Skip to main content
Erschienen in:

20.01.2022 | Imaging Informatics and Artificial Intelligence

The application of radiomics in predicting gene mutations in cancer

verfasst von: Yana Qi, Tingting Zhao, Mingyong Han

Erschienen in: European Radiology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

With the development of genome sequencing, the role of molecular targeted therapy in cancer is becoming increasingly important. However, genetic testing remains expensive, invasive, and time-consuming, and thus unavailable for all patients. Radiogenomics aims to correlate imaging characteristics with gene expression patterns, gene mutations, and other genome-related characteristics. Due to the noninvasive nature of medical imaging, the field of radiogenomics is rapidly developing and may serve as a substitute tool for genetic testing. In this article, we briefly summarise the current role of radiogenomics in predicting gene mutations in brain, lung, colorectal, breast, and kidney tumours.

Key Points

• The role of molecular targeted therapy in individual cancer-precision therapy is becoming increasingly important with the development of genetic testing.
• Radiogenomics may provide accurate imaging biomarkers as a substitute for genetic testing.
• While the field of radiogenomics holds great promise, there are still a number of limitations that need to be overcome.
Literatur
1.
Zurück zum Zitat Wang R, Han L, Dai W et al (2020) Cause of death for elders with colorectal cancer: a real-world data analysis. J Gastrointest Oncol 11:269–276PubMedPubMedCentralCrossRef Wang R, Han L, Dai W et al (2020) Cause of death for elders with colorectal cancer: a real-world data analysis. J Gastrointest Oncol 11:269–276PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424PubMedCrossRef
3.
Zurück zum Zitat Cox VL, Bhosale P, Varadhachary GR et al (2017) Cancer genomics and important oncologic mutations: a contemporary guide for body imagers. Radiology 283:314–340PubMedCrossRef Cox VL, Bhosale P, Varadhachary GR et al (2017) Cancer genomics and important oncologic mutations: a contemporary guide for body imagers. Radiology 283:314–340PubMedCrossRef
4.
Zurück zum Zitat Lee SM, Lewanski CR, Counsell N et al (2014) Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J Natl Cancer Inst 106:dju151PubMedPubMedCentral Lee SM, Lewanski CR, Counsell N et al (2014) Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J Natl Cancer Inst 106:dju151PubMedPubMedCentral
5.
Zurück zum Zitat Novello S (2015) Epidermal growth factor receptor tyrosine kinase inhibitors as adjuvant therapy in completely resected non-small-cell lung cancer. J Clin Oncol 33:3985–3986PubMedCrossRef Novello S (2015) Epidermal growth factor receptor tyrosine kinase inhibitors as adjuvant therapy in completely resected non-small-cell lung cancer. J Clin Oncol 33:3985–3986PubMedCrossRef
6.
Zurück zum Zitat Kelly K, Altorki NK, Eberhardt WE et al (2015) Adjuvant erlotinib versus placebo in patients with stage IB-IIIA non-small-cell lung cancer (RADIANT): a randomized, double-blind, phase III trial. J Clin Oncol 33:4007–4014PubMedCrossRef Kelly K, Altorki NK, Eberhardt WE et al (2015) Adjuvant erlotinib versus placebo in patients with stage IB-IIIA non-small-cell lung cancer (RADIANT): a randomized, double-blind, phase III trial. J Clin Oncol 33:4007–4014PubMedCrossRef
7.
Zurück zum Zitat Rizzo S, Petrella F, Buscarino V et al (2015) CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol 26:32–42PubMedCrossRef Rizzo S, Petrella F, Buscarino V et al (2015) CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol 26:32–42PubMedCrossRef
8.
Zurück zum Zitat Hsu JS, Huang MS, Chen CY et al (2014) Correlation between EGFR mutation status and computed tomography features in patients with advanced pulmonary adenocarcinoma. J Thorac Imaging 29:357–363PubMedCrossRef Hsu JS, Huang MS, Chen CY et al (2014) Correlation between EGFR mutation status and computed tomography features in patients with advanced pulmonary adenocarcinoma. J Thorac Imaging 29:357–363PubMedCrossRef
9.
Zurück zum Zitat Yamamoto S, Korn RL, Oklu R et al (2014) ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 272:568–576PubMedCrossRef Yamamoto S, Korn RL, Oklu R et al (2014) ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 272:568–576PubMedCrossRef
10.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedCrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedCrossRef
11.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446PubMedPubMedCentralCrossRef Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Pinker K, Shitano F, Sala E et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620PubMedCrossRef Pinker K, Shitano F, Sala E et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620PubMedCrossRef
13.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRef
14.
Zurück zum Zitat Kleesiek J, Kersjes B, Ueltzhoffer K et al (2021) Discovering digital tumor signatures-using latent code representations to manipulate and classify liver lesions. Cancers (Basel) 13:3108CrossRef Kleesiek J, Kersjes B, Ueltzhoffer K et al (2021) Discovering digital tumor signatures-using latent code representations to manipulate and classify liver lesions. Cancers (Basel) 13:3108CrossRef
16.
