Skip to main content
Erschienen in: BMC Medicine 1/2011

Open Access 01.12.2011 | Review

Th17-related cytokines: new players in the control of chronic intestinal inflammation

verfasst von: Ivan Monteleone, Francesco Pallone, Giovanni Monteleone

Erschienen in: BMC Medicine | Ausgabe 1/2011

Abstract

Crohn's disease (CD) and ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD) in man, are thought to be caused by an excessive and poorly controlled immune response that is directed against components of the normal microflora. The exact sequence of events by which this pathological process is triggered and maintained is not fully understood, but studies in experimental models of IBD and data emerging from recent clinical trials indicate that T cell-derived cytokines are crucial mediators of the tissue damage. Although CD and UC have been traditionally considered two typical examples of T helper (Th)1 or Th2-associated disease respectively, it is now known that CD- and UC-related inflammation is also marked by enhanced production of cytokines made by a distinct subset of Th cells, termed Th17 cells. Th17 cytokines can have both tissue-protective and inflammatory effects in the gut and there is evidence that Th17 cells can alter their cytokine program according to the stimuli received and convert into Th1-producing cells. These novel findings have contributed to advancing our understanding of mechanisms of gut tissue damage and open new avenues for development of therapeutic strategies in IBD.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1741-7015-9-122) contains supplementary material, which is available to authorized users.

Competing interests

G.M. has filed a patent entitled 'Interleukin-21 (IL-21) binding proteins and methods of making and using same' (European Patent Application No.08425294.9).

Authors' contributions

IM, FP and GM have contributed equally to drafting the manuscript and making the figure. All authors read and approved the final manuscript.
Abkürzungen
AhR
aryl hydrocarbon receptor
CD
Crohn's disease
DSS
dextran sulfate sodium
Ficz
6-formylindolo (3: 2-b) carbazole
IBD
inflammatory bowel disease
IFN
interferon
IL
interleukin
ILC
innate lymphoid cells
IL-17R
interleukin-17 receptor
ROR
retinoic acid related orphan receptor
TGF
transforming growth factor
TNBS
trinitrobenzenesulfonic acid
Tregs
regulatory T cells
UC
ulcerative colitis.

Background

Crohn's disease (CD) and ulcerative colitis (UC), as the main inflammatory bowel diseases (IBD) in man, are chronic and relapsing inflammatory disorders [1, 2]. The etiology of IBD is still unknown, but it is believed that genetic and environmental factors interact to promote an excessive and poorly controlled mucosal inflammatory response directed against components of the luminal microflora [1, 2]. Studies in experimental models also indicate that IBD-related tissue damage results from a dynamic interplay between immune and non-immune cells and that cytokines are crucial mediators of this cross-talk [1, 2]. Analysis of the cytokine profile in IBD tissue has however shown that CD and UC are immunologically distinct. In CD there is predominance of T helper (Th)1-related cytokines, such as IL-12 and interferon IFN-γ, while in UC there is more IL-5 and IL-13, two Th2-associated cytokines [36]. Nonetheless, the demonstration that both anti-IL-12/p40 and anti-IFN-γ antibodies were only partially effective in patients with active CD [79] suggests that CD mucosal inflammation may be driven by additional mediators other than Th1 cytokines. Indeed, it is now well-known that CD and UC gut mucosa is heavily infiltrated with another subset of Th cells, termed Th17 cells, which produce a distinct array of cytokines [1012]. In this article we review the available data supporting the role of Th17 cells in the modulation of gut inflammation and discuss whether and how Th17 cytokine-based therapy can enter into the therapeutic armamentarium of IBD.
Th17 cells produce IL-17, also termed IL-17A, IL-17F, IL-21, IL-22, and IL-26 [13, 14]. Th17 cells can also make IL-9 [15, 16]. However, analysis at the single cell-level has revealed that not all Th17 cells secrete all these cytokines, probably reflecting the heterogeneity of this cell subset. In mice, transforming growth factor β1 (TGF-β1) and IL-6 induce naïve T cells to express the transcription factors retinoic acid-related orphan receptor (ROR) γt and RORα and differentiate to Th17 cells [17, 18] (Figure 1). An optimal expansion and maintenance of Th17 cell response requires activation of the transcription factor Stat3 and IL-23 [19]. By contrast, it is not yet fully understood how human Th17 cells differentiate in vivo, even though in vitro studies indicate that activation of CD4+ cells in the presence of IL-1β and IL-6 or IL-1β or IL-23 alone triggers IL-17A and IL-17F secretion [20, 21]. IL-17A, IL-17F, IL-22 and IL-26 are all highly produced in the inflamed gut of patients with CD and patients with UC [10, 12, 2224]. Moreover, IBD genome-wide association studies and candidate gene studies showed that polymorphisms of Th17-related genes, such as Stat3 or IL-23R, associate with IBD, thus supporting the involvement of the Th17 pathway into IBD pathogenesis [2527]. Furthermore, elevated levels of CCL20, a chemoattractant for CCR6+ Th17 cells [28], have been documented in IBD mucosa, where CCL20 production seems to be positively regulated by IL-21, another Th17-related cytokine [2931]. IL-21 is over-produced in the intestine of IBD patients, but the vast majority of IL-21-producing CD4+ T cells co-express IFN-γ and not IL-17A, thus suggesting that Th1 and not Th17 cells are major sources of IL-21 in the human gut [32, 33] (Figure 1). This idea is supported by the fact that blockade of endogenous IL-12 in cultures of CD mucosal cells reduces IL-21 production while activation of normal intestinal CD4+ T lymphocytes in the presence of IL-12 increases the number of IL-21-secreting Th1 cells [32].

