Skip to main content
Erschienen in: BMC Infectious Diseases 1/2018

Open Access 01.12.2018 | Research article

The association between serum magnesium levels and community-acquired pneumonia 30-day mortality

verfasst von: Roni Nasser, Mohammad E. Naffaa, Tanya Mashiach, Zaher S. Azzam, Eyal Braun

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2018

Abstract

Background

Community acquired pneumonia (CAP) is a common illness affecting hundreds of millions worldwide. Few studies have investigated the relationship between serum magnesium levels and outcomes of these patients. We aimed to study the association between serum magnesium levels and 30-day mortality among patients with CAP.

Methods

Retrospective overview of patients hospitalized with CAP between January 1, 2010 and December 31, 2016. Participants were analyzed retrospectively in order to identify the risk factors for a primary endpoint of 30-day mortality. Normal levels of magnesium levels in our laboratory varies between 1.35 and 2.4 mg/dl.

Results

3851 patients were included in our cohort. Age > 75 years, blood urea nitrogen (BUN) > 20 mg/dl, hypoalbuminemia, and abnormal levels of magnesium were all associated with increased risk of 30-day mortality. Normal magnesium levels were associated with the lowest mortality rate (14.7%). Notably, within the normal levels, high normal magnesium levels (2–2.4 mg/dl) were correlated with higher mortality rates (30.3%) as compared to levels that ranged between 1.35–2 mg/dl (12.9%). Hypomagnesemia and hypermagnesemia were both associated with excess of 30-day mortality, 18.4 and 50%, respectively.

Conclusion

Hypomagnesemia and hypermagnesemia on admission were associated with an increased rate of 30-day mortality among adult patients hospitalized with CAP. Interestingly, magnesium levels within the upper normal limits were associated with higher mortality.
Hinweise
Roni Nasser and Mohammad E. Naffaa contributed equally to this work.
Abkürzungen
AUC
Area Under Curve
BP
Systolic and diastolic blood pressure
BUN
Blood Urea Nitrogen
CAP
Community acquired pneumonia
CI
Confidence intervals
Hb
Hemoglobin
HR
Heart rate
Mg
Magnesium
OR
Odds ratios
pCO2
Partial pressure of carbon dioxide
PSI
Pneumonia Severity Index
RDW
Red blood cell distribution width
RHCC
Rambam Health Care Campus
RR
Respiratory rate
SPSS
Statistics Products Solutions Services
WBC
White blood cell count

Background

Community acquired pneumonia (CAP) is a common illness affecting hundreds of millions worldwide, with increasing hospital admissions throughout the years mainly due to the aging population. It is a major cause of mortality and morbidity in all age groups, especially elderly, despite the effectiveness of the diverse antibiotic treatment [13].
The prognostic scores used in the clinical settings, such as CURB 65 and Pneumonia Severity Index (PSI) are acknowledged as tools to estimate the mortality rates and thus determine the treatment setting, either outpatient or inpatient [2, 4].
Magnesium (Mg) is the second most profound intracellular mineral in the human body. It is essential for energy production, mainly by binding ATP; synthesis of DNA, RNA and proteins. Mg also plays a role in the active transport of calcium and potassium ions across cell membranes, and thus has an essential role for maintaining proper function of the neuromuscular and cardiovascular systems [5].
Magnesium deficiency has been associated with a number of clinical manifestations such as arrhythmias, cardiac insufficiency, sudden death, muscle weakness, bronchospasm, tetany, seizures, as well as hypokalemia, hypocalcaemia, hyponatremia, and hypophosphatemia [6, 7]. Several studies demonstrated that hypomagnesemia at admission or during ICU stay was associated with guarded prognosis [8, 9], and magnesium supplementation was associated with a lower mortality rate [8].
Hypermagnesemia, which is less frequent than hypomagnesemia, commonly occurs due to excessive administration of magnesium salts or magnesium-containing drugs, especially in patients with reduced renal function. It may be caused, also, by rapid mobilization from soft tissues in patients with sepsis or trauma, adrenal insufficiency and hypothyroidism. Hypermagnesemia may cause severe symptomatic hypotension, bradycardia and ECG changes like wide QRS [5, 10]. Hypermagnesemia was associated with highest rates of death in critically ill patients [11].
We recently showed that hyperphosphatemia and hypophosphatemia were independently associated with increased 30-days mortality rates in patients with CAP [12].
In this study, we aimed to examine the association between serum magnesium levels on admission and the 30-day mortality in patients with CAP.

