Skip to main content
Erschienen in: Diabetologia 2/2017

19.11.2016 | Article

The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet

verfasst von: Ji Hye Han, Tae Jung Oh, Ghayoung Lee, Hyo Jin Maeng, Dong Hwa Lee, Kyoung Min Kim, Sung Hee Choi, Hak Chul Jang, Hye Seung Lee, Kyong Soo Park, Young-Bum Kim, Soo Lim

Erschienen in: Diabetologia | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

A recent large clinical study has shown that empagliflozin has a lower rate of cardiovascular and all-cause mortality when compared with placebo in patients with type 2 diabetes. We investigated the effect of empagliflozin (compared with glimepiride) on the progression of atherosclerosis, and its possible mechanisms of action.

Methods

Forty-eight 5-week-old male ApoE −/− mice were fed a western diet for 20 weeks and divided into four groups: control (saline, 154 mmol/l NaCl), glimepiride 0.1 mg/kg, empagliflozin 1 mg/kg and empagliflozin 3 mg/kg (n = 12/group). Plaque size and composition in the aortic arch/valve areas and cardiovascular risk variables in the blood and tissues were evaluated. Insulin resistance was estimated by HOMA and adiponectin levels. Body composition was determined using dual-energy x-ray absorptiometry.

Results

After 8 weeks of treatment, the empagliflozin and glimepiride groups exhibited decreased blood glucose levels. Atherosclerotic plaque areas in the aortic arch/valve were significantly smaller in the empagliflozin groups than in the control or glimepiride groups. Insulin resistance and circulating concentrations of TNF-α, IL-6, monocyte chemoattractant protein-1 (MCP-1), serum amyloid A and urinary microalbumin decreased after empagliflozin treatment, and this significantly correlated with plaque size. Empagliflozin treatment reduced weight and fat mass, lipid droplets in the liver, fat cell size, mRNA expression of Tnf, Il6 and Mcp-1 (also known as Ccl2) and the infiltration of inflammatory cells in plaque and adipose tissue compared with the control or glimepiride group. Empagliflozin treatment increased adiponectin levels.