Zurück zum Zitat Rathore S, Akbari H, Rozycki M et al (2018) Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 8:5087PubMedPubMedCentralCrossRef Rathore S, Akbari H, Rozycki M et al (2018) Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 8:5087PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Sutton EJ, Dashevsky BZ, Oh JH et al (2016) Breast cancer molecular subtype classifier that incorporates MRI features. J Magn Reson Imaging 44:122–129PubMedPubMedCentralCrossRef Sutton EJ, Dashevsky BZ, Oh JH et al (2016) Breast cancer molecular subtype classifier that incorporates MRI features. J Magn Reson Imaging 44:122–129PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Moitra D, Mandal RK (2020) Prediction of non-small cell lung cancer histology by a deep ensemble of convolutional and bidirectional recurrent neural network. J Digit Imaging 33:895–902PubMedPubMedCentralCrossRef Moitra D, Mandal RK (2020) Prediction of non-small cell lung cancer histology by a deep ensemble of convolutional and bidirectional recurrent neural network. J Digit Imaging 33:895–902PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350PubMedPubMedCentralCrossRef Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Vallieres M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496PubMedCrossRef Vallieres M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496PubMedCrossRef
21.
Zurück zum Zitat Ainsworth NL, McLean MA, McIntyre DJO et al (2016) Quantitative and textural analysis of magnetization transfer and diffusion images in the early detection of brain metastases. Magn Reson Med 77:1987–1995PubMedPubMedCentralCrossRef Ainsworth NL, McLean MA, McIntyre DJO et al (2016) Quantitative and textural analysis of magnetization transfer and diffusion images in the early detection of brain metastases. Magn Reson Med 77:1987–1995PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Ganeshan B, Miles KA, Babikir S et al (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-PET for patients with Hodgkin's and aggressive Non-Hodgkin's lymphomas. Eur Radiol 27:1012–1020PubMedCrossRef Ganeshan B, Miles KA, Babikir S et al (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-PET for patients with Hodgkin's and aggressive Non-Hodgkin's lymphomas. Eur Radiol 27:1012–1020PubMedCrossRef
23.
Zurück zum Zitat Groheux D, Martineau A, Teixeira L et al (2017) (18)FDG-PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison of clinicopathological parameters and PET image-derived indices including tumor texture analysis. Breast Cancer Res 19:3PubMedPubMedCentralCrossRef Groheux D, Martineau A, Teixeira L et al (2017) (18)FDG-PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison of clinicopathological parameters and PET image-derived indices including tumor texture analysis. Breast Cancer Res 19:3PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Liu S, Liu S, Ji C et al (2017) Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. Eur Radiol 27:4951–4959PubMedCrossRef Liu S, Liu S, Ji C et al (2017) Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. Eur Radiol 27:4951–4959PubMedCrossRef
25.
Zurück zum Zitat Lee SJ, Zea R, Kim DH, Lubner MG, Deming DA, Pickhardt PJ (2018) CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer. Eur Radiol 28:1520–1528PubMedCrossRef Lee SJ, Zea R, Kim DH, Lubner MG, Deming DA, Pickhardt PJ (2018) CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer. Eur Radiol 28:1520–1528PubMedCrossRef
26.
Zurück zum Zitat Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 15(Suppl 2):ii1-i56PubMedPubMedCentralCrossRef Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 15(Suppl 2):ii1-i56PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Delgado-Lopez PD, Corrales-Garcia EM (2016) Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 18:1062–1071PubMedCrossRef Delgado-Lopez PD, Corrales-Garcia EM (2016) Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 18:1062–1071PubMedCrossRef
28.
29.
Zurück zum Zitat Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42:6725–6735PubMedPubMedCentralCrossRef Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42:6725–6735PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Mazurowski MA, Clark K, Czarnek NM, Shamsesfandabadi P, Peters KB, Saha A (2017) Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J Neurooncol 133:27–35 Mazurowski MA, Clark K, Czarnek NM, Shamsesfandabadi P, Peters KB, Saha A (2017) Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J Neurooncol 133:27–35
31.
Zurück zum Zitat Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7:5467PubMedPubMedCentralCrossRef Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7:5467PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Eichinger P, Alberts E, Delbridge C et al (2017) Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 7:13396PubMedPubMedCentralCrossRef Eichinger P, Alberts E, Delbridge C et al (2017) Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 7:13396PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Bisdas S, Shen H, Thust S et al (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep 8:6108PubMedPubMedCentralCrossRef Bisdas S, Shen H, Thust S et al (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep 8:6108PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kim M, Jung SY, Park JE et al (2020) Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30:2142–2151PubMedCrossRef Kim M, Jung SY, Park JE et al (2020) Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30:2142–2151PubMedCrossRef
36.
Zurück zum Zitat Jakola AS, Zhang YH, Skjulsvik AJ et al (2018) Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin Neurol Neurosurg 164:114–120PubMedCrossRef Jakola AS, Zhang YH, Skjulsvik AJ et al (2018) Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin Neurol Neurosurg 164:114–120PubMedCrossRef
37.