The functional plasticity of Th17 cells

Flow-cytometry analysis of mononuclear cells isolated from the gut of CD patients has shown that some of the IL-17A-producing cells are not typical Th17 cells, because they co-express IFN-γ [34]. The majority of IL-17/IFN-γ-producing cells express CD161, a well known marker of NK T cells recently identified on IL-17-producing memory T cells [34]. These cells do not appear to be stable because in vitro stimulation with IL-12 enhances the expression of T-bet and IFN-γ, and down-regulates RORγt and IL-17A [12, 35]. These findings support the notion that cells of the Th17 lineage are plastic and can be converted into Th1-type cells if they receive appropriate stimuli, such as IL-12 [12, 35] (Figure 1). Although IL-23 was originally identified as a factor necessary for expanding/maintaining Th17 cell responses [19] and it is known that variants of the IL-23R gene influence IL-22 secretion [36], recent studies have shown that IL-23 can also facilitate the deviation from a Th17 to a Th1 phenotype [37, 38] (Figure 1). This is in line with the demonstration that some of the pathogenic effects of IL-23 in the gut are linked to the ability of this cytokine to turn on IFN-γ [37]. Switching from IL-17A to IFN-γ production occurs if Th17 cells are activated in a microenvironment devoid of TGF-β1, because TGF-β1 is needed to maintain IL-17A production by in vitro-generated Th17 cells [21, 39]. Since in the gut of IBD patients, high Smad7 abrogates TGF-β1 activity [40] and mucosal inflammation is marked by high IL-12 and IL-23 [3, 41], it is conceivable that IFN-γ-producing cells seen in IBD tissue originate in part from pre-existing IL-17A-expressing T cells.
In addition to CD4+ T cells, many other cell types can produce Th17-related cytokines. For example, in IBD tissue, IL-17A is made by T cells and CD68+ macrophages [10]. NKT cells, NK cells, CD8+ T cells and γδ T cells can also secrete IL-17A and IL-22 [34, 4244]. IL-17A can also be produced by innate lymphoid cells (ILCs) [45, 46]. IL-23-responsive ILCs, which are negative for CD3, CD127 and CD56, infiltrate the gut of patients with CD and the inflamed colons of Rag-deficient mice infected with Helicobacter Hepaticus [46, 47]. These cells express high levels of IL-23R and RORγt and produce IFN-γ, IL-17A and IL-22 in response to IL-23 [47]. Depletion of these cell types attenuates colitis in mice [47], thus emphasizing their pathogenic role in the gut.

Th17 cytokines have both anti-inflammatory and inflammatory effects in the gut

The discovery that Th17 cytokines are over-produced in IBD has boosted intensive research aimed at elucidating the contribution of each of these molecules in the control of gut inflammation. What has become evident is that some Th17 cytokines have both proinflammatory and tissue-protective properties, mostly depending on the model where they are studied. For example, there is evidence that IL-17A-knockout mice are more susceptible than control wild-type mice to developing colitis induced by oral administration of dextran sulfate sodium (DSS) [48]. DSS delivered with drinking water to mice causes disruption of the epithelial layer, which is followed by translocation of luminal bacteria to the mucosa and acute inflammatory response marked by a massive infiltration of the mucosa with neutrophils and macrophages [49]. Therefore, in this model, the tissue protective effect of IL-17A could rely on the ability of the cytokine to induce the expression of claudins in intestinal epithelial cells and to stimulate mucin production thereby enhancing the intestinal barrier [50] (Figure 1). An anti-inflammatory effect of IL-17A has also been seen in the T cell-transfer colitis model [51]. Indeed, it was shown that adoptive transfer of IL-17A-deficient naïve CD4+ T cells to recipient immunodeficient mice results in severe colitis [51]. Transfer of IL-17 receptor (IL-17R)-deficient T cells to recipient mice induces the same aggressive disease, indicating that IL-17 exerts its protective effects directly on T cells [51]. The greater severity of colitis induced by transfer of IL-17A-deficient T cells is not due to their enhanced migratory and infiltration capacity, but is instead related to enhanced Th1 cell effector function, raising the possibility that the anti-inflammatory effect of IL-17A in this model relies on the inhibition of Th1 cell responses.
Like IL-17A knockout mice, mice lacking IL-22 develop severe colitis following oral DSS administration as compared to wild-type mice. This observation fits well with the demonstration that IL-22 enhances intestinal barrier integrity, a phenomenon which seems to be dependent on the ability of this cytokine to activate Stat3 [52]. IL-22 stimulates epithelial cell growth, goblet cell restitution and mucus and antimicrobial production, thus restricting the passage of luminal commensal flora and food antigens to the lamina propria [23, 52] (Figure 1). IL-22-mediated protective effects are also seen in the T cell transfer colitis model [53].
In contrast, mice deficient in IL-17RA are largely protected against experimental colitis induced by intrarectal administration of trinitrobenzenesulfonic acid (TNBS), and administration of IL-17RA IgG1 fusion protein attenuates TNBS-colitis in wild-type mice [54]. The fact that IL-17RA mediates the functional activities of both IL-17A and IL-17F [55] together with the above protective effects of IL-17A suggest that IL-17F, and not IL-17A, is pathogenic in the gut. This idea is supported by the demonstration that mice deficient in IL-17F are largely resistant against DSS-colitis [48]. The mechanism by which IL-17F promotes gut inflammation is not yet known, but there is evidence that this cytokine can induce the synthesis of various molecules (that is, TNF, IL-1, IL-6 and chemokines) that amplify pathogenic responses in the intestine [13, 14].
Despite the above data suggesting that IL-17A has anti-inflammatory effects in the gut, we cannot exclude the possibility that, under specific circumstances, this cytokine can cooperate with IL-17F and other Th17 or Th1 cytokines to expand the IBD-associated inflammatory response. This hypothesis is supported by studies performed by Leppkes and colleagues [56] showing that transfer of IL-17A-, IL-17F-, or IL-22-deficient T lymphocytes into RAG1-null mice induces severe colitis that is indistinguishable from that caused by wild-type cells. In contrast, transfer of RORγ-null T cells, which associates with no induction of IL-17 cytokines in the intestine, does not induce colitis [56]. Moreover, treatment of RAG1 mice that received IL-17F-null T cells with a neutralizing anti-IL-17A antibody suppresses disease [56].
Transfer of naïve CD8+ T cells into syngeneic RAG-deficient mice results in severe colitis, similar to that seen after transfer of naïve CD4+ T cells [57]. Analysis of CD8+ T cells in the mesenteric lymph nodes of such mice show the existence of IL-17A and IFN-γ- double-positive cells. Notably, transfer of naïve CD8+ T cells derived from either IL-17- or IFN-γ-knockout mice is associated with less severe colitis. Like naïve CD4+ cells lacking RORγt, CD4+ T cells deficient in Th1-related transcription factors (that is, Stat4 and T-bet) are unable to induce colitis when transferred to recipient mice [58, 59]. Altogether these observations suggest that a mixture of both Th1 and Th17 cytokines are needed to promote pathology in the gut and that compounds interfering with both Th1 and Th17 cell activity could be useful to facilitate the resolution of the ongoing mucosal inflammation in IBD. In this context, a promising target could be IL-21, whose activity seems to be necessary for expanding both Th1 and Th17 cell responses in the gut [32, 60]. Like human IBD, mice with acute DSS-colitis and TNBS-relapsing colitis produce elevated levels of IL-21, and administration of a neutralizing IL-21R fusion protein to DSS-treated mice attenuates the ongoing colitis and reduces the production of Th17-related cytokines [60]. IL-21-deficient mice are largely protected against DSS- and TNBS-colitis, and this protection is associated with a marked decrease in IL-17A and IL-17F, thus confirming the key role of IL-21 in sustaining Th17 immunity [60]. IL-21 exerts further biological functions that could contribute to its pro-inflammatory effect in the gut. For example, IL-21 inhibits the peripheral differentiation of regulatory T cells (Tregs) and makes CD4+ T cells resistant to Tregs-mediated immune suppression [61]. Like IL-17A, IL-21 stimulates stromal cells to produce tissue-degrading proteases [62] (Figure 1). Human intestinal epithelial cells express IL-21R and respond to IL-21 by up-regulating the secretion of the T cell chemoattractant macrophage inflammatory protein-3α [31]. It remains unknown, however, if this occurs also in mice, because no study has yet demonstrated that murine colonic epithelial cells express IL-21R. Finally, there is evidence that IL-21 enhances the expression of Th1-related transcription factors and IFN-γ in T and NK cells [63, 64].

