Skip to main content

06.09.2024 | RESEARCH ARTICLE

TET3 is expressed in prostate cancer tumor-associated macrophages and is associated with anti-androgen resistance

verfasst von: Qiu-ju Wei, Hai-qi Liang, Yao-wen Liang, Zu-xin Huang

Erschienen in: Clinical and Translational Oncology

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of this study is to investigate the expression of TET3 in prostate cancer and its effect on the efficacy of anti-androgen therapy (ADT).

Methods

The expression of TET3 in 1965 cases of prostate cancer and 493 cases of normal prostate tissues were analyzed. The CIBERSORT algorithm evaluated the abundance of 22 tumor-infiltrating immune cells in 497 prostate cancers. Subsequently, the expression of TET3 in prostate cancer TAMs was analyzed using 21,292 cells from single-cell RNA sequencing (scRNAseq). In addition, the trajectory of the differentiation process was reconstructed based on pseudotime analysis. Sensitivity prediction of prostate cancers to ADT was evaluated based on GDSC2 and CTRP databases. Another dataset GSE111177 was employed for further analysis.

Results

TET3 was over-expressed in prostate cancer, and the expression of TET3 in metastatic prostate cancer was higher than that in non-metastatic prostate cancer. The scRNAseq analysis of prostate cancer showed that TET3 was mainly expressed in TAM. TET3 expressed in early and active TAMs, with the activation of signaling pathways such as energy metabolism, cell communication, and cytokine production. Prostate cancer in TET3 high expression group was more sensitive to ADT drugs such as Bicalutamide and AZD3514, and was also more sensitive to chemotherapy drugs such as Cyclophosphamide, Paclitaxel, and Vincristine, and MAPK pathway inhibitors of Docetaxel and Dabrafenib.

