Skip to main content
Erschienen in: Inflammation 5/2017

07.07.2017 | ORIGINAL ARTICLE

The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages

verfasst von: Ming Lu, Yi Dai, Miao Xu, Chi Zhang, Yuhong Ma, Ping Gao, Mengying Teng, Kailin Jiao, Guangming Huang, Jianping Zhang, Ye Yang, Zhiping Chu

Erschienen in: Inflammation | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Inflammation plays important roles in the initiation and progress of many diseases. Caffeic acid (CaA) is a naturally occurring hydroxycinnamic acid derivative, which shows hypotoxicity and diverse biological functions, including anti-inflammation. The molecular mechanisms involved in the CaA-inhibited inflammatory response are very complex; generally, the down-regulated phosphorylation of such important transcriptional factors, for example, nuclear factor κB (NF-κB) and signal transducers and activators of transcription-3 (STAT-3), plays an important role. Here, we found that in RAW264.7 macrophage cells, CaA blocked lipopolysaccharide (LPS)-stimulated inflammatory response by attenuating the expression of 14-3-3ζ (a phosphorylated protein regulator). Briefly, the increased expression of 14-3-3ζ was involved in the LPS-induced inflammatory response. CaA blocked the LPS-elevated 14-3-3ζ via attenuating the LPS-induced tumor necrosis factor-α (TNF-α) secretion and via enhancing the 14-3-3ζ ubiquitination. These processes inhibited the LPS-induced activation (phosphorylation) of NF-κB and STAT-3, in turn blocked the transcriptional activation of inducible NO synthase (iNOS), interleukin-6 (IL-6), and TNF-α, and finally attenuated the productions of nitric oxide (NO), IL-6, and TNF-α. By understanding a novel mechanism whereby CaA inhibited the 14-3-3ζ, our study expanded the understanding of the molecular mechanisms involved in the anti-inflammation potential induced by CaA.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhang, M., J. Zhou, L. Wang, B. Li, J. Guo, X. Guan, Q. Han, and H. Zhang. 2014. Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-alpha), IL-6 and IL-1beta levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biological & Pharmaceutical Bulletin 37: 347–354.CrossRef Zhang, M., J. Zhou, L. Wang, B. Li, J. Guo, X. Guan, Q. Han, and H. Zhang. 2014. Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-alpha), IL-6 and IL-1beta levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biological & Pharmaceutical Bulletin 37: 347–354.CrossRef
2.
Zurück zum Zitat Zhao, B., B. Zhou, L. Bao, Y. Yang, and K. Guo. 2015. Alpha-tomatine exhibits anti-inflammatory activity in lipopolysaccharide-activated macrophages. Inflammation 38: 1769–1776.CrossRefPubMed Zhao, B., B. Zhou, L. Bao, Y. Yang, and K. Guo. 2015. Alpha-tomatine exhibits anti-inflammatory activity in lipopolysaccharide-activated macrophages. Inflammation 38: 1769–1776.CrossRefPubMed
3.
Zurück zum Zitat Zhang, Y., C. Liu, B. Dong, X. Ma, L. Hou, X. Cao, and C. Wang. 2015. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38: 756–764.CrossRefPubMed Zhang, Y., C. Liu, B. Dong, X. Ma, L. Hou, X. Cao, and C. Wang. 2015. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38: 756–764.CrossRefPubMed
4.
Zurück zum Zitat Liou, C.J., W.B. Len, S.J. Wu, C.F. Lin, X.L. Wu, and W.C. Huang. 2014. Casticin inhibits COX-2 and iNOS expression via suppression of NF-kappaB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Ethnopharmacology 158 (Pt A): 310–316.CrossRefPubMed Liou, C.J., W.B. Len, S.J. Wu, C.F. Lin, X.L. Wu, and W.C. Huang. 2014. Casticin inhibits COX-2 and iNOS expression via suppression of NF-kappaB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Ethnopharmacology 158 (Pt A): 310–316.CrossRefPubMed
5.