Methods

Study design

Retrospective overview of patients who were admitted to Rambam Health Care Campus (RHCC), Haifa, Israel, between January 2010 and 31 December 2016. RHCC is a 1000 bed teaching hospital. The patient population is diverse, as RHCC is the major tertiary medical center for all of Northern Israel, serving more than two million residents. According to hospital records, there are 140,000 emergency department visits every year and about 90,000 inpatient admissions. The Rambam Hospital Institutional Review Board approved the study. The approval number is 0597–16-RMB. The need for informed consent was waived because of the retrospective, medical record-based design of the study. The study population included patients 18 years or older with CAP. The diagnosis of pneumonia was based upon the primary diagnosis of pneumonia on the discharge report, within the first twenty-four hours from admission. Exclusion criteria included patients younger than 18 years, those who were transferred from another acute care facilities, hospitalization during the month prior to admission, hospital-acquired pneumonia (HAP) or partial antibiotic treatment.
Patients’ data was retrieved and analyzed using Prometheus, RHCC integrated electronic medical records system. The 30-day mortality data were retrieved from Prometheus and the ministry of health. The retrieved data included age, gender; vital signs including blood pressure (BP), systolic and diastolic, heart rate (HR), Oxygen saturation (SO2) respiratory rate (RR), temperature; Comorbidities: history of prior or current malignancies (solid or hematologic), lung disease, smoking status, cardiovascular diseases, kidney diseases, immune deficiency conditions, HIV status, diabetes mellitus, liver cirrhosis, prior neurologic damage, alcohol abuse, intravenous drug abuse and nursing house residence smoking history. The Charlson’s comorbidity score was calculated based on data collected; laboratory values (first values within 48 h): Hemoglobin (Hb), White blood cell count (WBC), red blood cell distribution width (RDW), pH, partial pressure of carbon dioxide (pCO2), Serum glucose, serum creatinine, sodium, calcium, phosphorus, magnesium, blood urea nitrogen (BUN), and serum albumin.
Hematological values were measured using the Advia 120 Hematology Analyzer (Siemens Healthcare Diagnostics Deerfield, Illinois, USA). Serum glucose, serum creatinine, sodium, calcium, phosphorus, magnesium, blood urea nitrogen (BUN), and serum albumin were measured on admission Using “Dimension” (Siemens Healthcare Diagnostics Deerfield, Illinois, USA). PH, bicarbonate, partial pressure of CO2 and lactate were measured using GEM premier 3500.
The normal serum magnesium range in our laboratory is 1.35–2.4 mg/dl.

Statistical analysis

Statistical analysis was performed by using the SPSS statistical package (SPSS, Inc., Chicago, USA) version 21.0.
Quantitative variables are expressed as mean ± SD. Qualitative variables are expressed as values and percentages. The odds ratio (OR) with 95% confidence interval (CI) was computed using bivariate logistic regression analysis. The correlation between patients’ characteristics and 30-day mortality were evaluated by P values derived from bivariate analysis. Multivariate forward stepwise logistic regression was used to evaluate the relation between patients’ features, co-morbidities, laboratory parameters, and 30-day mortality.
Parameters with notable level of significance (P < 0.1) of the bivariate association with 30-day mortality were chosen for the multivariate analysis. Bootstrap multivariate analysis was used to evaluate the accuracy of the parameters in the model by estimating standard error, confidence intervals, and bias. The area under curve (AUC) was applied in the model to assess the prognostic value of magnesium. P values equals or less than 0.05 was acknowledged as statistically significant.

Results

Between January 1, 2010 and December 31, 2016, 4708 patients were diagnosed with CAP at discharge. 3851 patient had magnesium levels within 48 h. Fifty five percent were males. Median age was 72 years old. The 30-day mortality was 15.2% (587 patients) and almost the same each year during the study.
Hypomagnesemia (≤1.35 mg/dl) was detected in 240 patients (6%) and hypermagnesemia (≥2.4 mg/dl) in 26 patients (1%), while 3581 patients (93%) were normomagnesemic (1.35–2.4 mg/dl).
Table 1 shows bivariate analysis of the association between patients’ characteristics, laboratory parameters and 30-day mortality.
Table 1
Bivariate analysis of parameters associated with 30 days mortality
  