Aryl hydrocarbon receptor signalling promotes IL-22 synthesis and attenuates gut inflammation

Th17 cells that have lost the ability to secrete IL-17A and turned on IFN-γ express high levels of aryl hydrocarbon receptor (AhR) [65, 66], raising the possibility that AhR can control the activity of these cells. AhR is a transcription factor ubiquitously expressed in vertebrate cells and able to mediate a range of cellular events in response to halogenated aromatic hydrocarbons, non-halogenated polycyclic aromatic hydrocarbons, small synthetic compounds and natural chemicals, including derivatives of tryptophan, such as 6-formylindolo (3, 2-b) carbazole (Ficz) [67]. Activation of AhR results in enhanced production of Th17 cytokines, particularly IL-22, and reduction of Th1 and Th2 cytokine [65, 6872]. There is however evidence that AhR-deficient CD4+ T cells can be induced to differentiate along the Th17 pathway, thus suggesting that AhR is probably involved in the expansion, rather than induction, of Th17 cells [73]. In line with the above findings, we have recently shown that administration of Ficz to mice ameliorated TNBS-, relapsing DSS- and T cell-transfer colitis [74]. These data were paralleled by inhibition of Th1 cytokines and up-regulation of IL-22. Moreover, treatment of mice with an AhR antagonist reduced IL-22 production and enhanced the severity of TNBS-colitis [74]. Blockade of IL-22 with a neutralizing antibody reversed the therapeutic effect of Ficz in mice with TNBS-colitis, thus indicating that induction of IL-22 is one of the major mechanisms by which AhR signals control pathogenic responses in the gut [74].
Analysis of AhR expression in human IBD demonstrated a marked down-regulation in the inflamed tissue of CD patients as compared to uninvolved areas of the same patients, inflamed areas of UC patients and normal controls. Importantly, AhR content did not significantly differ between UC and normal control samples thus suggesting that the diminished expression of AhR in CD is not an epiphenomenon of the ongoing inflammation [74]. As in mice, treatment of human IBD mucosal cells with Ficz resulted in decreased IFN-γ expression and up-regulation of IL-22. Time-course studies showed, however, that suppression of Th1 cell response preceded IL-22 induction thus supporting the ability of AhR to control distinct pathways of mucosal damage and healing [74].

Summary and future directions

The findings described in this article together with the beneficial effects of Th17-cytokine blockers in immune-mediated pathologies, such as psoriasis [75], suggest that targeting Th17 cytokines could be a rationale approach to dampen the detrimental inflammatory response in IBD. However, results of clinical trials of two different antibodies neutralizing the IL-23/p40 subunit were quite disappointing in CD [7, 76] and a recent study has shown that blockade of IL-17A is not effective in CD [77]. These negative results are not, however, entirely surprising because, as pointed out in this article, the IBD-associated tissue-damaging immune response is driven by additional cytokines other than Th17-related molecules. If so, we can speculate that simultaneous neutralization of two or more of these molecules (for eample IFN-γ and IL-17A) could help manage the active phases of IBD patients.

Conclusions

In recent years, progress in basic and translational research has led to a better understanding of the role of Th17 cytokines in the control of gut inflammation. What has become evident is that these molecules can have both inflammatory and anti-inflammatory effects in the gut and that some cytokines can cooperate with molecules produced by other cell subsets in amplifying inflammatory processes. The available data seem to suggest that compounds inhibiting some Th17-related cytokines (that is IL-17A, IL-22) could not be effective in IBD or could worsen the IBD course. By contrast, it is conceivable that blockers of IL-21 or IL-17F are more advantageous because these two cytokines sustain multiple inflammatory signals in the gut. However, given the clinical and biological heterogeneity of IBD, further experimentation will be necessary to establish whether IL-21 and IL-17F are produced at a high level during the various phases of the disease.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

G.M. has filed a patent entitled 'Interleukin-21 (IL-21) binding proteins and methods of making and using same' (European Patent Application No.08425294.9).