Conclusions/interpretation

Improvements in inflammation and insulin resistance seem to be mechanisms involved in the mitigation of atherosclerosis by empagliflozin.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404CrossRefPubMedPubMedCentral Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38CrossRefPubMed Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38CrossRefPubMed
3.
Zurück zum Zitat Kahn BB, Shulman GI, DeFronzo RA, Cushman SW, Rossetti L (1991) Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest 87:561–570CrossRefPubMedPubMedCentral Kahn BB, Shulman GI, DeFronzo RA, Cushman SW, Rossetti L (1991) Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest 87:561–570CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090CrossRefPubMedPubMedCentral Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270CrossRefPubMed Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270CrossRefPubMed
6.
Zurück zum Zitat Idris I, Donnelly R (2009) Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab 11:79–88CrossRefPubMed Idris I, Donnelly R (2009) Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab 11:79–88CrossRefPubMed
7.
Zurück zum Zitat Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ (2013) A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab 15:721–728CrossRefPubMed Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ (2013) A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab 15:721–728CrossRefPubMed
8.
Zurück zum Zitat Goring S, Hawkins N, Wygant G et al (2014) Dapagliflozin compared with other oral anti-diabetes treatments when added to metformin monotherapy: a systematic review and network meta-analysis. Diabetes Obes Metab 16:433–442CrossRefPubMed Goring S, Hawkins N, Wygant G et al (2014) Dapagliflozin compared with other oral anti-diabetes treatments when added to metformin monotherapy: a systematic review and network meta-analysis. Diabetes Obes Metab 16:433–442CrossRefPubMed
9.
Zurück zum Zitat Stenlof K, Cefalu WT, Kim KA et al (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15:372–382CrossRefPubMedPubMedCentral Stenlof K, Cefalu WT, Kim KA et al (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15:372–382CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Liakos A, Karagiannis T, Athanasiadou E et al (2014) Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 16:984–993CrossRefPubMed Liakos A, Karagiannis T, Athanasiadou E et al (2014) Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 16:984–993CrossRefPubMed
11.
Zurück zum Zitat Bolinder J, Ljunggren O, Kullberg J et al (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031CrossRefPubMed Bolinder J, Ljunggren O, Kullberg J et al (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031CrossRefPubMed
12.
Zurück zum Zitat List JF, Woo V, Morales E, Tang W, Fiedorek FT (2009) Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657CrossRefPubMed List JF, Woo V, Morales E, Tang W, Fiedorek FT (2009) Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657CrossRefPubMed
13.
Zurück zum Zitat Perkins BA, Cherney DZ, Partridge H et al (2014) Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 37:1480–1483CrossRefPubMed Perkins BA, Cherney DZ, Partridge H et al (2014) Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 37:1480–1483CrossRefPubMed
14.
Zurück zum Zitat Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed
15.
Zurück zum Zitat Terasaki M, Hiromura M, Mori Y et al (2015) Amelioration of hyperglycemia with a sodium-glucose cotransporter 2 inhibitor prevents macrophage-driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice. PLoS One 10, e0143396CrossRefPubMedPubMedCentral Terasaki M, Hiromura M, Mori Y et al (2015) Amelioration of hyperglycemia with a sodium-glucose cotransporter 2 inhibitor prevents macrophage-driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice. PLoS One 10, e0143396CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Nakajima K, Mita T, Osonoi Y et al (2015) Effect of repetitive glucose spike and hypoglycaemia on atherosclerosis and death rate in Apo E-deficient mice. Int J Endocrinol 2015:406394CrossRefPubMedPubMedCentral Nakajima K, Mita T, Osonoi Y et al (2015) Effect of repetitive glucose spike and hypoglycaemia on atherosclerosis and death rate in Apo E-deficient mice. Int J Endocrinol 2015:406394CrossRefPubMedPubMedCentral
17.
18.
Zurück zum Zitat Lim S, Lee KS, Lee JE et al (2015) Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis 243:107–119CrossRefPubMed Lim S, Lee KS, Lee JE et al (2015) Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis 243:107–119CrossRefPubMed
19.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefPubMed
20.
Zurück zum Zitat Stringer DM, Zahradka P, Declercq VC et al (2010) Modulation of lipid droplet size and lipid droplet proteins by trans-10, cis-12 conjugated linoleic acid parallels improvements in hepatic steatosis in obese, insulin-resistant rats. Biochim Biophys Acta 1801:1375–1385CrossRefPubMed Stringer DM, Zahradka P, Declercq VC et al (2010) Modulation of lipid droplet size and lipid droplet proteins by trans-10, cis-12 conjugated linoleic acid parallels improvements in hepatic steatosis in obese, insulin-resistant rats. Biochim Biophys Acta 1801:1375–1385CrossRefPubMed
