Skip to main content
Erschienen in: Current Osteoporosis Reports 4/2016

02.06.2016 | Osteoporosis and Cancer (M Nanes and M Drake, Section Editors)

The Bone Microenvironment: a Fertile Soil for Tumor Growth

verfasst von: Denise Buenrostro, Patrick L. Mulcrone, Philip Owens, Julie A. Sterling

Erschienen in: Current Osteoporosis Reports | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Bone metastatic disease remains a significant and frequent problem for cancer patients that can lead to increased morbidity and mortality. Unfortunately, despite decades of research, bone metastases remain incurable. Current studies have demonstrated that many properties and cell types within the bone and bone marrow microenvironment contribute to tumor-induced bone disease. Furthermore, they have pointed to the importance of understanding how tumor cells interact with their microenvironment in order to help improve both the development of new therapeutics and the prediction of response to therapy.
Literatur
2.
Zurück zum Zitat Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32(1):73–84.CrossRefPubMed Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32(1):73–84.CrossRefPubMed
3.
Zurück zum Zitat Guise TA, Mundy GR. Cancer and bone. Endocr Rev. 1998;19(1):18–54.PubMed Guise TA, Mundy GR. Cancer and bone. Endocr Rev. 1998;19(1):18–54.PubMed
4.
Zurück zum Zitat Johnson RW et al. TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical hedgehog signaling. Cancer Res. 2011;71(3):822–31.CrossRefPubMed Johnson RW et al. TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical hedgehog signaling. Cancer Res. 2011;71(3):822–31.CrossRefPubMed
5.
Zurück zum Zitat Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.CrossRefPubMed Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.CrossRefPubMed
6.
Zurück zum Zitat Coleman R et al. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25 Suppl 3:iii 124-37.CrossRef Coleman R et al. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25 Suppl 3:iii 124-37.CrossRef
7.
Zurück zum Zitat Coleman R et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 2014;15(9):997–1006.CrossRefPubMed Coleman R et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 2014;15(9):997–1006.CrossRefPubMed
10.
Zurück zum Zitat Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–92.CrossRefPubMed Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–92.CrossRefPubMed
11.
Zurück zum Zitat Kostic A, Lynch CD, Sheetz MP. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One. 2009;4(7):e6361.CrossRefPubMedPubMedCentral Kostic A, Lynch CD, Sheetz MP. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One. 2009;4(7):e6361.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Provenzano PP et al. Matrix density-induced mechanoregulation of breast cell phenotype, signaling, and gene expression through a FAK-ERK linkage. Oncogene. 2009;28(49):4326–43.CrossRefPubMedPubMedCentral Provenzano PP et al. Matrix density-induced mechanoregulation of breast cell phenotype, signaling, and gene expression through a FAK-ERK linkage. Oncogene. 2009;28(49):4326–43.CrossRefPubMedPubMedCentral
13.•
Zurück zum Zitat Page JM et al. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin beta3 and TGF-beta receptor type II. Biomaterials. 2015;64:33–44. This paper demonstrated that the rigid mineralized bone matrix can alter gene expression and bone destruction in an integrin beta 3-TGF-β dependent manner.CrossRefPubMed Page JM et al. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin beta3 and TGF-beta receptor type II. Biomaterials. 2015;64:33–44. This paper demonstrated that the rigid mineralized bone matrix can alter gene expression and bone destruction in an integrin beta 3-TGF-β dependent manner.CrossRefPubMed
14.
15.
Zurück zum Zitat Johnson RW et al. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis. 2014. Johnson RW et al. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis. 2014.
16.
Zurück zum Zitat Guo R et al. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials. 2015;54:21–33.CrossRefPubMedPubMedCentral Guo R et al. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials. 2015;54:21–33.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Guise TA et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.CrossRefPubMedPubMedCentral Guise TA et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Wang H et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193–210.CrossRefPubMedPubMedCentral Wang H et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193–210.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Schneider A et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 2005;146(4):1727–36.CrossRefPubMed Schneider A et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 2005;146(4):1727–36.CrossRefPubMed
21.
Zurück zum Zitat Taichman RS et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.PubMed Taichman RS et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.PubMed
23.
Zurück zum Zitat Jung Y et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood. 2007;110(1):82–90.CrossRefPubMedPubMedCentral Jung Y et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood. 2007;110(1):82–90.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Jung Y et al. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia. 2012;14(5):429–39.CrossRefPubMedPubMedCentral Jung Y et al. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia. 2012;14(5):429–39.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Jung Y et al. Annexin 2 is a regulator of SDF-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Exp Hematol. 2011;39(2):151–166.e1.CrossRefPubMed Jung Y et al. Annexin 2 is a regulator of SDF-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Exp Hematol. 2011;39(2):151–166.e1.CrossRefPubMed
26.