Authors' contributions

IM, FP and GM have contributed equally to drafting the manuscript and making the figure. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Kaser A, Zeissig S, Blumberg RS: Inflammatory bowel disease. Annu Rev Immunol. 2010, 28: 573-621. 10.1146/annurev-immunol-030409-101225.CrossRef Kaser A, Zeissig S, Blumberg RS: Inflammatory bowel disease. Annu Rev Immunol. 2010, 28: 573-621. 10.1146/annurev-immunol-030409-101225.CrossRef
2.
Zurück zum Zitat Strober W, Fuss I, Mannon P: The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007, 117: 514-521. 10.1172/JCI30587.CrossRef Strober W, Fuss I, Mannon P: The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007, 117: 514-521. 10.1172/JCI30587.CrossRef
3.
Zurück zum Zitat Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F: Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997, 112: 1169-1178. 10.1016/S0016-5085(97)70128-8.CrossRef Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F: Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997, 112: 1169-1178. 10.1016/S0016-5085(97)70128-8.CrossRef
4.
Zurück zum Zitat Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, Fiocchi C, Strober W: Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996, 157: 1261-1270. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, Fiocchi C, Strober W: Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996, 157: 1261-1270.
5.
Zurück zum Zitat Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, Mannon P, Strober W: Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004, 113: 1490-1497.CrossRef Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, Mannon P, Strober W: Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004, 113: 1490-1497.CrossRef
6.
Zurück zum Zitat Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Burgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD: Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005, 129: 550-564.CrossRef Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Burgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD: Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005, 129: 550-564.CrossRef
7.
Zurück zum Zitat Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, Johanns J, Blank M, Rutgeerts P: A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology. 2008, 135: 1130-1141. 10.1053/j.gastro.2008.07.014.CrossRef Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, Johanns J, Blank M, Rutgeerts P: A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology. 2008, 135: 1130-1141. 10.1053/j.gastro.2008.07.014.CrossRef
8.
Zurück zum Zitat Reinisch W, de Villiers W, Bene L, Simon L, Racz I, Katz S, Altorjay I, Feagan B, Riff D, Bernstein CN, Hommes D, Rutgeerts P, Cortot A, Gaspari M, Cheng M, Pearce T, Sands BE: Fontolizumab in moderate to severe Crohn's disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010, 16: 233-242.CrossRef Reinisch W, de Villiers W, Bene L, Simon L, Racz I, Katz S, Altorjay I, Feagan B, Riff D, Bernstein CN, Hommes D, Rutgeerts P, Cortot A, Gaspari M, Cheng M, Pearce T, Sands BE: Fontolizumab in moderate to severe Crohn's disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010, 16: 233-242.CrossRef
9.
Zurück zum Zitat Hommes DW, Mikhajlova TL, Stoinov S, Stimac D, Vucelic B, Lonovics J, Zakuciova M, D'Haens G, Van Assche G, Ba S, Lee S, Pearce T: Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut. 2006, 55: 1131-1137.CrossRef Hommes DW, Mikhajlova TL, Stoinov S, Stimac D, Vucelic B, Lonovics J, Zakuciova M, D'Haens G, Van Assche G, Ba S, Lee S, Pearce T: Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut. 2006, 55: 1131-1137.CrossRef
10.
Zurück zum Zitat Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y: Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003, 52: 65-70. 10.1136/gut.52.1.65.CrossRef Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y: Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003, 52: 65-70. 10.1136/gut.52.1.65.CrossRef
11.
Zurück zum Zitat Rovedatti L, Kudo T, Biancheri P, Sarra M, Knowles CH, Rampton DS, Corazza GR, Monteleone G, Di Sabatino A, Macdonald TT: Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009, 58: 1629-1636. 10.1136/gut.2009.182170.CrossRef Rovedatti L, Kudo T, Biancheri P, Sarra M, Knowles CH, Rampton DS, Corazza GR, Monteleone G, Di Sabatino A, Macdonald TT: Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009, 58: 1629-1636. 10.1136/gut.2009.182170.CrossRef
12.
Zurück zum Zitat Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S: Phenotypic and functional features of human Th17 cells. J Exp Med. 2007, 204: 1849-1861. 10.1084/jem.20070663.CrossRef Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S: Phenotypic and functional features of human Th17 cells. J Exp Med. 2007, 204: 1849-1861. 10.1084/jem.20070663.CrossRef
13.
Zurück zum Zitat Bettelli E, Korn T, Oukka M, Kuchroo VK: Induction and effector functions of T(H)17 cells. Nature. 2008, 453: 1051-1057. 10.1038/nature07036.CrossRef Bettelli E, Korn T, Oukka M, Kuchroo VK: Induction and effector functions of T(H)17 cells. Nature. 2008, 453: 1051-1057. 10.1038/nature07036.CrossRef
14.
Zurück zum Zitat Korn T, Bettelli E, Oukka M, Kuchroo VK: IL-17 and Th17 Cells. Annu Rev Immunol. 2009, 27: 485-517. 10.1146/annurev.immunol.021908.132710.CrossRef Korn T, Bettelli E, Oukka M, Kuchroo VK: IL-17 and Th17 Cells. Annu Rev Immunol. 2009, 27: 485-517. 10.1146/annurev.immunol.021908.132710.CrossRef
15.
Zurück zum Zitat Stephens GL, Swerdlow B, Benjamin E, Coyle AJ, Humbles A, Kolbeck R, Fung M: IL-9 is a Th17-derived cytokine that limits pathogenic activity in organ-specific autoimmune disease. Eur J Immunol. 2011, 41: 952-962. 10.1002/eji.201040879.CrossRef Stephens GL, Swerdlow B, Benjamin E, Coyle AJ, Humbles A, Kolbeck R, Fung M: IL-9 is a Th17-derived cytokine that limits pathogenic activity in organ-specific autoimmune disease. Eur J Immunol. 2011, 41: 952-962. 10.1002/eji.201040879.CrossRef
16.
Zurück zum Zitat Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, Elyaman W, Khoury SJ, Kuchroo VK, Baecher-Allan C, Hafler DA: TGF-beta induces IL-9 production from human Th17 cells. J Immunol. 2010, 185: 46-54. 10.4049/jimmunol.1000356.CrossRef Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, Elyaman W, Khoury SJ, Kuchroo VK, Baecher-Allan C, Hafler DA: TGF-beta induces IL-9 production from human Th17 cells. J Immunol. 2010, 185: 46-54. 10.4049/jimmunol.1000356.CrossRef