Zurück zum Zitat Choi, Y.H., G.Y. Kim, and H.H. Lee. 2014. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Design, Development and Therapy 8: 1941–1953.CrossRefPubMedPubMedCentral Choi, Y.H., G.Y. Kim, and H.H. Lee. 2014. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Design, Development and Therapy 8: 1941–1953.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Jung, Y.C., M.E. Kim, J.H. Yoon, P.R. Park, H.Y. Youn, H.W. Lee, and J.S. Lee. 2014. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-kappaB pathway regulation. Immunopharmacology and Immunotoxicology 36: 426–432.CrossRefPubMed Jung, Y.C., M.E. Kim, J.H. Yoon, P.R. Park, H.Y. Youn, H.W. Lee, and J.S. Lee. 2014. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-kappaB pathway regulation. Immunopharmacology and Immunotoxicology 36: 426–432.CrossRefPubMed
7.
Zurück zum Zitat Kwon, D.J., Y.S. Bae, S.M. Ju, G.S. Youn, S.Y. Choi, and J. Park. 2014. Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-kappaB and JNK activation in RAW 264.7 macrophages. BMB Reports 47: 318–323.CrossRefPubMedPubMedCentral Kwon, D.J., Y.S. Bae, S.M. Ju, G.S. Youn, S.Y. Choi, and J. Park. 2014. Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-kappaB and JNK activation in RAW 264.7 macrophages. BMB Reports 47: 318–323.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Meng, A., X. Zhang, and Y. Shi. 2014. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Experimental and Therapeutic Medicine 8: 1772–1776.CrossRefPubMedPubMedCentral Meng, A., X. Zhang, and Y. Shi. 2014. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Experimental and Therapeutic Medicine 8: 1772–1776.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Byun, E.B., N.Y. Sung, M.S. Yang, B.S. Lee, D.S. Song, J.N. Park, J.H. Kim, B.S. Jang, D.S. Choi, S.H. Park, Y.B. Yu, and E.H. Byun. 2014. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-kappaB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 74: 255–264.CrossRef Byun, E.B., N.Y. Sung, M.S. Yang, B.S. Lee, D.S. Song, J.N. Park, J.H. Kim, B.S. Jang, D.S. Choi, S.H. Park, Y.B. Yu, and E.H. Byun. 2014. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-kappaB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 74: 255–264.CrossRef
10.
Zurück zum Zitat Thandavarayan, R.A., V.V. Giridharan, F.R. Sari, S. Arumugam, P.T. Veeraveedu, G.N. Pandian, S.S. Palaniyandi, M. Ma, K. Suzuki, N. Gurusamy, and K. Watanabe. 2011. Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-kB signaling pathways after streptozotocin-induced diabetes mellitus. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 28: 911–922.CrossRef Thandavarayan, R.A., V.V. Giridharan, F.R. Sari, S. Arumugam, P.T. Veeraveedu, G.N. Pandian, S.S. Palaniyandi, M. Ma, K. Suzuki, N. Gurusamy, and K. Watanabe. 2011. Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-kB signaling pathways after streptozotocin-induced diabetes mellitus. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 28: 911–922.CrossRef
11.
Zurück zum Zitat Zuo, S., Y. Xue, S. Tang, J. Yao, R. Du, P. Yang, and X. Chen. 2010. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. Journal of Proteome Research 9: 3465–3478.CrossRefPubMed Zuo, S., Y. Xue, S. Tang, J. Yao, R. Du, P. Yang, and X. Chen. 2010. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. Journal of Proteome Research 9: 3465–3478.CrossRefPubMed
12.
Zurück zum Zitat Lee, J.J., J.S. Lee, M.N. Cui, H.H. Yun, H.Y. Kim, S.H. Lee, and J.H. Lee. 2014. BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death & Disease 5: e1537.CrossRef Lee, J.J., J.S. Lee, M.N. Cui, H.H. Yun, H.Y. Kim, S.H. Lee, and J.H. Lee. 2014. BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death & Disease 5: e1537.CrossRef
13.
