Zurück zum Zitat Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell. 2002, 111: 867-878.PubMed Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell. 2002, 111: 867-878.PubMed
162.
Zurück zum Zitat Okura H, Yamashita S, Ohama T, Saga A, Yamamoto-Kakuta A, Hamada Y, Sougawa N, Ohyama R, Sawa Y, Matsuyama A: HDL/apolipoprotein A-I binds to macrophage-derived progranulin and suppresses its conversion into proinflammatory granulins. J Atheroscler Thromb. 2010, 17: 568-577.PubMed Okura H, Yamashita S, Ohama T, Saga A, Yamamoto-Kakuta A, Hamada Y, Sougawa N, Ohyama R, Sawa Y, Matsuyama A: HDL/apolipoprotein A-I binds to macrophage-derived progranulin and suppresses its conversion into proinflammatory granulins. J Atheroscler Thromb. 2010, 17: 568-577.PubMed
163.
Zurück zum Zitat Bhattacharya S, Haertel C, Maelicke A, Montag D: Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer's disease. PLoS One. 2014, 9: e89454-PubMedCentralPubMed Bhattacharya S, Haertel C, Maelicke A, Montag D: Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer's disease. PLoS One. 2014, 9: e89454-PubMedCentralPubMed
Metadaten
Titel
Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease
verfasst von
Véréna Landel
Kévin Baranger
Isabelle Virard
Béatrice Loriod
Michel Khrestchatisky
Santiago Rivera
Philippe Benech
François Féron
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Molecular Neurodegeneration / Ausgabe 1/2014
Elektronische ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-9-33

Weitere Artikel der Ausgabe 1/2014

Molecular Neurodegeneration 1/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.