Total
 
30 day mortality
  
95%CI
 
  
Number
Percent (%)
Number
Percent %
P value
OR
lower
Upper
 
Total patients
3851
 
587
15.2%
    
Age (years)
< 65
1215
32%
81
6.7%
0.000
1.00
0.00
0.00
65–69
354
9%
31
8.8%
0.180
1.34
0.87
2.07
70–79
947
25%
156
16.5%
0.000
2.76
2.08
3.67
80–85
545
14%
114
20.9%
0.000
3.70
2.73
5.03
> 85
790
21%
205
25.9%
0.000
4.91
3.72
6.47
Gender
Male
2136
55%
339
15.9%
0.226
1.12
0.93
1.33
Female
1715
45%
248
14.5%
0.000
1.00
0.00
0.00
Albumin (g/dl)
3.5–4
374
10%
8
2.1%
0.000
1.00
0.00
0.00
3–3.4
728
19%
39
5.4%
0.016
2.59
1.20
5.60
2–3
2649
69%
303
14.2%
0.000
7.59
3.73
15.46
< 2
520
14%
220
42.3%
0.000
33.55
16.30
69.05
BUN (mg/dl)
< 20
1690
44%
108
6.4%
0.000
1.00
0.00
0.00
20–39
1479
38%
239
16.2%
0.000
2.82
2.22
3.59
40–59
438
11%
130
29.7%
0.000
6.18
4.66
8.20
≥60
244
6%
110
45.1%
0.000
12.03
8.74
16.54
RDW (%)
< 14.5
1647
43%
128
7.8%
0.000
1.00
0.00
0.00
≥14.5
2204
57%
459
20.8%
0.000
3.12
2.54
3.84
Phosphorus (mg/dl)
1.51 < IP < 3.99
2841
74%
339
11.9%
0.000
1.00
0.00
0.00
≤1.5
49
1%
14
28.6%
0.001
2.95
1.57
5.54
4–4.49
479
12%
79
17.2%
0.002
1.53
1.16
2.01
≥4.5
482
13%
155
32.2%
0.000
3.50
2.80
4.37
Magnesium (mg/dl)
1.35–2
3136
81%
406
12.9%
0.000
1.00
0.00
0.00
≤1.35
342
9%
63
18.4%
0.005
1.52
1.13
2.03
2–2.4
347
9%
105
30.3%
0.000
2.92
2.27
3.75
≥2.4
26
1%
13
50%
0.000
6.72
3.10
14.61
Abbreviations: OR odds ratio, CI confidence interval, BUN blood urea nitrogen, RDW Red blood cell distribution width
Figure 1 demonstrates that hypomagnesemia and hypermagnesemia were associated with higher 30-day mortality rates (18.4%, OR 1.52, CI 1.13–2.03 and 50% OR 5.78, CI 2.66–12.53 respectively) compared to normomagnesemic group (14.8%). Thirty-day mortality rate was significantly higher (30.3%, OR 2.92, CI 2.27–3.75) in patients with magnesium levels within the upper normal limit (2–2.4 mg/dl) compared to the levels 1.35–2 mg/dl which has mortality rate of 12.9%.

Relationship between phosphorous levels, magnesium levels and 30-day mortality

As shown in Table 2, abnormal magnesium levels were associated with high mortality rates regardless of all phosphorus levels.
Table 2
The association between the different phosphorus and magnesium levels with 30-day mortality
  
Total
 
30 day mortality
  
95%CI
 
  
Number
Percent (%)
Number
Percent %
P value
OR
lower
Upper
Phosphorus (mg/dl)
Magnesium (mg/dl)
3851
       
1.51–3.99
1.35–2
2370
62%
245
10.3
0.000
1.00
0.00
0.00
≤1.35
256
7%
45
17.6
0.001
1.85
1.31
2.62
≥2
215
6%
49
22.8
0.000
2.56
1.81
3.62
Other
1010
26%
248
24.6
.
.
.
.
≤1.5
1.35–2
34
1%
9
26.5
0.726
1.00
0.00
0.00
≤1.35
13
0%
5
38.5
0.424
1.74
0.45
6.71
≥2
2
0%
0
0.0
0.999
0.00
0.00
0.00
Other
3802
99%
573
15.1
.
.
.
.
≥4
1.35–2
698
18%
148
21.2
0.000
1.00
0.00
0.00
≤1.35
68
2%
13
19.1
0.687
0.88
0.47
1.65
≥2
153
4%
69
45.1
0.000
3.05
2.12
4.40
Other
2932
76%
357
12.2
.
.
.
.
≥4.5
1.35–2
354
9%
101
28.5
0.002
1.00
0.00
0.00
≤1.35
34
1%
9
26.5
0.799
0.90
0.41
2.00
≥2
94
2%
45
47.9
0.000
2.30
1.44
3.67
Other
3369
87%
432
12.8
    