Zurück zum Zitat Shen, J., F. Jiang, Y. Yang, G. Huang, F. Pu, Q. Liu, L. Chen, L. Ju, M. Lu, F. Zhou, C. Zhang, X. Luo, X. Yang, C. Jiao, X. Li, Z. Li, Y. Li, and J. Zhang. 2016. 14-3-3eta is a novel growth-promoting and angiogenic factor in hepatocellular carcinoma. Journal of Hepatology 65: 953–962.CrossRefPubMed Shen, J., F. Jiang, Y. Yang, G. Huang, F. Pu, Q. Liu, L. Chen, L. Ju, M. Lu, F. Zhou, C. Zhang, X. Luo, X. Yang, C. Jiao, X. Li, Z. Li, Y. Li, and J. Zhang. 2016. 14-3-3eta is a novel growth-promoting and angiogenic factor in hepatocellular carcinoma. Journal of Hepatology 65: 953–962.CrossRefPubMed
14.
Zurück zum Zitat De Valck, D., K. Heyninck, W. Van Criekinge, P. Vandenabeele, W. Fiers, and R. Beyaert. 1997. A20 inhibits NF-kappaB activation independently of binding to 14-3-3 proteins. Biochemical and Biophysical Research Communications 238: 590–594.CrossRefPubMed De Valck, D., K. Heyninck, W. Van Criekinge, P. Vandenabeele, W. Fiers, and R. Beyaert. 1997. A20 inhibits NF-kappaB activation independently of binding to 14-3-3 proteins. Biochemical and Biophysical Research Communications 238: 590–594.CrossRefPubMed
15.
Zurück zum Zitat Ben-Addi, A., A. Mambole-Dema, C. Brender, S.R. Martin, J. Janzen, S. Kjaer, S.J. Smerdon, and S.C. Ley. 2014. IkappaB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases. Proceedings of the National Academy of Sciences of the United States of America 111: E2394–E2403.CrossRefPubMedPubMedCentral Ben-Addi, A., A. Mambole-Dema, C. Brender, S.R. Martin, J. Janzen, S. Kjaer, S.J. Smerdon, and S.C. Ley. 2014. IkappaB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases. Proceedings of the National Academy of Sciences of the United States of America 111: E2394–E2403.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Xue, D., Y. Yang, Y. Liu, P. Wang, Y. Dai, Q. Liu, L. Chen, J. Shen, H. Ju, Y. Li, and Z. Tan. 2016. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3zeta/STAT3/HIF-1alpha/VEGF signaling. Oncotarget 7: 79805–79813.PubMedPubMedCentral Xue, D., Y. Yang, Y. Liu, P. Wang, Y. Dai, Q. Liu, L. Chen, J. Shen, H. Ju, Y. Li, and Z. Tan. 2016. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3zeta/STAT3/HIF-1alpha/VEGF signaling. Oncotarget 7: 79805–79813.PubMedPubMedCentral
17.
Zurück zum Zitat Balupillai, A., R.N. Prasad, K. Ramasamy, G. Muthusamy, M. Shanmugham, K. Govindasamy, and S. Gunaseelan. 2015. Caffeic acid inhibits UVB-induced inflammation and photocarcinogenesis through activation of peroxisome proliferator-activated receptor-gamma in mouse skin. Photochemistry and Photobiology 91: 1458–1468.CrossRefPubMed Balupillai, A., R.N. Prasad, K. Ramasamy, G. Muthusamy, M. Shanmugham, K. Govindasamy, and S. Gunaseelan. 2015. Caffeic acid inhibits UVB-induced inflammation and photocarcinogenesis through activation of peroxisome proliferator-activated receptor-gamma in mouse skin. Photochemistry and Photobiology 91: 1458–1468.CrossRefPubMed
18.