Conclusions

The efficacy of ADT in prostate cancer is related to the expression of TET3 in TAMs, and TET3 may be a potential therapeutic target for coordinating ADT.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.CrossRefPubMed
2.
Zurück zum Zitat Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S, et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. N Engl J Med. 2018;379:2319–29.CrossRefPubMed Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S, et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. N Engl J Med. 2018;379:2319–29.CrossRefPubMed
3.
Zurück zum Zitat Sweeney CJ, Martin AJ, Stockler MR, Begbie S, Cheung L, Chi KN, et al. Testosterone suppression plus enzalutamide versus testosterone suppression plus standard antiandrogen therapy for metastatic hormone-sensitive prostate cancer (ENZAMET): an international, open-label, randomised, phase 3 trial. Lancet Oncol. 2023;24:323–34.CrossRefPubMed Sweeney CJ, Martin AJ, Stockler MR, Begbie S, Cheung L, Chi KN, et al. Testosterone suppression plus enzalutamide versus testosterone suppression plus standard antiandrogen therapy for metastatic hormone-sensitive prostate cancer (ENZAMET): an international, open-label, randomised, phase 3 trial. Lancet Oncol. 2023;24:323–34.CrossRefPubMed
4.
Zurück zum Zitat Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, et al. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell. 2023;41:1345-62.e9.CrossRefPubMed Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, et al. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell. 2023;41:1345-62.e9.CrossRefPubMed
5.
6.
8.
Zurück zum Zitat Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, Loo CE, et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. Cancer Discov. 2022;12:2392–413.CrossRefPubMedPubMedCentral Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, Loo CE, et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. Cancer Discov. 2022;12:2392–413.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Li X, Zhang Q, Ding Y, Liu Y, Zhao D, Zhao K, et al. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol. 2016;17:806–15.CrossRefPubMed Li X, Zhang Q, Ding Y, Liu Y, Zhao D, Zhao K, et al. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol. 2016;17:806–15.CrossRefPubMed
10.
Zurück zum Zitat Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, et al. Glyphosate primes mammary cells for tumorigenesis by reprogramming the epigenome in a TET3-dependent manner. Front Genet. 2019;10:885.CrossRefPubMedPubMedCentral Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, et al. Glyphosate primes mammary cells for tumorigenesis by reprogramming the epigenome in a TET3-dependent manner. Front Genet. 2019;10:885.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Ciesielski P, Jóźwiak P, Forma E, Krześlak A. TET3- and OGT-dependent expression of genes involved in epithelial-mesenchymal transition in endometrial cancer. Int J Mol Sci. 2021;22:13239.CrossRefPubMedPubMedCentral Ciesielski P, Jóźwiak P, Forma E, Krześlak A. TET3- and OGT-dependent expression of genes involved in epithelial-mesenchymal transition in endometrial cancer. Int J Mol Sci. 2021;22:13239.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, et al. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther. 2024;30: e14717.CrossRefPubMedPubMedCentral Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, et al. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther. 2024;30: e14717.CrossRefPubMedPubMedCentral
13.
14.
Zurück zum Zitat Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRefPubMed Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRefPubMed
15.
Zurück zum Zitat Sui S, An X, Xu C, Li Z, Hua Y, Huang G, et al. An immune cell infiltration-based immune score model predicts prognosis and chemotherapy effects in breast cancer. Theranostics. 2020;10:11938–49.CrossRefPubMedPubMedCentral Sui S, An X, Xu C, Li Z, Hua Y, Huang G, et al. An immune cell infiltration-based immune score model predicts prognosis and chemotherapy effects in breast cancer. Theranostics. 2020;10:11938–49.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.CrossRefPubMed Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.CrossRefPubMed
17.
Zurück zum Zitat Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol. 2020;3:778.CrossRefPubMedPubMedCentral Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol. 2020;3:778.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-87.e29.CrossRefPubMedPubMedCentral Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-87.e29.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.CrossRefPubMedPubMedCentral Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22.CrossRefPubMed Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22.CrossRefPubMed
21.
Zurück zum Zitat Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.PubMedPubMedCentral Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.PubMedPubMedCentral
22.
Zurück zum Zitat Sharma NV, Pellegrini KL, Ouellet V, Giuste FO, Ramalingam S, Watanabe K, et al. Identification of the transcription factor relationships associated with androgen deprivation therapy response and metastatic progression in prostate cancer. Cancers. 2018;10:379.CrossRefPubMedPubMedCentral Sharma NV, Pellegrini KL, Ouellet V, Giuste FO, Ramalingam S, Watanabe K, et al. Identification of the transcription factor relationships associated with androgen deprivation therapy response and metastatic progression in prostate cancer. Cancers. 2018;10:379.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965–79.CrossRefPubMedPubMedCentral Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965–79.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Guggenberger F, van de Werken HJG, Erb HHH, Cappellano G, Trattnig K, Handle F, et al. Fractionated radiation of primary prostate basal cells results in downplay of interferon stem cell and cell cycle checkpoint signatures. Eur Urol. 2018;74:847–9.CrossRefPubMed Guggenberger F, van de Werken HJG, Erb HHH, Cappellano G, Trattnig K, Handle F, et al. Fractionated radiation of primary prostate basal cells results in downplay of interferon stem cell and cell cycle checkpoint signatures. Eur Urol. 2018;74:847–9.CrossRefPubMed
25.
Zurück zum Zitat Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017;23:551–5.CrossRefPubMedPubMedCentral Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017;23:551–5.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Xu Y, Du Y, Zheng Q, Zhou T, Ye B, Wu Y, et al. Identification of ferroptosis-related prognostic signature and subtypes related to the immune microenvironment for breast cancer patients receiving neoadjuvant chemotherapy. Front Immunol. 2022;13: 895110.CrossRefPubMedPubMedCentral Xu Y, Du Y, Zheng Q, Zhou T, Ye B, Wu Y, et al. Identification of ferroptosis-related prognostic signature and subtypes related to the immune microenvironment for breast cancer patients receiving neoadjuvant chemotherapy. Front Immunol. 2022;13: 895110.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56.CrossRefPubMedPubMedCentral Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, et al. The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol. 2018;462:41–55.CrossRefPubMed Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, et al. The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol. 2018;462:41–55.CrossRefPubMed
29.
Zurück zum Zitat Huang Y, Tian C, Li Q, Xu Q. TET1 Knockdown Inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 Macrophage Polarization through the NF-κB Pathway in THP-1 Cells. Int J Mol Sci. 2019;20:2023.CrossRefPubMedPubMedCentral Huang Y, Tian C, Li Q, Xu Q. TET1 Knockdown Inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 Macrophage Polarization through the NF-κB Pathway in THP-1 Cells. Int J Mol Sci. 2019;20:2023.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, et al. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res. 2021;81:5477–90.CrossRefPubMedPubMedCentral El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, et al. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res. 2021;81:5477–90.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang Z, et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 2015;75:950–62.CrossRefPubMedPubMedCentral Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang Z, et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 2015;75:950–62.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Li H, Yang P, Wang J, Zhang J, Ma Q, Jiang Y, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15:2.CrossRefPubMedPubMedCentral Li H, Yang P, Wang J, Zhang J, Ma Q, Jiang Y, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15:2.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Olson OC, Kim H, Quail DF, Foley EA, Joyce JA. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep. 2017;19:101–13.CrossRefPubMedPubMedCentral Olson OC, Kim H, Quail DF, Foley EA, Joyce JA. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep. 2017;19:101–13.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol. 2020;21:32.CrossRefPubMedPubMedCentral Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol. 2020;21:32.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 2022;56: 102452.CrossRefPubMedPubMedCentral Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 2022;56: 102452.CrossRefPubMedPubMedCentral
Metadaten
Titel
TET3 is expressed in prostate cancer tumor-associated macrophages and is associated with anti-androgen resistance
verfasst von
Qiu-ju Wei
Hai-qi Liang
Yao-wen Liang
Zu-xin Huang
Publikationsdatum
06.09.2024
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-024-03708-w

Neu im Fachgebiet Onkologie

Duale Checkpointhemmung gegen Melanome verlängert langfristig das Leben

Im Vergleich zu den Überlebenschancen vor der Einführung von Immuncheckpointhemmern (ICI) ist der Fortschritt durch eine ICI-Kombination mit unterschiedlichen Tagets bei fortgeschrittenem Melanom erstaunlich. Das belegen die finalen Ergebnisse der CheckMate-067-Studie und geben Betroffenen "Hoffnung auf Heilung".

Knochenmarktransplantat als Chance für ältere AML-Patienten

Lange Zeit ist die Transplantation von hämatopoetischen Stammzellen nur bei jüngeren Patienten mit akuter myeloischer Leukämie praktiziert worden. Inzwischen profitieren auch Ältere davon. Ergebnisse einer Studie unterstützen dieses Vorgehen.

Nierenzellkarzinom: Kein Nachteil durch subkutan appliziertes Nivolumab

Die subkutane Applikation von Nivolumab ist nach Daten einer Phase-3-Studie ähnlich gut wirksam wie die intravenöse: Die Pharmakokinetik ist vergleichbar, die objektive Response war in der Studie sogar leicht besser als in der Gruppe mit Infusionen.

Vorteile für Androgenentzug plus Androgenrezeptorblockade

Für Männer mit metastasiertem hormonsensitivem Prostata-Ca. (mHSPC), die keine Hormonchemotherapie wollen oder vertragen, ist der Androgenentzug plus Darolutamid eine Alternative: Das Progressionsrisiko wird im Vergleich zum alleinigen Androgenentzug fast halbiert.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.