21.
Zurück zum Zitat Lim S, Moon MK, Shin H et al (2011) Effect of S-adenosylmethionine on neointimal formation after balloon injury in obese diabetic rats. Cardiovasc Res 90:383–393CrossRefPubMed Lim S, Moon MK, Shin H et al (2011) Effect of S-adenosylmethionine on neointimal formation after balloon injury in obese diabetic rats. Cardiovasc Res 90:383–393CrossRefPubMed
22.
Zurück zum Zitat Vasilakou D, Karagiannis T, Athanasiadou E et al (2013) Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159:262–274CrossRefPubMed Vasilakou D, Karagiannis T, Athanasiadou E et al (2013) Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159:262–274CrossRefPubMed
23.
Zurück zum Zitat Chen L, Klein T, Leung PS (2012) Effects of combining linagliptin treatment with BI-38335, a novel SGLT2 inhibitor, on pancreatic islet function and inflammation in db/db mice. Curr Mol Med 12:995–1004CrossRefPubMed Chen L, Klein T, Leung PS (2012) Effects of combining linagliptin treatment with BI-38335, a novel SGLT2 inhibitor, on pancreatic islet function and inflammation in db/db mice. Curr Mol Med 12:995–1004CrossRefPubMed
24.
Zurück zum Zitat Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M (2009) Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther 85:513–519CrossRefPubMed Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M (2009) Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther 85:513–519CrossRefPubMed
25.
Zurück zum Zitat Yamamoto K, Uchida S, Kitano K et al (2011) TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity. Br J Pharmacol 164:181–191CrossRefPubMedPubMedCentral Yamamoto K, Uchida S, Kitano K et al (2011) TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity. Br J Pharmacol 164:181–191CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508CrossRefPubMedPubMedCentral Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Ridderstrale M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC (2014) Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2:691–700CrossRefPubMed Ridderstrale M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC (2014) Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2:691–700CrossRefPubMed
28.
Zurück zum Zitat Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964CrossRefPubMed Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964CrossRefPubMed
29.
Zurück zum Zitat Apovian CM, Bigornia S, Mott M et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659CrossRefPubMedPubMedCentral Apovian CM, Bigornia S, Mott M et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Farb MG, Bigornia S, Mott M et al (2011) Reduced adipose tissue inflammation represents an intermediate cardiometabolic phenotype in obesity. J Am Coll Cardiol 58:232–237CrossRefPubMedPubMedCentral Farb MG, Bigornia S, Mott M et al (2011) Reduced adipose tissue inflammation represents an intermediate cardiometabolic phenotype in obesity. J Am Coll Cardiol 58:232–237CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Carr RM, Ahima RS (2016) Pathophysiology of lipid droplet proteins in liver diseases. Exp Cell Res 340:187–192CrossRefPubMed Carr RM, Ahima RS (2016) Pathophysiology of lipid droplet proteins in liver diseases. Exp Cell Res 340:187–192CrossRefPubMed
32.
Zurück zum Zitat Hesse D, Radloff K, Jaschke A et al (2014) Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly. J Lipid Res 55:41–52CrossRefPubMedPubMedCentral Hesse D, Radloff K, Jaschke A et al (2014) Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly. J Lipid Res 55:41–52CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Cho NH, Jang HC, Choi SH et al (2007) Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care 30:2566–2568CrossRefPubMed Cho NH, Jang HC, Choi SH et al (2007) Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care 30:2566–2568CrossRefPubMed
34.
Zurück zum Zitat Lim S, Oh TJ, Koh KK (2015) Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. Int J Cardiol 201:408–414CrossRefPubMed Lim S, Oh TJ, Koh KK (2015) Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. Int J Cardiol 201:408–414CrossRefPubMed
35.
Zurück zum Zitat Freitas Lima LC, Braga VA, do Socorro de Franca Silva M et al (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6:304CrossRefPubMedPubMedCentral Freitas Lima LC, Braga VA, do Socorro de Franca Silva M et al (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6:304CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Bian F, Yang X, Zhou F et al (2014) C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br J Pharmacol 171:2671–2684CrossRefPubMedPubMedCentral Bian F, Yang X, Zhou F et al (2014) C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br J Pharmacol 171:2671–2684CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Uchida Y, Takeshita K, Yamamoto K et al (2012) Stress augments insulin resistance and prothrombotic state: role of visceral adipose-derived monocyte chemoattractant protein-1. Diabetes 61:1552–1561CrossRefPubMedPubMedCentral Uchida Y, Takeshita K, Yamamoto K et al (2012) Stress augments insulin resistance and prothrombotic state: role of visceral adipose-derived monocyte chemoattractant protein-1. Diabetes 61:1552–1561CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Lin J, Kakkar V, Lu X (2014) Impact of MCP-1 in atherosclerosis. Curr Pharm Des 20:4580–4588CrossRefPubMed Lin J, Kakkar V, Lu X (2014) Impact of MCP-1 in atherosclerosis. Curr Pharm Des 20:4580–4588CrossRefPubMed