17.
Zurück zum Zitat Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, et al: T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008, 28: 29-39. 10.1016/j.immuni.2007.11.016.CrossRef Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, et al: T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008, 28: 29-39. 10.1016/j.immuni.2007.11.016.CrossRef
18.
Zurück zum Zitat Zhang F, Meng G, Strober W: Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol. 2008, 9: 1297-1306. 10.1038/ni.1663.CrossRef Zhang F, Meng G, Strober W: Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol. 2008, 9: 1297-1306. 10.1038/ni.1663.CrossRef
19.
Zurück zum Zitat Zhou L, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR: IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007, 8: 967-974. 10.1038/ni1488.CrossRef Zhou L, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR: IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007, 8: 967-974. 10.1038/ni1488.CrossRef
20.
Zurück zum Zitat Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC: A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006, 203: 1685-1691. 10.1084/jem.20060285.CrossRef Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC: A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006, 203: 1685-1691. 10.1084/jem.20060285.CrossRef
21.
Zurück zum Zitat Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E, Soumelis V: A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 2008, 9: 650-657.CrossRef Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E, Soumelis V: A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 2008, 9: 650-657.CrossRef
22.
Zurück zum Zitat Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jurgens M, Schmechel S, Konrad A, Göke B, Ochsenkühn T, Müller-Myhsok B, Lohse P, Brand S: Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis. 2008, 14: 437-445. 10.1002/ibd.20339.CrossRef Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jurgens M, Schmechel S, Konrad A, Göke B, Ochsenkühn T, Müller-Myhsok B, Lohse P, Brand S: Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis. 2008, 14: 437-445. 10.1002/ibd.20339.CrossRef
23.
Zurück zum Zitat Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jagla W, Popp A, Leclair S, Herrmann K, Seiderer J, Ochsenkühn T, Göke B, Auernhammer CJ, Dambacher J: IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol. 2006, 290: G827-838. 10.1152/ajpgi.00513.2005.CrossRef Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jagla W, Popp A, Leclair S, Herrmann K, Seiderer J, Ochsenkühn T, Göke B, Auernhammer CJ, Dambacher J: IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol. 2006, 290: G827-838. 10.1152/ajpgi.00513.2005.CrossRef
24.
Zurück zum Zitat Dambacher J, Beigel F, Zitzmann K, De Toni EN, Goke B, Diepolder HM, Auernhammer CJ, Brand S: The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009, 58: 1207-1217. 10.1136/gut.2007.130112.CrossRef Dambacher J, Beigel F, Zitzmann K, De Toni EN, Goke B, Diepolder HM, Auernhammer CJ, Brand S: The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009, 58: 1207-1217. 10.1136/gut.2007.130112.CrossRef
25.
Zurück zum Zitat Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, et al: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010, 42: 1118-1125. 10.1038/ng.717.CrossRef Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, et al: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010, 42: 1118-1125. 10.1038/ng.717.CrossRef
26.
Zurück zum Zitat Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, Lee JC, Goyette P, Imielinski M, Latiano A, Lagacé C, Scott R, Amininejad L, Bumpstead S, Baidoo L, Baldassano RN, Barclay M, Bayless TM, Brand S, Büning C, Colombel JF, Denson LA, De Vos M, Dubinsky M, Edwards C, Ellinghaus D, Fehrmann RS, Floyd JA, Florin T, Franchimont D, et al: Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011, 43: 246-252. 10.1038/ng.764.CrossRef Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, Lee JC, Goyette P, Imielinski M, Latiano A, Lagacé C, Scott R, Amininejad L, Bumpstead S, Baidoo L, Baldassano RN, Barclay M, Bayless TM, Brand S, Büning C, Colombel JF, Denson LA, De Vos M, Dubinsky M, Edwards C, Ellinghaus D, Fehrmann RS, Floyd JA, Florin T, Franchimont D, et al: Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011, 43: 246-252. 10.1038/ng.764.CrossRef
27.
Zurück zum Zitat Glas J, Stallhofer J, Ripke S, Wetzke M, Pfennig S, Klein W, Epplen JT, Griga T, Schiemann U, Lacher M, Koletzko S, Folwaczny M, Lohse P, Göke B, Ochsenkühn T, Müller-Myhsok B, Brand S: Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol. 2009, 104: 1737-1744. 10.1038/ajg.2009.163.CrossRef Glas J, Stallhofer J, Ripke S, Wetzke M, Pfennig S, Klein W, Epplen JT, Griga T, Schiemann U, Lacher M, Koletzko S, Folwaczny M, Lohse P, Göke B, Ochsenkühn T, Müller-Myhsok B, Brand S: Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol. 2009, 104: 1737-1744. 10.1038/ajg.2009.163.CrossRef
28.
Zurück zum Zitat Wang C, Kang SG, Lee J, Sun Z, Kim CH: The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol. 2009, 2: 173-183. 10.1038/mi.2008.84.CrossRef Wang C, Kang SG, Lee J, Sun Z, Kim CH: The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol. 2009, 2: 173-183. 10.1038/mi.2008.84.CrossRef
29.
Zurück zum Zitat Kaser A, Ludwiczek O, Holzmann S, Moschen AR, Weiss G, Enrich B, Graziadei I, Dunzendorfer S, Wiedermann CJ, Murzl E, Grasl E, Jasarevic Z, Romani N, Offner FA, Tilg H: Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol. 2004, 24: 74-85.CrossRef Kaser A, Ludwiczek O, Holzmann S, Moschen AR, Weiss G, Enrich B, Graziadei I, Dunzendorfer S, Wiedermann CJ, Murzl E, Grasl E, Jasarevic Z, Romani N, Offner FA, Tilg H: Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol. 2004, 24: 74-85.CrossRef
30.
Zurück zum Zitat Brand S, Olszak T, Beigel F, Diebold J, Otte JM, Eichhorst ST, Goke B, Dambacher J: Cell differentiation dependent expressed CCR6 mediates ERK-1/2, SAPK/JNK, and Akt signaling resulting in proliferation and migration of colorectal cancer cells. J Cell Biochem. 2006, 97: 709-723. 10.1002/jcb.20672.CrossRef Brand S, Olszak T, Beigel F, Diebold J, Otte JM, Eichhorst ST, Goke B, Dambacher J: Cell differentiation dependent expressed CCR6 mediates ERK-1/2, SAPK/JNK, and Akt signaling resulting in proliferation and migration of colorectal cancer cells. J Cell Biochem. 2006, 97: 709-723. 10.1002/jcb.20672.CrossRef