Zurück zum Zitat Zhou H, Vallieres M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19:862–870PubMedPubMedCentralCrossRef Zhou H, Vallieres M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19:862–870PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Park YW, Han K, Ahn SS et al (2018) Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II Gliomas. AJNR Am J Neuroradiol 39:693–698PubMedPubMedCentralCrossRef Park YW, Han K, Ahn SS et al (2018) Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II Gliomas. AJNR Am J Neuroradiol 39:693–698PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362PubMedCrossRef Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362PubMedCrossRef
40.
Zurück zum Zitat Lee J, Narang S, Martinez JJ, Rao G, Rao A (2015) Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigation. J Med Imaging (Bellingham) 2:041006CrossRef Lee J, Narang S, Martinez JJ, Rao G, Rao A (2015) Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigation. J Med Imaging (Bellingham) 2:041006CrossRef
41.
Zurück zum Zitat Li Y, Liu X, Qian Z et al (2018) Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur Radiol 28:2960–2968PubMedCrossRef Li Y, Liu X, Qian Z et al (2018) Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur Radiol 28:2960–2968PubMedCrossRef
42.
Zurück zum Zitat Ren Y, Zhang X, Rui W et al (2019) Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features. J Magn Reson Imaging 49:808–817PubMedCrossRef Ren Y, Zhang X, Rui W et al (2019) Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features. J Magn Reson Imaging 49:808–817PubMedCrossRef
43.
Zurück zum Zitat Li Y, Qian Z, Xu K et al (2018) MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin 17:306–311PubMedCrossRef Li Y, Qian Z, Xu K et al (2018) MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin 17:306–311PubMedCrossRef
44.
45.
Zurück zum Zitat Lindeman NI, Cagle PT, Aisner DL et al (2018) Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn 20:129–159PubMedCrossRef Lindeman NI, Cagle PT, Aisner DL et al (2018) Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn 20:129–159PubMedCrossRef
46.
Zurück zum Zitat Kalemkerian GP, Narula N, Kennedy EB et al (2018) Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J Clin Oncol 36:911–919PubMedCrossRef Kalemkerian GP, Narula N, Kennedy EB et al (2018) Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J Clin Oncol 36:911–919PubMedCrossRef
47.
Zurück zum Zitat Wu YL, Planchard D, Lu S et al (2019) Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small-cell lung cancer: a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol 30:171–210PubMedCrossRef Wu YL, Planchard D, Lu S et al (2019) Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small-cell lung cancer: a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol 30:171–210PubMedCrossRef
48.
Zurück zum Zitat Han JY, Park K, Kim SW et al (2012) First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol 30:1122–1128PubMedCrossRef Han JY, Park K, Kim SW et al (2012) First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol 30:1122–1128PubMedCrossRef
49.
Zurück zum Zitat Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246PubMedCrossRef Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246PubMedCrossRef
50.
Zurück zum Zitat Solomon BJ, Mok T, Kim DW et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167–2177PubMedCrossRef Solomon BJ, Mok T, Kim DW et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167–2177PubMedCrossRef
51.
Zurück zum Zitat Nishio M, Kim DW, Wu YL et al (2018) Crizotinib versus chemotherapy in Asian patients with ALK-positive advanced non-small cell lung cancer. Cancer Res Treat 50:691–700PubMedCrossRef Nishio M, Kim DW, Wu YL et al (2018) Crizotinib versus chemotherapy in Asian patients with ALK-positive advanced non-small cell lung cancer. Cancer Res Treat 50:691–700PubMedCrossRef
53.
Zurück zum Zitat Yucel S, Sayit AT, Tomak L, Celenk C (2021) Frequency of complications and risk factors associated with computed tomography guided core needle lung biopsies. Ann Saudi Med 41:78–85PubMedPubMedCentralCrossRef Yucel S, Sayit AT, Tomak L, Celenk C (2021) Frequency of complications and risk factors associated with computed tomography guided core needle lung biopsies. Ann Saudi Med 41:78–85PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Song L, Zhu Z, Mao L et al (2020) Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients. Front Oncol 10:369PubMedPubMedCentralCrossRef Song L, Zhu Z, Mao L et al (2020) Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients. Front Oncol 10:369PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Tu W, Sun G, Fan L et al (2019) Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 132:28–35PubMedCrossRef Tu W, Sun G, Fan L et al (2019) Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 132:28–35PubMedCrossRef
56.
Zurück zum Zitat Wang S, Shi J, Ye Z et al (2019) Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 53:1800986PubMedPubMedCentralCrossRef Wang S, Shi J, Ye Z et al (2019) Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 53:1800986PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Zhang J, Zhao X, Zhao Y et al (2020) Value of pre-therapy (18)F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 47:1137–1146PubMedCrossRef Zhang J, Zhao X, Zhao Y et al (2020) Value of pre-therapy (18)F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 47:1137–1146PubMedCrossRef
58.
Zurück zum Zitat Jiang M, Zhang Y, Xu J et al (2019) Assessing EGFR gene mutation status in non-small cell lung cancer with imaging features from PET/CT. Nucl Med Commun 40:842–849PubMedCrossRef Jiang M, Zhang Y, Xu J et al (2019) Assessing EGFR gene mutation status in non-small cell lung cancer with imaging features from PET/CT. Nucl Med Commun 40:842–849PubMedCrossRef
59.