Zurück zum Zitat Li, Y., F. Jiang, L. Chen, Y. Yang, S. Cao, Y. Ye, X. Wang, J. Mu, Z. Li, and L. Li. 2015. Blockage of TGFbeta-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio 5: 466–475.CrossRefPubMedPubMedCentral Li, Y., F. Jiang, L. Chen, Y. Yang, S. Cao, Y. Ye, X. Wang, J. Mu, Z. Li, and L. Li. 2015. Blockage of TGFbeta-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio 5: 466–475.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Pittala, V., L. Salerno, G. Romeo, M.A. Siracusa, M.N. Modica, G.L. Romano, S. Salomone, F. Drago, and C. Bucolo. 2015. Effects of novel hybrids of caffeic acid phenethyl ester and NSAIDs on experimental ocular inflammation. European Journal of Pharmacology 752: 78–83.CrossRefPubMed Pittala, V., L. Salerno, G. Romeo, M.A. Siracusa, M.N. Modica, G.L. Romano, S. Salomone, F. Drago, and C. Bucolo. 2015. Effects of novel hybrids of caffeic acid phenethyl ester and NSAIDs on experimental ocular inflammation. European Journal of Pharmacology 752: 78–83.CrossRefPubMed
20.
Zurück zum Zitat Li, Y., L.J. Chen, F. Jiang, Y. Yang, X.X. Wang, Z. Zhang, Z. Li, and L. Li. 2015. Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 48: 502–508.PubMedPubMedCentral Li, Y., L.J. Chen, F. Jiang, Y. Yang, X.X. Wang, Z. Zhang, Z. Li, and L. Li. 2015. Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 48: 502–508.PubMedPubMedCentral
21.
Zurück zum Zitat Jeon, Y.D., J.Y. Kee, D.S. Kim, Y.H. Han, S.H. Kim, S.J. Kim, J.Y. Um, and S.H. Hong. 2015. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. BMC Complementary and Alternative Medicine 15: 196.CrossRefPubMedPubMedCentral Jeon, Y.D., J.Y. Kee, D.S. Kim, Y.H. Han, S.H. Kim, S.J. Kim, J.Y. Um, and S.H. Hong. 2015. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. BMC Complementary and Alternative Medicine 15: 196.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Liu, M., S. Song, H. Li, X. Jiang, P. Yin, C. Wan, X. Liu, F. Liu, and J. Xu. 2014. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. Journal of Dairy Science 97: 2856–2865.CrossRefPubMed Liu, M., S. Song, H. Li, X. Jiang, P. Yin, C. Wan, X. Liu, F. Liu, and J. Xu. 2014. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. Journal of Dairy Science 97: 2856–2865.CrossRefPubMed
23.
Zurück zum Zitat Kasinski, A., X. Dong, F.R. Khuri, J. Boss, and H. Fu. 2014. Transcriptional regulation of YWHAZ, the gene encoding 14-3-3zeta. PloS One 9: e93480.CrossRefPubMedPubMedCentral Kasinski, A., X. Dong, F.R. Khuri, J. Boss, and H. Fu. 2014. Transcriptional regulation of YWHAZ, the gene encoding 14-3-3zeta. PloS One 9: e93480.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wang, L., M. Lu, M. Yi, L. Chen, J. Shen, Z. Li, L. Li, Y. Yang, J. Zhang, and Y. Li. 2015. Caffeic acid attenuates the autocrine IL-6 in hepatocellular carcinoma via the epigenetic silencing of the NF-κB-IL-6-STAT-3 feedback loop. RSC Advances 5: 52952–52957.CrossRef Wang, L., M. Lu, M. Yi, L. Chen, J. Shen, Z. Li, L. Li, Y. Yang, J. Zhang, and Y. Li. 2015. Caffeic acid attenuates the autocrine IL-6 in hepatocellular carcinoma via the epigenetic silencing of the NF-κB-IL-6-STAT-3 feedback loop. RSC Advances 5: 52952–52957.CrossRef
25.
