Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 6/2017

14.02.2017 | Original Article

Test–retest measurements of dopamine D1-type receptors using simultaneous PET/MRI imaging

verfasst von: Simon Kaller, Michael Rullmann, Marianne Patt, Georg-Alexander Becker, Julia Luthardt, Johanna Girbardt, Philipp M. Meyer, Peter Werner, Henryk Barthel, Anke Bresch, Thomas H. Fritz, Swen Hesse, Osama Sabri

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The role of dopamine D1-type receptor (D1R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D1-mediated neuronal network regulation using simultaneous PET/MRI and D1R-selective [11C]SCH23390, this study investigated the stability of central D1R measurements between two independent PET/MRI sessions under baseline conditions.

Methods

Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq [11C]SCH23390, on two separate days within 2–4 weeks using a PET/MRI system. Parametric images of D1R distribution volume ratio (DVR) and binding potential (BPND) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D1R density.

Results

The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D1R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D1R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BPND values. Accordingly, the absolute variability of BPND ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D1R content, such as the occipital cortex, with higher mean variability.

Conclusion

The test–retest reliability of D1R measurements in this study was very high. This was the case not only for D1R-rich brain areas, but also for regions with low D1R density. These results will provide a solid base for future joint PET/MRI data analyses in stimulation-dependent mapping of D1R-containing neurons and their effects on projections in neuronal circuits that determine behavior.
Literatur
1.
Zurück zum Zitat Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system: Implications for Parkinson disease. Neurology. 2015;85:1795–805.CrossRefPubMed Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system: Implications for Parkinson disease. Neurology. 2015;85:1795–805.CrossRefPubMed
2.
3.
Zurück zum Zitat Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clin. 2015;8:1–31.CrossRef Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clin. 2015;8:1–31.CrossRef
4.
Zurück zum Zitat Alakurtti K, Johansson JJ, Joutsa J, Laine M, Backman L, Nyberg L, et al. Long-term test-retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: study with [11C]raclopride and high-resolution PET. J Cereb Blood Flow Metab. 2015;35:1199–205.CrossRefPubMedPubMedCentral Alakurtti K, Johansson JJ, Joutsa J, Laine M, Backman L, Nyberg L, et al. Long-term test-retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: study with [11C]raclopride and high-resolution PET. J Cereb Blood Flow Metab. 2015;35:1199–205.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Keeler JF, Pretsell DO, Robbins TW. Functional implications of dopamine D1 vs. D2 receptors: A ‘prepare and select’ model of the striatal direct vs. indirect pathways. Neuroscience. 2014;282:156–75.CrossRefPubMed Keeler JF, Pretsell DO, Robbins TW. Functional implications of dopamine D1 vs. D2 receptors: A ‘prepare and select’ model of the striatal direct vs. indirect pathways. Neuroscience. 2014;282:156–75.CrossRefPubMed
6.
Zurück zum Zitat Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–72.CrossRefPubMedPubMedCentral Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–72.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A. 2016;113:2726–31.CrossRefPubMedPubMedCentral Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A. 2016;113:2726–31.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Land BB, Narayanan NS, Liu R-J, Gianessi CA, Brayton CE, Grimaldi DM, et al. Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci. 2014;17:248–53.CrossRefPubMedPubMedCentral Land BB, Narayanan NS, Liu R-J, Gianessi CA, Brayton CE, Grimaldi DM, et al. Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci. 2014;17:248–53.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N, et al. Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: A PET study with [11C]NNC112. J Psychopharmacol. 2012;26:794–805.CrossRefPubMed Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N, et al. Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: A PET study with [11C]NNC112. J Psychopharmacol. 2012;26:794–805.CrossRefPubMed
10.
Zurück zum Zitat Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, et al. Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med. 1998;39:2061–8.PubMed Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, et al. Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med. 1998;39:2061–8.PubMed
11.
Zurück zum Zitat Olver JS, O’Keefe G, Jones GR, Burrows GD, Tochon-Danguy HJ, Ackermann U, et al. Dopamine D1 receptor binding in the anterior cingulate cortex of patients with obsessive–compulsive disorder. Psychiatry Res. 2010;183:85–8.CrossRefPubMed Olver JS, O’Keefe G, Jones GR, Burrows GD, Tochon-Danguy HJ, Ackermann U, et al. Dopamine D1 receptor binding in the anterior cingulate cortex of patients with obsessive–compulsive disorder. Psychiatry Res. 2010;183:85–8.CrossRefPubMed
12.