60.
Zurück zum Zitat Zhao W, Wu Y, Xu Y et al (2019) The potential of radiomics nomogram in non-invasively prediction of epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma. Front Oncol 9:1485PubMedCrossRef Zhao W, Wu Y, Xu Y et al (2019) The potential of radiomics nomogram in non-invasively prediction of epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma. Front Oncol 9:1485PubMedCrossRef
61.
Zurück zum Zitat Yang X, Dong X, Wang J et al (2019) Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule. Oncologist 24:e1156–e1164PubMedPubMedCentralCrossRef Yang X, Dong X, Wang J et al (2019) Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule. Oncologist 24:e1156–e1164PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Jia TY, Xiong JF, Li XY et al (2019) Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol 29:4742–4750PubMedCrossRef Jia TY, Xiong JF, Li XY et al (2019) Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol 29:4742–4750PubMedCrossRef
63.
Zurück zum Zitat Li X, Yin G, Zhang Y et al (2019) Predictive power of a radiomic signature based on (18)F-FDG PET/CT images for EGFR mutational status in NSCLC. Front Oncol 9:1062PubMedPubMedCentralCrossRef Li X, Yin G, Zhang Y et al (2019) Predictive power of a radiomic signature based on (18)F-FDG PET/CT images for EGFR mutational status in NSCLC. Front Oncol 9:1062PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Li Y, Lu L, Xiao M et al (2018) CT slice thickness and convolution kernel affect performance of a radiomic model for predicting EGFR status in non-small cell lung cancer: a preliminary study. Sci Rep 8:17913PubMedPubMedCentralCrossRef Li Y, Lu L, Xiao M et al (2018) CT slice thickness and convolution kernel affect performance of a radiomic model for predicting EGFR status in non-small cell lung cancer: a preliminary study. Sci Rep 8:17913PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Chang C, Sun X, Wang G et al (2021) A machine learning model based on PET/CT radiomics and clinical characteristics predicts ALK rearrangement status in lung adenocarcinoma. Front Oncol 11:603882PubMedPubMedCentralCrossRef Chang C, Sun X, Wang G et al (2021) A machine learning model based on PET/CT radiomics and clinical characteristics predicts ALK rearrangement status in lung adenocarcinoma. Front Oncol 11:603882PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Rios Velazquez E, Parmar C, Liu Y et al (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77:3922–3930PubMedCrossRef Rios Velazquez E, Parmar C, Liu Y et al (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77:3922–3930PubMedCrossRef
67.
Zurück zum Zitat Song Z, Liu T, Shi L et al (2021) The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 48:361–371PubMedCrossRef Song Z, Liu T, Shi L et al (2021) The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 48:361–371PubMedCrossRef
68.
Zurück zum Zitat Lu X, Li M, Zhang H et al (2020) A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Phys Med Biol 65:055012PubMedCrossRef Lu X, Li M, Zhang H et al (2020) A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Phys Med Biol 65:055012PubMedCrossRef
69.
Zurück zum Zitat Lv J, Zhang H, Ma J et al (2018) Comparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomas. Clin Radiol 73:590 e591–590 e598CrossRef Lv J, Zhang H, Ma J et al (2018) Comparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomas. Clin Radiol 73:590 e591–590 e598CrossRef
70.
Zurück zum Zitat Zhou M, Leung A, Echegaray S et al (2018) Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications. Radiology 286:307–315PubMedCrossRef Zhou M, Leung A, Echegaray S et al (2018) Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications. Radiology 286:307–315PubMedCrossRef
71.
Zurück zum Zitat Sacconi B, Anzidei M, Leonardi A et al (2017) Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates. Clin Radiol 72:443–450PubMedCrossRef Sacconi B, Anzidei M, Leonardi A et al (2017) Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates. Clin Radiol 72:443–450PubMedCrossRef
72.
Zurück zum Zitat Kim TJ, Lee CT, Jheon SH, Park JS, Chung JH (2016) Radiologic characteristics of surgically resected non-small cell lung cancer with ALK rearrangement or EGFR mutations. Ann Thorac Surg 101:473–480PubMedCrossRef Kim TJ, Lee CT, Jheon SH, Park JS, Chung JH (2016) Radiologic characteristics of surgically resected non-small cell lung cancer with ALK rearrangement or EGFR mutations. Ann Thorac Surg 101:473–480PubMedCrossRef
73.
Zurück zum Zitat Blackhall FH, Peters S, Bubendorf L et al (2014) Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol 32:2780–2787PubMedCrossRef Blackhall FH, Peters S, Bubendorf L et al (2014) Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol 32:2780–2787PubMedCrossRef
74.
Zurück zum Zitat Solomon BJ, Kim DW, Wu YL et al (2018) Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol 36:2251–2258PubMedCrossRef Solomon BJ, Kim DW, Wu YL et al (2018) Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol 36:2251–2258PubMedCrossRef
75.