Abbreviations: OR-odds ratio, CI–confidence interval, IP-Inorganic Phosphorus, MG - Magnesium

Relationship between blood urea nitrogen (BUN), magnesium, albumin, age and mortality

As shown in Fig. 2, the association between serum magnesium levels and 30-day mortality due to community acquired pneumonia outcome was maintained after adjustment for BUN, albumin and age.

Multivariate analysis of factors associated with 30-day mortality

As shown in Table 3, in multivariate regression analysis, variables associated with increased risk of 30-day mortality include age > 75 years, BUN> 20 mg/dl, albumin < 3 g/dl, inorganic phosphorus levels> 4.5 mg/dl and abnormal levels of magnesium (hypermagnesemia, including high normal levels and hypomagnesemia).
Table 3
Multivariate analysis of parameters associated with 30-day mortality
Variables
     
Bootstrap for variable in equation
  
Coeff.
P
Adjusted
95% C.I.for OR
Bias
Std.
P
95% CI of B
  
B
value
OR
Lower
Upper
 
Error
value
Lower
Upper
Albumin (g/dl)
> 3
 
0.00
        
2–3
1.13
0.00
3.10
2.24
4.29
−0.03
0.18
0.010
0.83
1.53
< 2
2.59
0.00
13.32
9.31
19.05
0.03
0.19
0.010
2.22
3.01
BUN (mg/dl)
≤20
 
0.00
        
20–39
0.57
0.00
1.77
1.37
2.29
0.02
0.14
0.010
0.28
0.92
40–59
1.05
0.00
2.86
2.09
3.92
0.03
0.15
0.010
0.79
1.36
≥60
1.28
0.00
3.61
2.49
5.24
0.01
0.20
0.010
0.97
1.72
Age (years)
≥75
0.93
0.00
2.53
1.98
3.22
−0.00
0.11
0.010
0.60
1.18
Magnesium (mg/dl)
≥2/≤1.35
0.63
0.00
1.87
1.42
2.48
−0.01
0.11
0.010
0.27
0.91
Inoraganic phosphorous (mg/dl)
≥4.5
0.83
0.00
2.29
1.77
2.96
0.00
0.11
0.010
0.58
1.18
Abbreviations: OR odds ratio, CI confidence interval, BUN blood urea nitrogen
In bootstrap multivariate analysis we show that all variables, including magnesium, which were significant in multivariate analysis were also significant in the model. The area under the curve for magnesium was 0.806 (95% CI 0.787–0.825).