31.
Zurück zum Zitat Caruso R, Fina D, Peluso I, Stolfi C, Fantini MC, Gioia V, Caprioli F, Del Vecchio Blanco G, Paoluzi OA, Macdonald TT, Pallone F, Monteleone G: A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3alpha, by gut epithelial cells. Gastroenterology. 2007, 132: 166-175. 10.1053/j.gastro.2006.09.053.CrossRef Caruso R, Fina D, Peluso I, Stolfi C, Fantini MC, Gioia V, Caprioli F, Del Vecchio Blanco G, Paoluzi OA, Macdonald TT, Pallone F, Monteleone G: A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3alpha, by gut epithelial cells. Gastroenterology. 2007, 132: 166-175. 10.1053/j.gastro.2006.09.053.CrossRef
32.
Zurück zum Zitat Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G, Caruso R, Tersigni R, Alessandroni L, Biancone L, Naccari GC, MacDonald TT, Pallone F: Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology. 2005, 128: 687-694. 10.1053/j.gastro.2004.12.042.CrossRef Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G, Caruso R, Tersigni R, Alessandroni L, Biancone L, Naccari GC, MacDonald TT, Pallone F: Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology. 2005, 128: 687-694. 10.1053/j.gastro.2004.12.042.CrossRef
33.
Zurück zum Zitat Sarra M, Monteleone I, Stolfi C, Fantini MC, Sileri P, Sica G, Tersigni R, Macdonald TT, Pallone F, Monteleone G: Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm Bowel Dis. 2010, 16: 1332-1339.CrossRef Sarra M, Monteleone I, Stolfi C, Fantini MC, Sileri P, Sica G, Tersigni R, Macdonald TT, Pallone F, Monteleone G: Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm Bowel Dis. 2010, 16: 1332-1339.CrossRef
34.
Zurück zum Zitat Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE, Turner SP, Raskin L, Desai B, Faubion WA, de Waal Malefyt R, Pierce RH, McClanahan T, Kastelein RA: Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med. 2009, 206: 525-534. 10.1084/jem.20081712.CrossRef Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE, Turner SP, Raskin L, Desai B, Faubion WA, de Waal Malefyt R, Pierce RH, McClanahan T, Kastelein RA: Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med. 2009, 206: 525-534. 10.1084/jem.20081712.CrossRef
35.
Zurück zum Zitat Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, Pierce R, McClanahan TK, Sadekova S, de Waal Malefyt R: Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. J Immunol. 2010, 185: 679-687. 10.4049/jimmunol.1000366.CrossRef Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, Pierce R, McClanahan TK, Sadekova S, de Waal Malefyt R: Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. J Immunol. 2010, 185: 679-687. 10.4049/jimmunol.1000366.CrossRef
36.
Zurück zum Zitat Schmechel S, Konrad A, Diegelmann J, Glas J, Wetzke M, Paschos E, Lohse P, Goke B, Brand S: Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflamm Bowel Dis. 2008, 14: 204-212. 10.1002/ibd.20315.CrossRef Schmechel S, Konrad A, Diegelmann J, Glas J, Wetzke M, Paschos E, Lohse P, Goke B, Brand S: Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflamm Bowel Dis. 2008, 14: 204-212. 10.1002/ibd.20315.CrossRef
37.
Zurück zum Zitat Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F: Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010, 33: 279-288. 10.1016/j.immuni.2010.08.010.CrossRef Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F: Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010, 33: 279-288. 10.1016/j.immuni.2010.08.010.CrossRef
38.
Zurück zum Zitat Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT: Late developmental plasticity in the T helper 17 lineage. Immunity. 2009, 30: 92-107. 10.1016/j.immuni.2008.11.005.CrossRef Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT: Late developmental plasticity in the T helper 17 lineage. Immunity. 2009, 30: 92-107. 10.1016/j.immuni.2008.11.005.CrossRef
39.
Zurück zum Zitat Lee YK, Mukasa R, Hatton RD, Weaver CT: Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009, 21: 274-280. 10.1016/j.coi.2009.05.021.CrossRef Lee YK, Mukasa R, Hatton RD, Weaver CT: Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009, 21: 274-280. 10.1016/j.coi.2009.05.021.CrossRef
40.
Zurück zum Zitat Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT: Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001, 108: 601-609.CrossRef Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT: Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001, 108: 601-609.CrossRef
41.
Zurück zum Zitat Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, Meuer SC, Stallmach A: Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm Bowel Dis. 2005, 11: 16-23.CrossRef Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, Meuer SC, Stallmach A: Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm Bowel Dis. 2005, 11: 16-23.CrossRef
42.
Zurück zum Zitat Colonna M: Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity. 2009, 31: 15-23. 10.1016/j.immuni.2009.06.008.CrossRef Colonna M: Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity. 2009, 31: 15-23. 10.1016/j.immuni.2009.06.008.CrossRef
43.
Zurück zum Zitat Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, Ghosh S: T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity. 2010, 33: 791-803. 10.1016/j.immuni.2010.10.014.CrossRef Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, Ghosh S: T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity. 2010, 33: 791-803. 10.1016/j.immuni.2010.10.014.CrossRef
44.
Zurück zum Zitat Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M: Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009, 31: 321-330. 10.1016/j.immuni.2009.06.020.CrossRef Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M: Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009, 31: 321-330. 10.1016/j.immuni.2009.06.020.CrossRef
45.
Zurück zum Zitat Spits H, Di Santo JP: The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011, 12: 21-27.CrossRef Spits H, Di Santo JP: The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011, 12: 21-27.CrossRef
46.