Zurück zum Zitat Ou SH, Ahn JS, De Petris L et al (2016) Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol 34:661–668PubMedCrossRef Ou SH, Ahn JS, De Petris L et al (2016) Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol 34:661–668PubMedCrossRef
76.
Zurück zum Zitat Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 199:654–663PubMedCrossRef Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 199:654–663PubMedCrossRef
77.
Zurück zum Zitat Gierach GL, Li H, Loud JT et al (2014) Relationships between computer-extracted mammographic texture pattern features and BRCA1/2 mutation status: a cross-sectional study. Breast Cancer Res 16:424PubMedPubMedCentral Gierach GL, Li H, Loud JT et al (2014) Relationships between computer-extracted mammographic texture pattern features and BRCA1/2 mutation status: a cross-sectional study. Breast Cancer Res 16:424PubMedPubMedCentral
78.
Zurück zum Zitat Tamez-Pena JG, Rodriguez-Rojas JA, Gomez-Rueda H et al (2018) Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer. PLoS One 13:e0193871PubMedPubMedCentralCrossRef Tamez-Pena JG, Rodriguez-Rojas JA, Gomez-Rueda H et al (2018) Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer. PLoS One 13:e0193871PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Zhou J, Tan H, Bai Y et al (2019) Evaluating the HER-2 status of breast cancer using mammography radiomics features. Eur J Radiol 121:108718PubMedCrossRef Zhou J, Tan H, Bai Y et al (2019) Evaluating the HER-2 status of breast cancer using mammography radiomics features. Eur J Radiol 121:108718PubMedCrossRef
81.
Zurück zum Zitat Grimm LJ, Zhang J, Mazurowski MA (2015) Computational approach to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging 42:902–907PubMedCrossRef Grimm LJ, Zhang J, Mazurowski MA (2015) Computational approach to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging 42:902–907PubMedCrossRef
82.
Zurück zum Zitat Park EK, Lee KS, Seo BK et al (2019) Machine learning approaches to radiogenomics of breast cancer using low-dose perfusion computed tomography: predicting prognostic biomarkers and molecular subtypes. Sci Rep 9:17847PubMedPubMedCentralCrossRef Park EK, Lee KS, Seo BK et al (2019) Machine learning approaches to radiogenomics of breast cancer using low-dose perfusion computed tomography: predicting prognostic biomarkers and molecular subtypes. Sci Rep 9:17847PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Saha A, Harowicz MR, Grimm LJ et al (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer 119:508–516PubMedPubMedCentralCrossRef Saha A, Harowicz MR, Grimm LJ et al (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer 119:508–516PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Li H, Zhu Y, Burnside ES et al (2016) Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2:16012PubMedPubMedCentralCrossRef Li H, Zhu Y, Burnside ES et al (2016) Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2:16012PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI (2014) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273:365–372PubMedCrossRef Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI (2014) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273:365–372PubMedCrossRef
86.
Zurück zum Zitat Holli-Helenius K, Salminen A, Rinta-Kiikka I et al (2017) MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study. BMC Med Imaging 17:69PubMedPubMedCentralCrossRef Holli-Helenius K, Salminen A, Rinta-Kiikka I et al (2017) MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study. BMC Med Imaging 17:69PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Evans DG, Shenton A, Woodward E, Lalloo F, Howell A, Maher ER (2008) Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a Clinical Cancer Genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer 8:155PubMedPubMedCentralCrossRef Evans DG, Shenton A, Woodward E, Lalloo F, Howell A, Maher ER (2008) Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a Clinical Cancer Genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer 8:155PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Riedl CC, Luft N, Bernhart C et al (2015) Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol 33:1128–1135PubMedPubMedCentralCrossRef Riedl CC, Luft N, Bernhart C et al (2015) Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol 33:1128–1135PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Pinker K, Chin J, Melsaether AN, Morris EA, Moy L (2018) Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology 287:732–747PubMedCrossRef Pinker K, Chin J, Melsaether AN, Morris EA, Moy L (2018) Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology 287:732–747PubMedCrossRef
90.
Zurück zum Zitat Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672PubMedCrossRef Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672PubMedCrossRef
91.
Zurück zum Zitat Cameron D, Piccart-Gebhart MJ, Gelber RD et al (2017) 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389:1195–1205PubMedPubMedCentralCrossRef Cameron D, Piccart-Gebhart MJ, Gelber RD et al (2017) 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389:1195–1205PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRef Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRef
94.
Zurück zum Zitat Guiu S, Michiels S, Andre F et al (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 23:2997–3006PubMedCrossRef Guiu S, Michiels S, Andre F et al (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 23:2997–3006PubMedCrossRef
95.
96.
Zurück zum Zitat Guo F, Gong H, Zhao H et al (2018) Mutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patients. Sci Rep 8:6076PubMedPubMedCentralCrossRef Guo F, Gong H, Zhao H et al (2018) Mutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patients. Sci Rep 8:6076PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Seppala TT, Bohm JP, Friman M et al (2015) Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer 112:1966–1975PubMedPubMedCentralCrossRef Seppala TT, Bohm JP, Friman M et al (2015) Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer 112:1966–1975PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Modest DP, Ricard I, Heinemann V et al (2016) Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 27:1746–1753PubMedPubMedCentralCrossRef Modest DP, Ricard I, Heinemann V et al (2016) Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 27:1746–1753PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Schirripa M, Cremolini C, Loupakis F et al (2015) Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer 136:83–90PubMedCrossRef Schirripa M, Cremolini C, Loupakis F et al (2015) Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer 136:83–90PubMedCrossRef
101.