Discussion

In this retrospective study we studied the association between magnesium levels on admission and 30-day mortality in patients with community acquired pneumonia.
We found different 30-day mortality rates within the different magnesium levels: 18.8% in hypomagnesemia, 50% in hypermagnesemic, and 14.8% in normomagnesemic patients. This association was maintained even after adjustment for several parameters including albumin, BUN and age. Notably, magnesium levels within the upper normal limit, namely (2–2.4 mg/dl), were also associated with higher rates of 30-day mortality (30.3%).
Magnesium is an intracellular cation that possesses various physiological functions. It functions as a co-factor in intracellular enzymatic activities especially by chelating intracellular anionic ligands. Magnesium also competes with calcium in binding sites on proteins and membranes. It is involved in other cell cycle related processes including DNA and RNA synthesis, cell growth and reproduction, membrane structure, signal transduction modulation, and fat and protein synthesis [5, 1315].
Magnesium deficiency is a common underdiagnosed problem in the ICU. Several studies have demonstrated high incidence of magnesium disturbances in ICU patients. Low Magnesium levels have been reported in approximately 50 % of ICU patients. The morbidity and mortality rates were significantly higher in these patients compared to patients with normal magnesium rates [1620]. Rubeiz et al. [18] reported a 46% mortality rates in patients with hypomagnesemia in ICU. Conceivably, there were two-fold increase in mortality rates among patient with hypomagnesemia as compared to those with normal levels. Thus, the conclusion was that patients admitted with hypomagnesemia in ICU have an excess mortality rates.
It is interesting to assume that supplementation of magnesium to CAP may improve outcome. Therefore, it is conceivable to plan a prospective study to examine magnesium as a therapeutic modality in addition to the accepted treatment of CAP.
Hypermagnesemia, less frequently reported than hypomagnesemia, is found in 6–11% of patients admitted to ICU. It can also lead to cardiovascular and neuromuscular manifestations. The development of hypermagnesemia during the ICU stay is associated with higher morbidity and mortality rates and might be the direct result of prolonged disease, or sepsis [11, 21]. Celi et al. found that hypermagnesemic patients had a 2.5-fold greater likelihood of receiving intravenous vasopressors during the first 24 hours of ICU care, due to lower systemic blood pressure [22].Guerin et al. found that hypermagnesemia is associated with higher fatalities than hypomagnesemia [11]. Cheungpasitporn et al. found that respiratory diseases were associated with hypermagnesemia. This finding was probably attributed to magnesium mediated airway relaxation, immunomodulation and anti-inflammatory effects. Magnesium as an adjunctive therapy has been advocated for patients with moderate to severe airway diseases such as asthma despite inconclusive evidence of its benefit [23].
Magnesium is often given as a treatment of cardiac rhythm disturbances and status asthmaticus or for prevention of seizures and eclampsia [24, 25]. In the past, magnesium treatment was thought to be beneficial in treating ICU patients. This hypothesis was investigated by Broman et al. [13] who found that mild hypermagnesemia was associated with markedly worse survival parameters compared to normomagnesemic controls.
Our study has some limitations. First, is the retrospective nature of the study. It is important to emphasize that we did not have any influence on blood tests including magnesium levels which were taken according to the discretion of the treating physician. Secondly, our primary endpoint was all cause mortality. We did not have data regarding the specific cause of 30-day mortality. Third, data regarding that exact antibiotic agents prior to admission was missing in many patients. Therefore, we decided to exclude patients with prior antibiotic therapy. Fourth, data dealing with permanent medications were not available for many patients, with special emphasis on Proton Pump Inhibitors (PPI), a group of medication increasingly reported as a cause of hypomagnesemia. Fifth, the high mortality rates noticed in the study were due to selection bias since only hospitalized patients with pneumonia were included in the study.

Conclusion

In conclusion, in this cohort study of patients with CAP, we demonstrated that abnormal magnesium levels on admission may be associated with increased 30-day mortality rates, compared to normal levels. Being a simple and readily available blood test, we believe that magnesium levels on admission in patients with CAP may play, in conjugation with other scores such as PASI or CURB65, a valuable role in stratifying these patients on the basis of 30-day mortality. Prospectively, well-designed, comprehensive studies are necessary to validate our findings before making any practical conclusions. Whether magnesium disturbances play a causative role in 30-day mortality in patients with CAP, or just being a surrogate marker, is a question to be answered by prospective interventional studies designed to examine to effect of correcting these disturbances on the final outcome.

Acknowledgements

Not applicable.

Funding

The authors declare they have not accepted any fundings.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
The Rambam Hospital Institutional Review Board approved the study. The approval number is 0597–16-RMB.
The need for informed consent was waived because of the retrospective, medical record-based design of the study.
Not applicable – this study does not contain any patient personal details.