Zurück zum Zitat Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F: IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011, 208: 1127-1133. 10.1084/jem.20101712.CrossRef Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F: IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011, 208: 1127-1133. 10.1084/jem.20101712.CrossRef
47.
Zurück zum Zitat Buonocore S, Ahern PP, Uhlig HH, Littman DR, Maloy KJ, Powrie F: Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010, 464: 1371-1375. 10.1038/nature08949.CrossRef Buonocore S, Ahern PP, Uhlig HH, Littman DR, Maloy KJ, Powrie F: Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010, 464: 1371-1375. 10.1038/nature08949.CrossRef
48.
Zurück zum Zitat Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C: Regulation of inflammatory responses by IL-17F. J Exp Med. 2008, 205: 1063-1075. 10.1084/jem.20071978.CrossRef Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C: Regulation of inflammatory responses by IL-17F. J Exp Med. 2008, 205: 1063-1075. 10.1084/jem.20071978.CrossRef
49.
Zurück zum Zitat Strober W, Fuss IJ, Blumberg RS: The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002, 20: 495-549. 10.1146/annurev.immunol.20.100301.064816.CrossRef Strober W, Fuss IJ, Blumberg RS: The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002, 20: 495-549. 10.1146/annurev.immunol.20.100301.064816.CrossRef
50.
Zurück zum Zitat Kinugasa T, Sakaguchi T, Gu X, Reinecker HC: Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology. 2000, 118: 1001-1011. 10.1016/S0016-5085(00)70351-9.CrossRef Kinugasa T, Sakaguchi T, Gu X, Reinecker HC: Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology. 2000, 118: 1001-1011. 10.1016/S0016-5085(00)70351-9.CrossRef
51.
Zurück zum Zitat O'Connor W, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA: A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol. 2009, 10: 603-609. 10.1038/ni.1736.CrossRef O'Connor W, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA: A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol. 2009, 10: 603-609. 10.1038/ni.1736.CrossRef
52.
Zurück zum Zitat Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A: IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008, 118: 534-544. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A: IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008, 118: 534-544.
53.
Zurück zum Zitat Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA: Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008, 29: 947-957. 10.1016/j.immuni.2008.11.003.CrossRef Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA: Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008, 29: 947-957. 10.1016/j.immuni.2008.11.003.CrossRef
54.
Zurück zum Zitat Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK: Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis. 2006, 12: 382-388. 10.1097/01.MIB.0000218764.06959.91.CrossRef Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK: Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis. 2006, 12: 382-388. 10.1097/01.MIB.0000218764.06959.91.CrossRef
55.
Zurück zum Zitat Moseley TA, Haudenschild DR, Rose L, Reddi AH: Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003, 14: 155-174. 10.1016/S1359-6101(03)00002-9.CrossRef Moseley TA, Haudenschild DR, Rose L, Reddi AH: Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003, 14: 155-174. 10.1016/S1359-6101(03)00002-9.CrossRef
56.
Zurück zum Zitat Leppkes M, Becker C, Hirth S, Wirtz S, Neufert C, Pouly S, Murphy AJ, Valenzuela DM, Yancopoulos GD, Becher B, Littman DR, Neurath MF: RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology. 2009, 136: 257-267. 10.1053/j.gastro.2008.10.018.CrossRef Leppkes M, Becker C, Hirth S, Wirtz S, Neufert C, Pouly S, Murphy AJ, Valenzuela DM, Yancopoulos GD, Becher B, Littman DR, Neurath MF: RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology. 2009, 136: 257-267. 10.1053/j.gastro.2008.10.018.CrossRef
57.
Zurück zum Zitat Tajima M, Wakita D, Noguchi D, Chamoto K, Yue Z, Fugo K, Ishigame H, Iwakura Y, Kitamura H, Nishimura T: IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med. 2008, 205: 1019-1027. 10.1084/jem.20071133.CrossRef Tajima M, Wakita D, Noguchi D, Chamoto K, Yue Z, Fugo K, Ishigame H, Iwakura Y, Kitamura H, Nishimura T: IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med. 2008, 205: 1019-1027. 10.1084/jem.20071133.CrossRef
58.
Zurück zum Zitat Claesson MH, Bregenholt S, Bonhagen K, Thoma S, Moller P, Grusby MJ, Leithauser F, Nissen MH, Reimann J: Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype. J Immunol. 1999, 162: 3702-3710. Claesson MH, Bregenholt S, Bonhagen K, Thoma S, Moller P, Grusby MJ, Leithauser F, Nissen MH, Reimann J: Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype. J Immunol. 1999, 162: 3702-3710.
59.
Zurück zum Zitat Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, Bhan A, Autschbach F, Sullivan BM, Szabo SJ, Glimcher LH, Blumberg RS: The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med. 2002, 195: 1129-1143. 10.1084/jem.20011956.CrossRef Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, Bhan A, Autschbach F, Sullivan BM, Szabo SJ, Glimcher LH, Blumberg RS: The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med. 2002, 195: 1129-1143. 10.1084/jem.20011956.CrossRef
60.
Zurück zum Zitat Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, Pallone F, Macdonald TT, Monteleone G: Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology. 2008, 134: 1038-1048. 10.1053/j.gastro.2008.01.041.CrossRef Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, Pallone F, Macdonald TT, Monteleone G: Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology. 2008, 134: 1038-1048. 10.1053/j.gastro.2008.01.041.CrossRef
61.
Zurück zum Zitat Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT, Pallone F, Monteleone G: IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol. 2007, 178: 732-739.CrossRef Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT, Pallone F, Monteleone G: IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol. 2007, 178: 732-739.CrossRef
62.
Zurück zum Zitat Monteleone G, Caruso R, Fina D, Peluso I, Gioia V, Stolfi C, Fantini MC, Caprioli F, Tersigni R, Alessandroni L, MacDonald TT, Pallone F: Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut. 2006, 55: 1774-1780. 10.1136/gut.2006.093187.CrossRef Monteleone G, Caruso R, Fina D, Peluso I, Gioia V, Stolfi C, Fantini MC, Caprioli F, Tersigni R, Alessandroni L, MacDonald TT, Pallone F: Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut. 2006, 55: 1774-1780. 10.1136/gut.2006.093187.CrossRef