Zurück zum Zitat Margonis GA, Buettner S, Andreatos N et al (2018) Association of BRAF mutations with survival and recurrence in surgically treated patients with metastatic colorectal liver cancer. JAMA Surg 153:e180996PubMedPubMedCentralCrossRef Margonis GA, Buettner S, Andreatos N et al (2018) Association of BRAF mutations with survival and recurrence in surgically treated patients with metastatic colorectal liver cancer. JAMA Surg 153:e180996PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Okuno M, Goumard C, Kopetz S et al (2018) RAS Mutation is associated with unsalvageable recurrence following hepatectomy for colorectal cancer liver metastases. Ann Surg Oncol 25:2457–2466PubMedCrossRef Okuno M, Goumard C, Kopetz S et al (2018) RAS Mutation is associated with unsalvageable recurrence following hepatectomy for colorectal cancer liver metastases. Ann Surg Oncol 25:2457–2466PubMedCrossRef
103.
Zurück zum Zitat Strickler JH, Wu C, Bekaii-Saab T (2017) Targeting BRAF in metastatic colorectal cancer: Maximizing molecular approaches. Cancer Treat Rev 60:109–119PubMedCrossRef Strickler JH, Wu C, Bekaii-Saab T (2017) Targeting BRAF in metastatic colorectal cancer: Maximizing molecular approaches. Cancer Treat Rev 60:109–119PubMedCrossRef
104.
Zurück zum Zitat Sundar R, Hong DS, Kopetz S, Yap TA (2017) Targeting BRAF-mutant colorectal cancer: progress in combination strategies. Cancer Discov 7:558–560PubMedPubMedCentralCrossRef Sundar R, Hong DS, Kopetz S, Yap TA (2017) Targeting BRAF-mutant colorectal cancer: progress in combination strategies. Cancer Discov 7:558–560PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Peeters M, Oliner KS, Price TJ et al (2015) Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin Cancer Res 21:5469–5479PubMedCrossRef Peeters M, Oliner KS, Price TJ et al (2015) Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin Cancer Res 21:5469–5479PubMedCrossRef
106.
Zurück zum Zitat Barras D, Missiaglia E, Wirapati P et al (2017) BRAF V600E mutant colorectal cancer subtypes based on gene expression. Clin Cancer Res 23:104–115PubMedCrossRef Barras D, Missiaglia E, Wirapati P et al (2017) BRAF V600E mutant colorectal cancer subtypes based on gene expression. Clin Cancer Res 23:104–115PubMedCrossRef
107.
Zurück zum Zitat Yang L, Dong D, Fang M et al (2018) Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol 28:2058–2067PubMedCrossRef Yang L, Dong D, Fang M et al (2018) Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol 28:2058–2067PubMedCrossRef
108.
Zurück zum Zitat Lubner MG, Stabo N, Lubner SJ et al (2015) CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 40:2331–2337PubMedCrossRef Lubner MG, Stabo N, Lubner SJ et al (2015) CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 40:2331–2337PubMedCrossRef
109.
Zurück zum Zitat Taguchi N, Oda S, Yokota Y et al (2019) CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. Eur J Radiol 118:38–43PubMedCrossRef Taguchi N, Oda S, Yokota Y et al (2019) CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. Eur J Radiol 118:38–43PubMedCrossRef
110.
Zurück zum Zitat Negreros-Osuna AA, Parakh A, Corcoran RB et al (2020) Radiomics texture features in advanced colorectal cancer: correlation with BRAF mutation and 5-year overall survival. Radiol Imaging Cancer 2:e190084PubMedPubMedCentralCrossRef Negreros-Osuna AA, Parakh A, Corcoran RB et al (2020) Radiomics texture features in advanced colorectal cancer: correlation with BRAF mutation and 5-year overall survival. Radiol Imaging Cancer 2:e190084PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Cui Y, Liu H, Ren J et al (2020) Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer. Eur Radiol 30:1948–1958PubMedCrossRef Cui Y, Liu H, Ren J et al (2020) Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer. Eur Radiol 30:1948–1958PubMedCrossRef
113.
Zurück zum Zitat Oh JE, Kim MJ, Lee J et al (2020) Magnetic resonance-based texture analysis differentiating KRAS mutation status in rectal cancer. Cancer Res Treat 52:51–59PubMedCrossRef Oh JE, Kim MJ, Lee J et al (2020) Magnetic resonance-based texture analysis differentiating KRAS mutation status in rectal cancer. Cancer Res Treat 52:51–59PubMedCrossRef
114.