Competing interests

The authors declare they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Trotter CL, Stuart JM, George R, Miller E. Increasing hospital admissions for pneumonia, England. Emerg Infect Dis. 2008;14(5):727–33 PubMed PMID: 18439353. Pubmed Central PMCID: 2600241. Epub 2008/04/29. eng.CrossRef Trotter CL, Stuart JM, George R, Miller E. Increasing hospital admissions for pneumonia, England. Emerg Infect Dis. 2008;14(5):727–33 PubMed PMID: 18439353. Pubmed Central PMCID: 2600241. Epub 2008/04/29. eng.CrossRef
2.
Zurück zum Zitat Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;386(9998):1097–108 PubMed PMID: 26277247. Epub 2015/08/19. eng.CrossRef Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;386(9998):1097–108 PubMed PMID: 26277247. Epub 2015/08/19. eng.CrossRef
3.
Zurück zum Zitat Regunath H, Oba Y. Pneumonia, community-acquired. 2017. PubMed PMID: 28613500. Epub 2017/06/15. eng. Regunath H, Oba Y. Pneumonia, community-acquired. 2017. PubMed PMID: 28613500. Epub 2017/06/15. eng.
4.
Zurück zum Zitat Renaud B, Labarere J, Coma E, Santin A, Hayon J, Gurgui M, et al. Risk stratification of early admission to the intensive care unit of patients with no major criteria of severe community-acquired pneumonia: development of an international prediction rule. Crit Care. 2009;13(2):R54 PubMed PMID: 19358736. Pubmed Central PMCID: 2689501. Epub 2009/04/11. eng.CrossRef Renaud B, Labarere J, Coma E, Santin A, Hayon J, Gurgui M, et al. Risk stratification of early admission to the intensive care unit of patients with no major criteria of severe community-acquired pneumonia: development of an international prediction rule. Crit Care. 2009;13(2):R54 PubMed PMID: 19358736. Pubmed Central PMCID: 2689501. Epub 2009/04/11. eng.CrossRef
5.
Zurück zum Zitat Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24(2):47–66 PubMed PMID: 18568054. Pubmed Central PMCID: 1855626. Epub 2008/06/24. eng.PubMedPubMedCentral Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24(2):47–66 PubMed PMID: 18568054. Pubmed Central PMCID: 1855626. Epub 2008/06/24. eng.PubMedPubMedCentral
6.
Zurück zum Zitat Altura BM, Altura BT. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest Suppl. 1996;224:211–34 PubMed PMID: 8865438. Epub 1996/01/01. eng.CrossRef Altura BM, Altura BT. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest Suppl. 1996;224:211–34 PubMed PMID: 8865438. Epub 1996/01/01. eng.CrossRef
7.
Zurück zum Zitat al-Ghamdi SM, Cameron EC, Sutton RA. Magnesium deficiency: pathophysiologic and clinical overview. Am J Kidney Dis. 1994;24(5):737–52 PubMed PMID: 7977315. Epub 1994/11/01. eng.CrossRef al-Ghamdi SM, Cameron EC, Sutton RA. Magnesium deficiency: pathophysiologic and clinical overview. Am J Kidney Dis. 1994;24(5):737–52 PubMed PMID: 7977315. Epub 1994/11/01. eng.CrossRef
8.
Zurück zum Zitat Dabbagh OC, Aldawood AS, Arabi YM, Lone NA, Brits R, Pillay M. Magnesium supplementation and the potential association with mortality rates among critically ill non-cardiac patients. Saudi Med J. 2006;27(6):821–5 PubMed PMID: 16758043. Epub 2006/06/08. eng.PubMed Dabbagh OC, Aldawood AS, Arabi YM, Lone NA, Brits R, Pillay M. Magnesium supplementation and the potential association with mortality rates among critically ill non-cardiac patients. Saudi Med J. 2006;27(6):821–5 PubMed PMID: 16758043. Epub 2006/06/08. eng.PubMed
9.
Zurück zum Zitat Safavi M, Honarmand A. Admission hypomagnesemia--impact on mortality or morbidity in critically ill patients. Middle East J Anaesthesiol. 2007;19(3):645–60 PubMed PMID: 18044292. Epub 2007/11/30. eng.PubMed Safavi M, Honarmand A. Admission hypomagnesemia--impact on mortality or morbidity in critically ill patients. Middle East J Anaesthesiol. 2007;19(3):645–60 PubMed PMID: 18044292. Epub 2007/11/30. eng.PubMed