Zurück zum Zitat Gu, W., Y. Yang, C. Zhang, Y. Zhang, L. Chen, J. Shen, G. Li, Z. Li, L. Li, Y. Li, and H. Dong. 2016. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1α stabilization in hypoxia. RSC Advances 6: 82774–82782.CrossRef Gu, W., Y. Yang, C. Zhang, Y. Zhang, L. Chen, J. Shen, G. Li, Z. Li, L. Li, Y. Li, and H. Dong. 2016. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1α stabilization in hypoxia. RSC Advances 6: 82774–82782.CrossRef
26.
Zurück zum Zitat Yang, N., J.J. Shi, F.P. Wu, M. Li, X. Zhang, Y.P. Li, S. Zhai, X.L. Jia, and S.S. Dang. 2017. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway. World Journal of Gastroenterology 23: 1203–1214.CrossRefPubMedPubMedCentral Yang, N., J.J. Shi, F.P. Wu, M. Li, X. Zhang, Y.P. Li, S. Zhai, X.L. Jia, and S.S. Dang. 2017. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway. World Journal of Gastroenterology 23: 1203–1214.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yang, Y., Y. Li, K. Wang, Y. Wang, W. Yin, and L. Li. 2013. P38/NF-kappaB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PloS One 8: e58915.CrossRefPubMedPubMedCentral Yang, Y., Y. Li, K. Wang, Y. Wang, W. Yin, and L. Li. 2013. P38/NF-kappaB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PloS One 8: e58915.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Choudhary, S., A. Mourya, S. Ahuja, S.P. Sah, and A. Kumar. 2016. Plausible anti-inflammatory mechanism of resveratrol and caffeic acid against chronic stress-induced insulin resistance in mice. Inflammopharmacology 24: 347–361.CrossRefPubMed Choudhary, S., A. Mourya, S. Ahuja, S.P. Sah, and A. Kumar. 2016. Plausible anti-inflammatory mechanism of resveratrol and caffeic acid against chronic stress-induced insulin resistance in mice. Inflammopharmacology 24: 347–361.CrossRefPubMed
29.
Zurück zum Zitat Basu Mallik, S., J. Mudgal, M. Nampoothiri, S. Hall, S.A. Dukie, G. Grant, C.M. Rao, and D. Arora. 2016. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neuroscience Letters 632: 218–223.CrossRefPubMed Basu Mallik, S., J. Mudgal, M. Nampoothiri, S. Hall, S.A. Dukie, G. Grant, C.M. Rao, and D. Arora. 2016. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neuroscience Letters 632: 218–223.CrossRefPubMed
30.
Zurück zum Zitat Agilan, B., N. Rajendra Prasad, G. Kanimozhi, R. Karthikeyan, M. Ganesan, S. Mohana, D. Velmurugan, and D. Ananthakrishnan. 2016. Caffeic acid inhibits chronic UVB-induced cellular proliferation through JAK-STAT3 signaling in mouse skin. Photochemistry and Photobiology 92: 467–474.CrossRefPubMed Agilan, B., N. Rajendra Prasad, G. Kanimozhi, R. Karthikeyan, M. Ganesan, S. Mohana, D. Velmurugan, and D. Ananthakrishnan. 2016. Caffeic acid inhibits chronic UVB-induced cellular proliferation through JAK-STAT3 signaling in mouse skin. Photochemistry and Photobiology 92: 467–474.CrossRefPubMed
31.
Zurück zum Zitat Cai, H., X. Huang, S. Xu, H. Shen, P. Zhang, Y. Huang, J. Jiang, Y. Sun, B. Jiang, X. Wu, H. Yao, and J. Xu. 2016. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. European Journal of Medicinal Chemistry 108: 89–103.CrossRefPubMed Cai, H., X. Huang, S. Xu, H. Shen, P. Zhang, Y. Huang, J. Jiang, Y. Sun, B. Jiang, X. Wu, H. Yao, and J. Xu. 2016. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. European Journal of Medicinal Chemistry 108: 89–103.CrossRefPubMed
32.