Zurück zum Zitat Lovinfosse P, Koopmansch B, Lambert F et al (2016) (18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status. Br J Radiol 89:20160212PubMedPubMedCentralCrossRef Lovinfosse P, Koopmansch B, Lambert F et al (2016) (18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status. Br J Radiol 89:20160212PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Chen SW, Chiang HC, Chen WT et al (2014) Correlation between PET/CT parameters and KRAS expression in colorectal cancer. Clin Nucl Med 39:685–689PubMedCrossRef Chen SW, Chiang HC, Chen WT et al (2014) Correlation between PET/CT parameters and KRAS expression in colorectal cancer. Clin Nucl Med 39:685–689PubMedCrossRef
116.
Zurück zum Zitat Cho A, Jo K, Hwang SH et al (2017) Correlation between KRAS mutation and (18)F-FDG uptake in stage IV colorectal cancer. Abdom Radiol (NY) 42:1621–1626CrossRef Cho A, Jo K, Hwang SH et al (2017) Correlation between KRAS mutation and (18)F-FDG uptake in stage IV colorectal cancer. Abdom Radiol (NY) 42:1621–1626CrossRef
117.
Zurück zum Zitat Lv Y, Wang X, Liang L, Wang L, Lu J (2019) SUVmax and metabolic tumor volume: surrogate image biomarkers of KRAS mutation status in colorectal cancer. Onco Targets Ther 12:2115–2121PubMedPubMedCentralCrossRef Lv Y, Wang X, Liang L, Wang L, Lu J (2019) SUVmax and metabolic tumor volume: surrogate image biomarkers of KRAS mutation status in colorectal cancer. Onco Targets Ther 12:2115–2121PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Hong HS, Kim SH, Park HJ et al (2013) Correlations of dynamic contrast-enhanced magnetic resonance imaging with morphologic, angiogenic, and molecular prognostic factors in rectal cancer. Yonsei Med J 54:123–130PubMedCrossRef Hong HS, Kim SH, Park HJ et al (2013) Correlations of dynamic contrast-enhanced magnetic resonance imaging with morphologic, angiogenic, and molecular prognostic factors in rectal cancer. Yonsei Med J 54:123–130PubMedCrossRef
119.
Zurück zum Zitat Horvat N, Veeraraghavan H, Pelossof RA et al (2019) Radiogenomics of rectal adenocarcinoma in the era of precision medicine: a pilot study of associations between qualitative and quantitative MRI imaging features and genetic mutations. Eur J Radiol 113:174–181PubMedPubMedCentralCrossRef Horvat N, Veeraraghavan H, Pelossof RA et al (2019) Radiogenomics of rectal adenocarcinoma in the era of precision medicine: a pilot study of associations between qualitative and quantitative MRI imaging features and genetic mutations. Eur J Radiol 113:174–181PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Krikelis D, Skoura E, Kotoula V et al (2014) Lack of association between KRAS mutations and 18F-FDG PET/CT in Caucasian metastatic colorectal cancer patients. Anticancer Res 34:2571–2579PubMed Krikelis D, Skoura E, Kotoula V et al (2014) Lack of association between KRAS mutations and 18F-FDG PET/CT in Caucasian metastatic colorectal cancer patients. Anticancer Res 34:2571–2579PubMed
121.
Zurück zum Zitat Oner AO, Budak ES, Yildirim S, Aydin F, Sezer C (2017) The value of (18)FDG PET/CT parameters, hematological parameters and tumor markers in predicting KRAS oncogene mutation in colorectal cancer. Hell J Nucl Med 20:160–165PubMed Oner AO, Budak ES, Yildirim S, Aydin F, Sezer C (2017) The value of (18)FDG PET/CT parameters, hematological parameters and tumor markers in predicting KRAS oncogene mutation in colorectal cancer. Hell J Nucl Med 20:160–165PubMed
122.
Zurück zum Zitat Kawada K, Toda K, Nakamoto Y et al (2015) Relationship Between 18F-FDG PET/CT Scans and KRAS Mutations in Metastatic Colorectal Cancer. J Nucl Med 56:1322–1327PubMedCrossRef Kawada K, Toda K, Nakamoto Y et al (2015) Relationship Between 18F-FDG PET/CT Scans and KRAS Mutations in Metastatic Colorectal Cancer. J Nucl Med 56:1322–1327PubMedCrossRef
123.
Zurück zum Zitat Kim BJ, Kim JH, Kim HS, Zang DY (2017) Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review. Oncotarget 8:13979–13985PubMedPubMedCentralCrossRef Kim BJ, Kim JH, Kim HS, Zang DY (2017) Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review. Oncotarget 8:13979–13985PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Kim HS, Kim JH, Jang HJ, Han B, Zang DY (2018) Clinicopathologic significance of VHL gene alteration in clear-cell renal cell carcinoma: an updated meta-analysis and review. Int J Mol Sci 19:2529PubMedCentralCrossRef Kim HS, Kim JH, Jang HJ, Han B, Zang DY (2018) Clinicopathologic significance of VHL gene alteration in clear-cell renal cell carcinoma: an updated meta-analysis and review. Int J Mol Sci 19:2529PubMedCentralCrossRef
126.