Zurück zum Zitat Park, SI et al. Parathyroid hormone-related protein drives a CD11b(+)Gr1(+) cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res, 2013; 73(22), doi:10.1158/0008-5472.CAN-12-4692. Park, SI et al. Parathyroid hormone-related protein drives a CD11b(+)Gr1(+) cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res, 2013; 73(22), doi:10.​1158/​0008-5472.​CAN-12-4692.
27.
Zurück zum Zitat Akeno N et al. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology. 2002;143(2):420–5.PubMed Akeno N et al. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology. 2002;143(2):420–5.PubMed
28.
Zurück zum Zitat Kim JM et al. DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling. Nat Commun. 2012;3:1296.CrossRefPubMed Kim JM et al. DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling. Nat Commun. 2012;3:1296.CrossRefPubMed
30.
Zurück zum Zitat Glass 2nd DA et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.CrossRefPubMed Glass 2nd DA et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.CrossRefPubMed
32.
33.
34.
Zurück zum Zitat Zhou JZ et al. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. 2015;34(14):1831–42.CrossRefPubMed Zhou JZ et al. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. 2015;34(14):1831–42.CrossRefPubMed
35.•
Zurück zum Zitat Sottnik JL et al. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015;75(11):2151–8. This paper presents data identifying the contribution of physical forces to tumor cell growth and that osteocytes play an important role as mediators in the bone metastatic niche.CrossRefPubMedPubMedCentral Sottnik JL et al. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015;75(11):2151–8. This paper presents data identifying the contribution of physical forces to tumor cell growth and that osteocytes play an important role as mediators in the bone metastatic niche.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Delgado-Calle J et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76(5):1089–100.CrossRefPubMed Delgado-Calle J et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76(5):1089–100.CrossRefPubMed
38.
39.
Zurück zum Zitat Calvo F et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.CrossRefPubMed Calvo F et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.CrossRefPubMed
40.
Zurück zum Zitat Harper J, Sainson RC. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol. 2014;25:69–77.CrossRefPubMed Harper J, Sainson RC. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol. 2014;25:69–77.CrossRefPubMed
41.
Zurück zum Zitat Kraman M et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30.CrossRefPubMed Kraman M et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30.CrossRefPubMed
42.
Zurück zum Zitat Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29(2):249–61.CrossRefPubMed Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29(2):249–61.CrossRefPubMed
43.
Zurück zum Zitat Quante M et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.CrossRefPubMedPubMedCentral Quante M et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Bergfeld SA, Blavier L, DeClerck YA. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther. 2014;13(4):962–75.CrossRefPubMedPubMedCentral Bergfeld SA, Blavier L, DeClerck YA. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther. 2014;13(4):962–75.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Wu HC et al. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer. 1994;57(3):406–12.CrossRefPubMed Wu HC et al. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer. 1994;57(3):406–12.CrossRefPubMed
46.
Zurück zum Zitat Li X et al. Loss of TGF-beta responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res. 2012;10(4):494–503.CrossRefPubMedPubMedCentral Li X et al. Loss of TGF-beta responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res. 2012;10(4):494–503.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Nakamura R et al. Transforming growth factor-beta synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun. 2015;458(4):777–82.CrossRefPubMed Nakamura R et al. Transforming growth factor-beta synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun. 2015;458(4):777–82.CrossRefPubMed
49.
Zurück zum Zitat Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.CrossRefPubMed Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.CrossRefPubMed
50.
Zurück zum Zitat Deng L et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol. 2010;176(2):952–67.CrossRefPubMedPubMedCentral Deng L et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol. 2010;176(2):952–67.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Biswas SK et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22.CrossRefPubMed Biswas SK et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22.CrossRefPubMed
54.
Zurück zum Zitat Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.CrossRefPubMed Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.CrossRefPubMed
55.
Zurück zum Zitat Chang MK et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.CrossRefPubMed Chang MK et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.CrossRefPubMed
56.
Zurück zum Zitat Winkler IG et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28.CrossRefPubMed Winkler IG et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28.CrossRefPubMed
57.
Zurück zum Zitat Alexander KA et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517–32.CrossRefPubMed Alexander KA et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517–32.CrossRefPubMed
58.
59.•
Zurück zum Zitat Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356–64. This paper reviews controversial issues in myeloid-derived suppressor cell biology, including their role in cancer progression and metastasis. This review also emphasis how these cells may be used both as prognostic factors and as therapeutic targets.CrossRefPubMed Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356–64. This paper reviews controversial issues in myeloid-derived suppressor cell biology, including their role in cancer progression and metastasis. This review also emphasis how these cells may be used both as prognostic factors and as therapeutic targets.CrossRefPubMed
61.
