Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2020

Open Access 01.12.2020 | Letter to the Editor

The altered transcriptome of pediatric myelodysplastic syndrome revealed by RNA sequencing

verfasst von: Lorena Zubovic, Silvano Piazza, Toma Tebaldi, Luca Cozzuto, Giuliana Palazzo, Viktoryia Sidarovich, Veronica De Sanctis, Roberto Bertorelli, Tim Lammens, Mattias Hofmans, Barbara De Moerloose, Julia Ponomarenko, Martina Pigazzi, Riccardo Masetti, Cristina Mecucci, Giuseppe Basso, Paolo Macchi

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2020

Abstract

Pediatric myelodysplastic syndrome (PMDS) is a very rare and still poorly characterized disorder. In this work, we identified novel potential targets of PMDS by determining genes with aberrant expression, which can be correlated with PMDS pathogenesis. We identified 291 differentially expressed genes (DEGs) in PMDS patients, comprising genes involved in the regulation of apoptosis and the cell cycle, ribosome biogenesis, inflammation and adaptive immunity. Ten selected DEGs were then validated, confirming the sequencing data. These DEGs will potentially represent new molecular biomarkers and therapeutic targets for PMDS.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-020-00974-3.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PMDS
Pediatric Myelodysplastic Syndrome
BM
Bone marrow
DEGs
: Differentially expressed genes
RNA-seq
RNA sequencing
MDSs
Myelodysplastic syndromes
AML
Acute myeloid leukemia
GSEA
Gene set enrichment analysis
GO
Gene ontology
HPO
Human phenotype ontologies
TCGA
The cancer genome atlas
GTEx
Genotype tissue expression
ddPCR
Digital droplet PCR

To the Editor

MDSs are a heterogeneous group of clonal hematopoietic neoplasms. Although recent studies have shown that MDS and AML patients had different gene mutation patterns [14], the molecular underpinnings remain unknown [510]. To identify DEGs related to the PMDS, we performed RNA-seq in 4 patients with primary PMDS and in 2 control pediatric samples (Additional file 1: Figures S1A-B). Because of the limited number of samples and to limit the false positives, we used two independent bioinformatics pipelines, STAR + DESeq2 and SALMON + edgeR, and considered only genes differentially expressed in both pipelines. Hierarchical clustering showed that PMDS patients and controls clustered in two distinct groups (Fig. 1a). In total, 651 DEGs were identified by STAR + DESeq2 and 616 DEGs by SALMON + edgeR (Fig. 1B; Additional file 1: Figures S1C-D). 291 DEGs were identified by both pipelines among which 136 genes were upregulated and 155 downregulated in patients (Additional file 1: Table 1). As a further validation, we used the LPEseq method. The concordance of the genes in the ranks of the differential gene lists was remarkably high (Additional file 1: Figures S1E-G). We then used GSEA to identify altered pathways from the Reactome database (Web reference 1) (Fig. 1c). The Enrichr enrichment analysis tool revealed that DEGs in PMDS are mainly related to pathways associated with the cell abnormal activity, immune and inflammatory systems and erythropoiesis (Additional file 1: Figure S2A).
Further, we compared our data with the transcriptomic profiles from TCGA database. Interestingly, we found a clear distinction of PMDS from all other types of tumors (Fig. 2a; Additional file 1: Figure S2B). Moreover, the DEGs profile was able to divide tumors into three distinct groups (Additional file 1: Figure S3A). As for control samples, we integrated the transcriptomic data from the GTEx (Web reference 2) and observed a clear separation between blood related tissues and other normal tissues (Additional file 1: Figures S3B). Finally, we compared the DEGs gene list with the gene sets available in the Enrichr database specifically for “Diseases/Drugs” and “Cell types “categories (Additional file 1: Tables 2–3). We confirmed that the DEGs identified in PMDS are significantly connected with blood tissues and blood disorders (Additional file 1: Figure S3C).
A comparison of our PMDS DEGs with multiple RNA-seq datasets from adult MDS samples revealed a statistically significant overlap (67 out of 136 DEGs). Nonetheless, 69 upregulated genes and almost all downregulated genes were unique in PMDS (Additional file 1: Figure S4A-B; Additional file 1: Table 4).
Then, we validated the most statistically significant and biologically relevant DEGs either up- or downregulated. Analysis by ddPCR showed significant differences between patient and control samples (Fig. 2b). The log2 fold-change values for all 10 genes were highly correlated (Additional file 1: Figure S5). We also validated the DEGs in 6 new PMDS patients (Additional file 1: Figure S6). Additionally, we compared our data with 36 pediatric patients (3). The comparative data on 10 DEGs in PMDS and validation are shown in the Additional file 1: Figure S7.
In conclusion, we have identified 291 DEGs that correlate with the PMDS which might represent novel candidate genes for therapeutic intervention. Although a larger study cohort would be desirable, our data suggest that at the level of gene expression the PMDS is indeed a distinct disorder.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-020-00974-3.