Zurück zum Zitat Sato Y, Yoshizato T, Shiraishi Y et al (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45:860–867PubMedCrossRef Sato Y, Yoshizato T, Shiraishi Y et al (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45:860–867PubMedCrossRef
127.
Zurück zum Zitat Wang Z, Peng S, Guo L et al (2018) Prognostic and clinicopathological value of PBRM1 expression in renal cell carcinoma. Clin Chim Acta 486:9–17PubMedCrossRef Wang Z, Peng S, Guo L et al (2018) Prognostic and clinicopathological value of PBRM1 expression in renal cell carcinoma. Clin Chim Acta 486:9–17PubMedCrossRef
128.
Zurück zum Zitat Hakimi AA, Ostrovnaya I, Reva B et al (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19:3259–3267PubMedPubMedCentralCrossRef Hakimi AA, Ostrovnaya I, Reva B et al (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19:3259–3267PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Chen X, Zhou Z, Hannan R et al (2018) Reliable gene mutation prediction in clear cell renal cell carcinoma through multi-classifier multi-objective radiogenomics model. Phys Med Biol 63:215008PubMedPubMedCentralCrossRef Chen X, Zhou Z, Hannan R et al (2018) Reliable gene mutation prediction in clear cell renal cell carcinoma through multi-classifier multi-objective radiogenomics model. Phys Med Biol 63:215008PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Kocak B, Durmaz ES, Kaya OK, Kilickesmez O (2020) Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol 61:856–864PubMedCrossRef Kocak B, Durmaz ES, Kaya OK, Kilickesmez O (2020) Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol 61:856–864PubMedCrossRef
131.
Zurück zum Zitat Kocak B, Durmaz ES, Ates E, Ulusan MB (2019) Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. AJR Am J Roentgenol 212:W55–W63PubMedCrossRef Kocak B, Durmaz ES, Ates E, Ulusan MB (2019) Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. AJR Am J Roentgenol 212:W55–W63PubMedCrossRef
132.
Zurück zum Zitat Li ZC, Zhai G, Zhang J et al (2019) Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective. Eur Radiol 29:3996–4007PubMedCrossRef Li ZC, Zhai G, Zhang J et al (2019) Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective. Eur Radiol 29:3996–4007PubMedCrossRef
133.
Zurück zum Zitat Ghosh P, Tamboli P, Vikram R, Rao A (2015) Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features. J Med Imaging (Bellingham) 2:041009CrossRef Ghosh P, Tamboli P, Vikram R, Rao A (2015) Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features. J Med Imaging (Bellingham) 2:041009CrossRef
134.
Zurück zum Zitat Feng Z, Zhang L, Qi Z, Shen Q, Hu Z, Chen F (2020) Identifying BAP1 mutations in clear-cell renal cell carcinoma by CT radiomics: preliminary findings. Front Oncol 10:279PubMedPubMedCentralCrossRef Feng Z, Zhang L, Qi Z, Shen Q, Hu Z, Chen F (2020) Identifying BAP1 mutations in clear-cell renal cell carcinoma by CT radiomics: preliminary findings. Front Oncol 10:279PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Zeng H, Chen L, Wang M, Luo Y, Huang Y, Ma X (2021) Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Aging (Albany NY) 13:9960–9975CrossRef Zeng H, Chen L, Wang M, Luo Y, Huang Y, Ma X (2021) Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Aging (Albany NY) 13:9960–9975CrossRef
136.
137.
138.
Zurück zum Zitat Berenguer R, Pastor-Juan MDR, Canales-Vazquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288:407–415PubMedCrossRef Berenguer R, Pastor-Juan MDR, Canales-Vazquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288:407–415PubMedCrossRef
139.
Zurück zum Zitat van Velden FH, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795PubMedPubMedCentralCrossRef van Velden FH, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Pfaehler E, Beukinga RJ, de Jong JR et al (2019) Repeatability of (18) F-FDG PET radiomic features: a phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys 46:665–678PubMedCrossRef Pfaehler E, Beukinga RJ, de Jong JR et al (2019) Repeatability of (18) F-FDG PET radiomic features: a phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys 46:665–678PubMedCrossRef
141.
Zurück zum Zitat Lecler A, Duron L, Balvay D et al (2019) Combining multiple magnetic resonance imaging sequences provides independent reproducible radiomics features. Sci Rep 9:2068PubMedPubMedCentralCrossRef Lecler A, Duron L, Balvay D et al (2019) Combining multiple magnetic resonance imaging sequences provides independent reproducible radiomics features. Sci Rep 9:2068PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 6:34921PubMedPubMedCentralCrossRef He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 6:34921PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Ligero M, Jordi-Ollero O, Bernatowicz K et al (2021) Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Eur Radiol 31:1460–1470PubMedCrossRef Ligero M, Jordi-Ollero O, Bernatowicz K et al (2021) Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Eur Radiol 31:1460–1470PubMedCrossRef
Metadaten
Titel
The application of radiomics in predicting gene mutations in cancer
verfasst von
Yana Qi
Tingting Zhao
Mingyong Han
Publikationsdatum
20.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 6/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08520-6

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.