Zurück zum Zitat Takahashi H, Takano H, Kodaka F, Arakawa R, Yamada M, Otsuka T, et al. Contribution of dopamine D1 and D2 receptors to amygdala activity in human. J Neurosci. 2010;30:3043–7.CrossRefPubMed Takahashi H, Takano H, Kodaka F, Arakawa R, Yamada M, Otsuka T, et al. Contribution of dopamine D1 and D2 receptors to amygdala activity in human. J Neurosci. 2010;30:3043–7.CrossRefPubMed
13.
Zurück zum Zitat Freund N, Thompson BS, Sonntag K, Meda S, Andersen SL. When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacol (Berl). 2016;233:1191–201.CrossRef Freund N, Thompson BS, Sonntag K, Meda S, Andersen SL. When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacol (Berl). 2016;233:1191–201.CrossRef
14.
15.
Zurück zum Zitat Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–19.PubMed Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–19.PubMed
16.
Zurück zum Zitat Karlsson S, Rieckmann A, Karlsson P, Farde L, Nyberg L, Bäckman L. Relationship of dopamine D1 receptor binding in striatal and extrastriatal regions to cognitive functioning in healthy humans. Neuroimage. 2011;57:346–51.CrossRefPubMed Karlsson S, Rieckmann A, Karlsson P, Farde L, Nyberg L, Bäckman L. Relationship of dopamine D1 receptor binding in striatal and extrastriatal regions to cognitive functioning in healthy humans. Neuroimage. 2011;57:346–51.CrossRefPubMed
17.
Zurück zum Zitat Takahashi H, Yamada M, Suhara T. Functional significance of central D1 receptors in cognition: Beyond working memory. J Cereb Blood Flow Metab. 2012;32:1248–58.CrossRefPubMedPubMedCentral Takahashi H, Yamada M, Suhara T. Functional significance of central D1 receptors in cognition: Beyond working memory. J Cereb Blood Flow Metab. 2012;32:1248–58.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Ott T, Jacob SN, Nieder A. Dopamine receptors differentially enhance rule coding in primate prefrontal cortex neurons. Neuron. 2014;84:1317–28.CrossRefPubMed Ott T, Jacob SN, Nieder A. Dopamine receptors differentially enhance rule coding in primate prefrontal cortex neurons. Neuron. 2014;84:1317–28.CrossRefPubMed
20.
Zurück zum Zitat Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci. 2014;37:85–94.CrossRefPubMed Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci. 2014;37:85–94.CrossRefPubMed
21.
Zurück zum Zitat Singer BF, Guptaroy B, Austin CJ, Wohl I, Lovic V, Seiler JL, et al. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function. Eur J Neurosci. 2015;43:662–70.CrossRef Singer BF, Guptaroy B, Austin CJ, Wohl I, Lovic V, Seiler JL, et al. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function. Eur J Neurosci. 2015;43:662–70.CrossRef
22.
Zurück zum Zitat Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D. The first alcohol drink triggers mTORC1-dependent synaptic plasticity in nucleus accumbens dopamine D1 receptor neurons. J Neurosci. 2016;36:701–13.CrossRefPubMedPubMedCentral Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D. The first alcohol drink triggers mTORC1-dependent synaptic plasticity in nucleus accumbens dopamine D1 receptor neurons. J Neurosci. 2016;36:701–13.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Jiang L, O’Leary C, Kim HA, Parish CL, Massalas J, Waddington JL, et al. Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiol Dis. 2015;76:137–58.CrossRefPubMed Jiang L, O’Leary C, Kim HA, Parish CL, Massalas J, Waddington JL, et al. Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiol Dis. 2015;76:137–58.CrossRefPubMed
24.
Zurück zum Zitat Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001;7:399–414.CrossRefPubMed Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001;7:399–414.CrossRefPubMed
25.
Zurück zum Zitat Hirvonen J, Nagren K, Kajander J, Hietala J. Measurement of cortical dopamine d1 receptor binding with 11CSCH23390: a test-retest analysis. J Cereb Blood Flow Metab. 2001;21:1146–50.CrossRefPubMed Hirvonen J, Nagren K, Kajander J, Hietala J. Measurement of cortical dopamine d1 receptor binding with 11CSCH23390: a test-retest analysis. J Cereb Blood Flow Metab. 2001;21:1146–50.CrossRefPubMed
26.
Zurück zum Zitat de Keyser J, Claeys A, de Backer JP, Ebinger G, Roels F, Vauquelin G. Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci Lett. 1988;91:142–7.CrossRefPubMed de Keyser J, Claeys A, de Backer JP, Ebinger G, Roels F, Vauquelin G. Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci Lett. 1988;91:142–7.CrossRefPubMed
27.
Zurück zum Zitat Wilson AA, Garcia A, Jin L, Houle S. Radiotracer synthesis from 11C-iodomethane: a remarkably simple captive solvent method. Nucl Med Biol. 2000;27:529–32.CrossRefPubMed Wilson AA, Garcia A, Jin L, Houle S. Radiotracer synthesis from 11C-iodomethane: a remarkably simple captive solvent method. Nucl Med Biol. 2000;27:529–32.CrossRefPubMed
28.
Zurück zum Zitat Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to 11CDASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.CrossRefPubMed Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to 11CDASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.CrossRefPubMed
29.
Zurück zum Zitat Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMed Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMed
30.
Zurück zum Zitat Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: An approach to cerebral imaging. Stuttgart, New York: G. Thieme; Thieme Medical Publishers; 1988. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: An approach to cerebral imaging. Stuttgart, New York: G. Thieme; Thieme Medical Publishers; 1988.