Zurück zum Zitat ten Dijke, P., and H. van Dam. 2015. 14-3-3zeta turns TGF-beta to the dark side. Cancer Cell 27: 151–153.CrossRefPubMed ten Dijke, P., and H. van Dam. 2015. 14-3-3zeta turns TGF-beta to the dark side. Cancer Cell 27: 151–153.CrossRefPubMed
33.
Zurück zum Zitat Wu, Y.J., Y.J. Jan, B.S. Ko, S.M. Liang, and J.Y. Liou. 2015. Involvement of 14-3-3 proteins in regulating tumor progression of hepatocellular carcinoma. Cancer 7: 1022–1036.CrossRef Wu, Y.J., Y.J. Jan, B.S. Ko, S.M. Liang, and J.Y. Liou. 2015. Involvement of 14-3-3 proteins in regulating tumor progression of hepatocellular carcinoma. Cancer 7: 1022–1036.CrossRef
34.
Zurück zum Zitat Aitken, A. 2011. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Seminars in Cell & Developmental Biology 22: 673–680.CrossRef Aitken, A. 2011. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Seminars in Cell & Developmental Biology 22: 673–680.CrossRef
35.
Zurück zum Zitat Xu, J., S. Acharya, O. Sahin, Q. Zhang, Y. Saito, J. Yao, H. Wang, P. Li, L. Zhang, F.J. Lowery, W.L. Kuo, Y. Xiao, J. Ensor, A.A. Sahin, X.H. Zhang, M.C. Hung, J.D. Zhang, and D. Yu. 2015. 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27: 177–192.CrossRefPubMedPubMedCentral Xu, J., S. Acharya, O. Sahin, Q. Zhang, Y. Saito, J. Yao, H. Wang, P. Li, L. Zhang, F.J. Lowery, W.L. Kuo, Y. Xiao, J. Ensor, A.A. Sahin, X.H. Zhang, M.C. Hung, J.D. Zhang, and D. Yu. 2015. 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27: 177–192.CrossRefPubMedPubMedCentral
36.
37.
Zurück zum Zitat Lin, M., C.D. Morrison, S. Jones, N. Mohamed, J. Bacher, and C. Plass. 2009. Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. International Journal of Cancer Journal International du Cancer 125: 603–611.CrossRefPubMedPubMedCentral Lin, M., C.D. Morrison, S. Jones, N. Mohamed, J. Bacher, and C. Plass. 2009. Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. International Journal of Cancer Journal International du Cancer 125: 603–611.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Neal, C.L., J. Yao, W. Yang, X. Zhou, N.T. Nguyen, J. Lu, C.G. Danes, H. Guo, K.H. Lan, J. Ensor, W. Hittelman, M.C. Hung, and D. Yu. 2009. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Research 69: 3425–3432.CrossRefPubMedPubMedCentral Neal, C.L., J. Yao, W. Yang, X. Zhou, N.T. Nguyen, J. Lu, C.G. Danes, H. Guo, K.H. Lan, J. Ensor, W. Hittelman, M.C. Hung, and D. Yu. 2009. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Research 69: 3425–3432.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Aitken, A. 2006. 14-3-3 proteins: a historic overview. Seminars in Cancer Biology 16: 162–172.CrossRefPubMed Aitken, A. 2006. 14-3-3 proteins: a historic overview. Seminars in Cancer Biology 16: 162–172.CrossRefPubMed
Metadaten
Titel
The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages
verfasst von
Ming Lu
Yi Dai
Miao Xu
Chi Zhang
Yuhong Ma
Ping Gao
Mengying Teng
Kailin Jiao
Guangming Huang
Jianping Zhang
Ye Yang
Zhiping Chu
Publikationsdatum
07.07.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0618-1

Weitere Artikel der Ausgabe 5/2017

Inflammation 5/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.