10.
Zurück zum Zitat Sanders GT, Huijgen HJ, Sanders R. Magnesium in disease: a review with special emphasis on the serum ionized magnesium. Clin Chem Lab Med. 1999;37(11–12):1011–33 PubMed PMID: 10726809. Epub 2000/03/22. eng.PubMed Sanders GT, Huijgen HJ, Sanders R. Magnesium in disease: a review with special emphasis on the serum ionized magnesium. Clin Chem Lab Med. 1999;37(11–12):1011–33 PubMed PMID: 10726809. Epub 2000/03/22. eng.PubMed
11.
Zurück zum Zitat Guerin C, Cousin C, Mignot F, Manchon M, Fournier G. Serum and erythrocyte magnesium in critically ill patients. Intensive Care Med. 1996;22(8):724–7 PubMed PMID: 8880238. Epub 1996/08/01. eng.CrossRef Guerin C, Cousin C, Mignot F, Manchon M, Fournier G. Serum and erythrocyte magnesium in critically ill patients. Intensive Care Med. 1996;22(8):724–7 PubMed PMID: 8880238. Epub 1996/08/01. eng.CrossRef
12.
Zurück zum Zitat Naffaa ME, Mustafa M, Azzam M, Nasser R, Andria N, Azzam ZS, et al. Serum inorganic phosphorus levels predict 30-day mortality in patients with community acquired pneumonia. BMC Infect Dis. 2015;15:332 PubMed PMID: 26268323. Pubmed Central PMCID: 4535260. Epub 2015/08/14. eng.CrossRef Naffaa ME, Mustafa M, Azzam M, Nasser R, Andria N, Azzam ZS, et al. Serum inorganic phosphorus levels predict 30-day mortality in patients with community acquired pneumonia. BMC Infect Dis. 2015;15:332 PubMed PMID: 26268323. Pubmed Central PMCID: 4535260. Epub 2015/08/14. eng.CrossRef
13.
Zurück zum Zitat Broman M, Hansson F, Klarin B. Analysis of hypo- and hypermagnesemia in an intensive care unit cohort. Acta Anaesthesiol Scand. 2018;16 PubMed PMID: 29341068. Broman M, Hansson F, Klarin B. Analysis of hypo- and hypermagnesemia in an intensive care unit cohort. Acta Anaesthesiol Scand. 2018;16 PubMed PMID: 29341068.
14.
Zurück zum Zitat Huijgen HJ, Soesan M, Sanders R, Mairuhu WM, Kesecioglu J, Sanders GT. Magnesium levels in critically ill patients. What should we measure? Am J Clin Pathol. 2000;114(5):688–95 PubMed PMID: 11068541.CrossRef Huijgen HJ, Soesan M, Sanders R, Mairuhu WM, Kesecioglu J, Sanders GT. Magnesium levels in critically ill patients. What should we measure? Am J Clin Pathol. 2000;114(5):688–95 PubMed PMID: 11068541.CrossRef
15.
Zurück zum Zitat Escuela MP, Guerra M, Anon JM, Martinez-Vizcaino V, Zapatero MD, Garcia-Jalon A, et al. Total and ionized serum magnesium in critically ill patients. Intensive Care Med. 2005;31(1):151–6 PubMed PMID: 15605229.CrossRef Escuela MP, Guerra M, Anon JM, Martinez-Vizcaino V, Zapatero MD, Garcia-Jalon A, et al. Total and ionized serum magnesium in critically ill patients. Intensive Care Med. 2005;31(1):151–6 PubMed PMID: 15605229.CrossRef
16.
Zurück zum Zitat Chernow B, Smith J, Rainey TG, Finton C. Hypomagnesemia: implications for the critical care specialist. Crit Care Med. 1982;10(3):193–6 PubMed PMID: 7037303.CrossRef Chernow B, Smith J, Rainey TG, Finton C. Hypomagnesemia: implications for the critical care specialist. Crit Care Med. 1982;10(3):193–6 PubMed PMID: 7037303.CrossRef
17.
Zurück zum Zitat Reinhart RA, Desbiens NA. Hypomagnesemia in patients entering the ICU. Crit Care Med. 1985;13(6):506–7 PubMed PMID: 3996005.CrossRef Reinhart RA, Desbiens NA. Hypomagnesemia in patients entering the ICU. Crit Care Med. 1985;13(6):506–7 PubMed PMID: 3996005.CrossRef
18.
Zurück zum Zitat Chen M, Sun R, Hu B. The influence of serum magnesium level on the prognosis of critically ill patients. Zhonghua wei zhong bing ji jiu yi xue. 2015;27(3):213–7 PubMed PMID: 25757972.PubMed Chen M, Sun R, Hu B. The influence of serum magnesium level on the prognosis of critically ill patients. Zhonghua wei zhong bing ji jiu yi xue. 2015;27(3):213–7 PubMed PMID: 25757972.PubMed
19.