31.
Zurück zum Zitat Mai JK, Assheuer J, Paxinos G. Atlas of the human brain. 2nd ed. Amsterdam, Boston: Elsevier Academic Press; 2004. Mai JK, Assheuer J, Paxinos G. Atlas of the human brain. 2nd ed. Amsterdam, Boston: Elsevier Academic Press; 2004.
32.
Zurück zum Zitat Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.CrossRefPubMed Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.CrossRefPubMed
33.
Zurück zum Zitat Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.CrossRefPubMed Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.CrossRefPubMed
34.
Zurück zum Zitat Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.PubMed Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.PubMed
35.
Zurück zum Zitat Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med. 1998;39:792–7.PubMed Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med. 1998;39:792–7.PubMed
36.
Zurück zum Zitat Dunn JT, Clark-Papasavas C, Marsden P, Baker S, Cleij M, Kapur S, et al. Establishing test-retest reliability of an adapted 18Ffallypride imaging protocol in older people. J Cereb Blood Flow Metab. 2013;33:1098–103.CrossRefPubMedPubMedCentral Dunn JT, Clark-Papasavas C, Marsden P, Baker S, Cleij M, Kapur S, et al. Establishing test-retest reliability of an adapted 18Ffallypride imaging protocol in older people. J Cereb Blood Flow Metab. 2013;33:1098–103.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Yoder KK, Wang C, Morris ED. Change in binding potential as a quantitative index of neurotransmitter release is highly sensitive to relative timing and kinetics of the tracer and the endogenous ligand. J Nucl Med. 2004;45:903–11.PubMed Yoder KK, Wang C, Morris ED. Change in binding potential as a quantitative index of neurotransmitter release is highly sensitive to relative timing and kinetics of the tracer and the endogenous ligand. J Nucl Med. 2004;45:903–11.PubMed
38.
Zurück zum Zitat Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology. 1994;11:245–56.CrossRefPubMed Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology. 1994;11:245–56.CrossRefPubMed
39.
Zurück zum Zitat Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat. 2001;22:127–37.CrossRefPubMed Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat. 2001;22:127–37.CrossRefPubMed
40.
Zurück zum Zitat Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.PubMed Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.PubMed
41.
Zurück zum Zitat Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci. 2016. doi:10.1038/nn.4462.PubMed Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci. 2016. doi:10.​1038/​nn.​4462.PubMed
42.
Zurück zum Zitat Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with 11CNNC112 in humans: validation and reproducibility. J Cereb Blood Flow Metab. 2000;20:225–43.CrossRefPubMed Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with 11CNNC112 in humans: validation and reproducibility. J Cereb Blood Flow Metab. 2000;20:225–43.CrossRefPubMed
43.
Zurück zum Zitat Poels EMP, Girgis RR, Thompson JL, Slifstein M, Abi-Dargham A. In vivo binding of the dopamine-1 receptor PET tracers [11C]NNC112 and [11C]SCH23390: A comparison study in individuals with schizophrenia. Psychopharmacol (Berl). 2013;228:167–74.CrossRef Poels EMP, Girgis RR, Thompson JL, Slifstein M, Abi-Dargham A. In vivo binding of the dopamine-1 receptor PET tracers [11C]NNC112 and [11C]SCH23390: A comparison study in individuals with schizophrenia. Psychopharmacol (Berl). 2013;228:167–74.CrossRef
44.
Zurück zum Zitat Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. Semin Nucl Med. 2015;45:224–33.CrossRef Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. Semin Nucl Med. 2015;45:224–33.CrossRef
45.
Zurück zum Zitat Werner P, Barthel H, Drzezga A, Sabri O. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42:512–26.CrossRefPubMed Werner P, Barthel H, Drzezga A, Sabri O. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42:512–26.CrossRefPubMed
46.
Zurück zum Zitat Jochimsen TH, Zeisig V, Schulz J, Werner P, Patt M, Patt J, et al. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Phys. 2016;3:2.CrossRefPubMedPubMedCentral Jochimsen TH, Zeisig V, Schulz J, Werner P, Patt M, Patt J, et al. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Phys. 2016;3:2.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Izquierdo-Garcia D, Catana C. MR imaging–guided attenuation correction of PET data in PET/MR imaging. PET Clin. 2016;11:129–49.CrossRefPubMed Izquierdo-Garcia D, Catana C. MR imaging–guided attenuation correction of PET data in PET/MR imaging. PET Clin. 2016;11:129–49.CrossRefPubMed
Metadaten
Titel
Test–retest measurements of dopamine D1-type receptors using simultaneous PET/MRI imaging
verfasst von
Simon Kaller
Michael Rullmann
Marianne Patt
Georg-Alexander Becker
Julia Luthardt
Johanna Girbardt
Philipp M. Meyer
Peter Werner
Henryk Barthel
Anke Bresch
Thomas H. Fritz
Swen Hesse
Osama Sabri
Publikationsdatum
14.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 6/2017
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-017-3645-0

Weitere Artikel der Ausgabe 6/2017

European Journal of Nuclear Medicine and Molecular Imaging 6/2017 Zur Ausgabe