39.
Zurück zum Zitat Funahashi T, Nakamura T, Shimomura I et al (1999) Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 38:202–206CrossRefPubMed Funahashi T, Nakamura T, Shimomura I et al (1999) Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 38:202–206CrossRefPubMed
40.
Zurück zum Zitat Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G (2003) Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression. Diabetes 52:1779–1785CrossRefPubMed Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G (2003) Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression. Diabetes 52:1779–1785CrossRefPubMed
41.
Zurück zum Zitat Liu Q, Anderson C, Broyde A et al (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76CrossRefPubMedPubMedCentral Liu Q, Anderson C, Broyde A et al (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Goodwill AG, Mather KJ, Conteh AM, Sassoon DJ, Noblet JN, Tune JD (2014) Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev Endocr Metab Disord 15:209–217CrossRefPubMedPubMedCentral Goodwill AG, Mather KJ, Conteh AM, Sassoon DJ, Noblet JN, Tune JD (2014) Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev Endocr Metab Disord 15:209–217CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Lim S, Quon MJ, Koh KK (2014) Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis 233:721–728CrossRefPubMed Lim S, Quon MJ, Koh KK (2014) Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis 233:721–728CrossRefPubMed
44.
Zurück zum Zitat Salazar MR, Carbajal HA, Espeche WG, Aizpurua M, Maciel PM, Reaven GM (2014) Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. Am J Med 127:152–157CrossRefPubMed Salazar MR, Carbajal HA, Espeche WG, Aizpurua M, Maciel PM, Reaven GM (2014) Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. Am J Med 127:152–157CrossRefPubMed
45.
Zurück zum Zitat Wang D, Liu B, Tao W, Hao Z, Liu M (2015) Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst Rev 10, CD009580 Wang D, Liu B, Tao W, Hao Z, Liu M (2015) Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst Rev 10, CD009580
46.
Zurück zum Zitat Briand F, Mayoux E, Brousseau E et al (2016) Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes 65:2032–2038CrossRefPubMed Briand F, Mayoux E, Brousseau E et al (2016) Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes 65:2032–2038CrossRefPubMed
47.
Zurück zum Zitat Mazzone T, Meyer PM, Feinstein SB et al (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581CrossRefPubMed Mazzone T, Meyer PM, Feinstein SB et al (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581CrossRefPubMed
48.
Zurück zum Zitat Papathanassiou K, Naka KK, Kazakos N et al (2009) Pioglitazone vs glimepiride: differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis 205:221–226CrossRefPubMed Papathanassiou K, Naka KK, Kazakos N et al (2009) Pioglitazone vs glimepiride: differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis 205:221–226CrossRefPubMed
49.
Zurück zum Zitat Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S (2015) Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64:2028–2041CrossRefPubMed Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S (2015) Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64:2028–2041CrossRefPubMed
50.
Zurück zum Zitat Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375:2223–2233CrossRefPubMed Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375:2223–2233CrossRefPubMed
51.
Zurück zum Zitat Lim S, Choi SH, Shin H et al (2012) Effect of a dipeptidyl peptidase-IV inhibitor, des-fluoro-sitagliptin, on neointimal formation after balloon injury in rats. PLoS One 7, e35007CrossRefPubMedPubMedCentral Lim S, Choi SH, Shin H et al (2012) Effect of a dipeptidyl peptidase-IV inhibitor, des-fluoro-sitagliptin, on neointimal formation after balloon injury in rats. PLoS One 7, e35007CrossRefPubMedPubMedCentral
Metadaten
Titel
The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet
verfasst von
Ji Hye Han
Tae Jung Oh
Ghayoung Lee
Hyo Jin Maeng
Dong Hwa Lee
Kyoung Min Kim
Sung Hee Choi
Hak Chul Jang
Hye Seung Lee
Kyong Soo Park
Young-Bum Kim
Soo Lim
Publikationsdatum
19.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 2/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4158-2

Weitere Artikel der Ausgabe 2/2017

Diabetologia 2/2017 Zur Ausgabe

Up front

Up front

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.