Zurück zum Zitat Thongprayoon C, Cheungpasitporn W, Erickson SB. Admission hypomagnesemia linked to septic shock in patients with systemic inflammatory response syndrome. Ren Fail. 2015;37(9):1518–21 PubMed PMID: 26335852.CrossRef Thongprayoon C, Cheungpasitporn W, Erickson SB. Admission hypomagnesemia linked to septic shock in patients with systemic inflammatory response syndrome. Ren Fail. 2015;37(9):1518–21 PubMed PMID: 26335852.CrossRef
20.
Zurück zum Zitat Upala S, Jaruvongvanich V, Wijarnpreecha K, Sanguankeo A. Hypomagnesemia and mortality in patients admitted to intensive care unit: a systematic review and meta-analysis. QJM. 2016;109(7):453–9 PubMed PMID: 27016536.CrossRef Upala S, Jaruvongvanich V, Wijarnpreecha K, Sanguankeo A. Hypomagnesemia and mortality in patients admitted to intensive care unit: a systematic review and meta-analysis. QJM. 2016;109(7):453–9 PubMed PMID: 27016536.CrossRef
21.
Zurück zum Zitat El Said SM, Aly WW. Magnesium levels among critically ill elderly patients; mortality and morbidity correlation. Adv in Aging Res. 2014;Vol. 03(01):6.CrossRef El Said SM, Aly WW. Magnesium levels among critically ill elderly patients; mortality and morbidity correlation. Adv in Aging Res. 2014;Vol. 03(01):6.CrossRef
22.
Zurück zum Zitat Celi LA, Scott DJ, Lee J, Nelson R, Alper SL, Mukamal KJ, et al. Association of hypermagnesemia and blood pressure in the critically ill. J Hypertens. 2013;31(11):2136–41 discussion 41. PubMed PMID: 24029865. Pubmed Central PMCID: 5682028.CrossRef Celi LA, Scott DJ, Lee J, Nelson R, Alper SL, Mukamal KJ, et al. Association of hypermagnesemia and blood pressure in the critically ill. J Hypertens. 2013;31(11):2136–41 discussion 41. PubMed PMID: 24029865. Pubmed Central PMCID: 5682028.CrossRef
23.
Zurück zum Zitat Cheungpasitporn W, Thongprayoon C, Qian Q. Dysmagnesemia in hospitalized patients: prevalence and prognostic importance. Mayo Clin Proc. 2015;90(8):1001–10 PubMed PMID: 26250725.CrossRef Cheungpasitporn W, Thongprayoon C, Qian Q. Dysmagnesemia in hospitalized patients: prevalence and prognostic importance. Mayo Clin Proc. 2015;90(8):1001–10 PubMed PMID: 26250725.CrossRef
24.
Zurück zum Zitat Manrique AM, Arroyo M, Lin Y, El Khoudary SR, Colvin E, Lichtenstein S, et al. Magnesium supplementation during cardiopulmonary bypass to prevent junctional ectopic tachycardia after pediatric cardiac surgery: a randomized controlled study. J Thorac Cardiovasc Surg. 2010;139(1):162–9 e2 PubMed PMID: 19819469.CrossRef Manrique AM, Arroyo M, Lin Y, El Khoudary SR, Colvin E, Lichtenstein S, et al. Magnesium supplementation during cardiopulmonary bypass to prevent junctional ectopic tachycardia after pediatric cardiac surgery: a randomized controlled study. J Thorac Cardiovasc Surg. 2010;139(1):162–9 e2 PubMed PMID: 19819469.CrossRef
25.
Zurück zum Zitat Schuh S, Sweeney J, Freedman SB, Coates AL, Johnson DW, Thompson G, et al. Magnesium nebulization utilization in management of pediatric asthma (MagNUM PA) trial: study protocol for a randomized controlled trial. Trials. 2016;17(1):261 PubMed PMID: 27220675. Pubmed Central PMCID: 4879727.CrossRef Schuh S, Sweeney J, Freedman SB, Coates AL, Johnson DW, Thompson G, et al. Magnesium nebulization utilization in management of pediatric asthma (MagNUM PA) trial: study protocol for a randomized controlled trial. Trials. 2016;17(1):261 PubMed PMID: 27220675. Pubmed Central PMCID: 4879727.CrossRef
Metadaten
Titel
The association between serum magnesium levels and community-acquired pneumonia 30-day mortality
verfasst von
Roni Nasser
Mohammad E. Naffaa
Tanya Mashiach
Zaher S. Azzam
Eyal Braun
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2018
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3627-2

Weitere Artikel der Ausgabe 1/2018

BMC Infectious Diseases 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.