Acknowledgements

We thank Prof. Juan Valcárcel Juárez, Dr. Giovanni Roti and Dr. Boshra Khalaf for their critical comments on the manuscript. We thank Dr. Jeffery M. Klco for sharing with us the RNA sequencing data to perform an integrative analysis with our results. We thank the Next Generation Sequencing (NGS) facility (Department CIBIO) for the RNA-seq analysis and the High Throughput Screening (HTS) facility (Department CIBIO) for the help with the ddPCR analysis. This work is dedicated to the memory of Dr. Luca Libardi.
Institutional review board approval was granted by the Comitato Etico per la Sperimentazione con l’Essere Umano (CESP) of the University of Trento (Prot. 2020–002).
Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Rau AT, Shreedhara AK, Kumar S. Myelodysplastic syndromes in children: where are we today? Ochsner J. 2012;12:216–20.PubMedPubMedCentral Rau AT, Shreedhara AK, Kumar S. Myelodysplastic syndromes in children: where are we today? Ochsner J. 2012;12:216–20.PubMedPubMedCentral
2.
Zurück zum Zitat Yu J, Li Y, Li T, Li Y, Xing H, Sun H, Sun L, Wan D, Liu Y, Xie X, Jiang Z. Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol. 2020;6:9–2. Yu J, Li Y, Li T, Li Y, Xing H, Sun H, Sun L, Wan D, Liu Y, Xie X, Jiang Z. Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol. 2020;6:9–2.
3.
Zurück zum Zitat Schwartz JR, Ma J, Lamprecht T, Walsh M, Wang S, Bryant V, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nature communications. 2017;8:1557.CrossRef Schwartz JR, Ma J, Lamprecht T, Walsh M, Wang S, Bryant V, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nature communications. 2017;8:1557.CrossRef
4.
Zurück zum Zitat Locatelli F, Zecca M, Pession A, Maserati E, De Stefano P, Severi F. Myelodysplastic syndromes: the pediatric point of view. Haematologica. 1995;80:268–79.PubMed Locatelli F, Zecca M, Pession A, Maserati E, De Stefano P, Severi F. Myelodysplastic syndromes: the pediatric point of view. Haematologica. 1995;80:268–79.PubMed
5.
Zurück zum Zitat Bresolin S, Trentin L, Zecca M, Giordan M, Sainati L, Locatelli F, et al. Gene expression signatures of pediatric myelodysplastic syndromes are associated with risk of evolution into acute myeloid leukemia. Leukemia. 2012;26:1717–9.CrossRef Bresolin S, Trentin L, Zecca M, Giordan M, Sainati L, Locatelli F, et al. Gene expression signatures of pediatric myelodysplastic syndromes are associated with risk of evolution into acute myeloid leukemia. Leukemia. 2012;26:1717–9.CrossRef
6.
Zurück zum Zitat Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.CrossRef Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.CrossRef
7.
Zurück zum Zitat Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122:4021–34.CrossRef Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122:4021–34.CrossRef
8.
Zurück zum Zitat Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, Klema J, Vesela J, Hruba M, Cermak J, Hrdinova T, Krijt M, Valka J, Jonasova A, Merkerova MD. Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cells. 2020;9:E794.CrossRef Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, Klema J, Vesela J, Hruba M, Cermak J, Hrdinova T, Krijt M, Valka J, Jonasova A, Merkerova MD. Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cells. 2020;9:E794.CrossRef
9.
Zurück zum Zitat Yu J, Li Y, Zhang D, Wan D, Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol. 2020;9:4.CrossRef Yu J, Li Y, Zhang D, Wan D, Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol. 2020;9:4.CrossRef
10.
Zurück zum Zitat Bejar R. Implications of molecular genetic diversity in myelodysplastic syndromes. Curr Opin Hematol. 2017;24:73–8.CrossRef Bejar R. Implications of molecular genetic diversity in myelodysplastic syndromes. Curr Opin Hematol. 2017;24:73–8.CrossRef
Metadaten
Titel
The altered transcriptome of pediatric myelodysplastic syndrome revealed by RNA sequencing
verfasst von
Lorena Zubovic
Silvano Piazza
Toma Tebaldi
Luca Cozzuto
Giuliana Palazzo
Viktoryia Sidarovich
Veronica De Sanctis
Roberto Bertorelli
Tim Lammens
Mattias Hofmans
Barbara De Moerloose
Julia Ponomarenko
Martina Pigazzi
Riccardo Masetti
Cristina Mecucci
Giuseppe Basso
Paolo Macchi
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2020
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-00974-3

Weitere Artikel der Ausgabe 1/2020

Journal of Hematology & Oncology 1/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.