63.
Zurück zum Zitat Strengell M, Sareneva T, Foster D, Julkunen I, Matikainen S: IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol. 2002, 169: 3600-3605.CrossRef Strengell M, Sareneva T, Foster D, Julkunen I, Matikainen S: IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol. 2002, 169: 3600-3605.CrossRef
64.
Zurück zum Zitat Strengell M, Matikainen S, Siren J, Lehtonen A, Foster D, Julkunen I, Sareneva T: IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol. 2003, 170: 5464-5469.CrossRef Strengell M, Matikainen S, Siren J, Lehtonen A, Foster D, Julkunen I, Sareneva T: IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol. 2003, 170: 5464-5469.CrossRef
65.
Zurück zum Zitat Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B: The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008, 453: 106-109. 10.1038/nature06881.CrossRef Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B: The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008, 453: 106-109. 10.1038/nature06881.CrossRef
66.
Zurück zum Zitat Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008, 453: 65-71. 10.1038/nature06880.CrossRef Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008, 453: 65-71. 10.1038/nature06880.CrossRef
67.
Zurück zum Zitat Esser C, Rannug A, Stockinger B: The aryl hydrocarbon receptor in immunity. Trends Immunol. 2009, 30: 447-454. 10.1016/j.it.2009.06.005.CrossRef Esser C, Rannug A, Stockinger B: The aryl hydrocarbon receptor in immunity. Trends Immunol. 2009, 30: 447-454. 10.1016/j.it.2009.06.005.CrossRef
68.
Zurück zum Zitat Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H: Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009, 10: 864-871. 10.1038/ni.1770.CrossRef Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H: Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009, 10: 864-871. 10.1038/ni.1770.CrossRef
69.
Zurück zum Zitat Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K: Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010, 107: 5943-5948. 10.1073/pnas.0911755107.CrossRef Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K: Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010, 107: 5943-5948. 10.1073/pnas.0911755107.CrossRef
70.
Zurück zum Zitat Simonian PL, Wehrmann F, Roark CL, Born WK, O'Brien RL, Fontenot AP: gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med . 2010, 207: 2239-2253. 10.1084/jem.20100061.CrossRef Simonian PL, Wehrmann F, Roark CL, Born WK, O'Brien RL, Fontenot AP: gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med . 2010, 207: 2239-2253. 10.1084/jem.20100061.CrossRef
71.
Zurück zum Zitat Negishi T, Kato Y, Ooneda O, Mimura J, Takada T, Mochizuki H, Yamamoto M, Fujii-Kuriyama Y, Furusako S: Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance. J Immunol. 2005, 175: 7348-7356.CrossRef Negishi T, Kato Y, Ooneda O, Mimura J, Takada T, Mochizuki H, Yamamoto M, Fujii-Kuriyama Y, Furusako S: Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance. J Immunol. 2005, 175: 7348-7356.CrossRef
72.
Zurück zum Zitat Rodriguez-Sosa M, Elizondo G, Lopez-Duran RM, Rivera I, Gonzalez FJ, Vega L: Over-production of IFN-gamma and IL-12 in AhR-null mice. FEBS Lett. 2005, 579: 6403-6410. 10.1016/j.febslet.2005.10.023.CrossRef Rodriguez-Sosa M, Elizondo G, Lopez-Duran RM, Rivera I, Gonzalez FJ, Vega L: Over-production of IFN-gamma and IL-12 in AhR-null mice. FEBS Lett. 2005, 579: 6403-6410. 10.1016/j.febslet.2005.10.023.CrossRef
73.
Zurück zum Zitat Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T: Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci USA. 2008, 105: 9721-9726. 10.1073/pnas.0804231105.CrossRef Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T: Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci USA. 2008, 105: 9721-9726. 10.1073/pnas.0804231105.CrossRef
74.
Zurück zum Zitat Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, Macdonald TT, Pallone F, Monteleone G: Aryl Hydrocarbon Receptor-Induced Signals Up-regulate IL-22 Production and Inhibit Inflammation in the Gastrointestinal Tract. Gastroenterology. 2011, 141: 237-248 e231. 10.1053/j.gastro.2011.04.007.CrossRef Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, Macdonald TT, Pallone F, Monteleone G: Aryl Hydrocarbon Receptor-Induced Signals Up-regulate IL-22 Production and Inhibit Inflammation in the Gastrointestinal Tract. Gastroenterology. 2011, 141: 237-248 e231. 10.1053/j.gastro.2011.04.007.CrossRef
75.
Zurück zum Zitat Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008, 371: 1665-1674. 10.1016/S0140-6736(08)60725-4.CrossRef Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008, 371: 1665-1674. 10.1016/S0140-6736(08)60725-4.CrossRef
76.
Zurück zum Zitat Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, Dolin B, Goodman N, Groden C, Hornung RL, Quezado M, Yang Z, Neurath MF, Salfeld J, Veldman GM, Schwertschlag U, Strober W, Anti-IL-12 Crohn's Disease Study Group: Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med. 2004, 351: 2069-2079. 10.1056/NEJMoa033402.CrossRef Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, Dolin B, Goodman N, Groden C, Hornung RL, Quezado M, Yang Z, Neurath MF, Salfeld J, Veldman GM, Schwertschlag U, Strober W, Anti-IL-12 Crohn's Disease Study Group: Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med. 2004, 351: 2069-2079. 10.1056/NEJMoa033402.CrossRef
77.
Zurück zum Zitat Hueber W, Sands BE, Vandemeulebroecke M, Reinisch W, Higgins PDR, Wehkamp J, Feagan B, Yao M, Bertolino AP, Travis S: Inhibition of IL-17A by secukinumab is ineffective for Crohn's disease (CD). JCC. 2011, 5: S10. Hueber W, Sands BE, Vandemeulebroecke M, Reinisch W, Higgins PDR, Wehkamp J, Feagan B, Yao M, Bertolino AP, Travis S: Inhibition of IL-17A by secukinumab is ineffective for Crohn's disease (CD). JCC. 2011, 5: S10.
Metadaten
Titel
Th17-related cytokines: new players in the control of chronic intestinal inflammation
verfasst von
Ivan Monteleone
Francesco Pallone
Giovanni Monteleone
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2011
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-9-122

Weitere Artikel der Ausgabe 1/2011

BMC Medicine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.