Zurück zum Zitat Movahedi K et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111(8):4233–44.CrossRefPubMed Movahedi K et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111(8):4233–44.CrossRefPubMed
62.
Zurück zum Zitat Huang B et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31.CrossRefPubMed Huang B et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31.CrossRefPubMed
63.
Zurück zum Zitat Elkabets M et al. IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 2010;40(12):3347–57.CrossRefPubMedPubMedCentral Elkabets M et al. IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 2010;40(12):3347–57.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Srivastava MK et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.CrossRefPubMed Srivastava MK et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.CrossRefPubMed
65.
Zurück zum Zitat Lindau D et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138(2):105–15.CrossRefPubMedPubMedCentral Lindau D et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138(2):105–15.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Park SI et al. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res. 2013;73(22):6574–83.CrossRefPubMed Park SI et al. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res. 2013;73(22):6574–83.CrossRefPubMed
67.
Zurück zum Zitat Danilin S et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology. 2012;1(9):1484–94.CrossRefPubMedPubMedCentral Danilin S et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology. 2012;1(9):1484–94.CrossRefPubMedPubMedCentral
68.•
Zurück zum Zitat Sawant A et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 2013;73(2):672–82. This paper identified myeloid-derived suppressor cells as a novel osteoclast progenitor that had the potential to stimulate bone metastasis during cancer progression.CrossRefPubMed Sawant A et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 2013;73(2):672–82. This paper identified myeloid-derived suppressor cells as a novel osteoclast progenitor that had the potential to stimulate bone metastasis during cancer progression.CrossRefPubMed
69.
Zurück zum Zitat Vivier E et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12(4):239–52.CrossRefPubMed Vivier E et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12(4):239–52.CrossRefPubMed
71.
72.
Zurück zum Zitat Zitvogel L, Kroemer G. Cancer: antibodies regulate antitumour immunity. Nature. 2015;521(7550):35–7.CrossRefPubMed Zitvogel L, Kroemer G. Cancer: antibodies regulate antitumour immunity. Nature. 2015;521(7550):35–7.CrossRefPubMed
73.
Zurück zum Zitat Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.CrossRefPubMed Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.CrossRefPubMed
74.
Zurück zum Zitat Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.CrossRefPubMed Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.CrossRefPubMed
75.
Zurück zum Zitat Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.CrossRefPubMed Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.CrossRefPubMed
76.
Zurück zum Zitat Balkwill F, Montfort A, Capasso M. B regulatory cells in cancer. Trends Immunol. 2013;34(4):169–73.CrossRefPubMed Balkwill F, Montfort A, Capasso M. B regulatory cells in cancer. Trends Immunol. 2013;34(4):169–73.CrossRefPubMed
78.
Zurück zum Zitat Monteiro AC et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One. 2013;8(7):e68171.CrossRefPubMedPubMedCentral Monteiro AC et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One. 2013;8(7):e68171.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Pasquier E et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2(10):797–809.CrossRefPubMedPubMedCentral Pasquier E et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2(10):797–809.CrossRefPubMedPubMedCentral
80.
81.
Zurück zum Zitat Thaker PH et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.CrossRefPubMed Thaker PH et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.CrossRefPubMed
82.
Zurück zum Zitat Thaker PH, Sood AK. The neuroendocrine impact of chronic stress on cancer. Semin Cancer Biol. 2008;18(3):164–70.CrossRefPubMed Thaker PH, Sood AK. The neuroendocrine impact of chronic stress on cancer. Semin Cancer Biol. 2008;18(3):164–70.CrossRefPubMed
83.
Zurück zum Zitat Chida Y et al. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 2008;5(8):466–75.CrossRefPubMed Chida Y et al. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 2008;5(8):466–75.CrossRefPubMed
85.
Zurück zum Zitat Melhem-Bertrandt A et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol. 2011;29(19):2645–52.CrossRefPubMedPubMedCentral Melhem-Bertrandt A et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol. 2011;29(19):2645–52.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Elefteriou F et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.CrossRefPubMed Elefteriou F et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.CrossRefPubMed
87.
Zurück zum Zitat Campbell JP et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10(7):e1001363.CrossRefPubMedPubMedCentral Campbell JP et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10(7):e1001363.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Costa L et al. Impact of skeletal complications on patients’ quality of life, mobility, and functional independence. Support Care Cancer. 2008;16(8):879–89.CrossRefPubMed Costa L et al. Impact of skeletal complications on patients’ quality of life, mobility, and functional independence. Support Care Cancer. 2008;16(8):879–89.CrossRefPubMed
89.
Zurück zum Zitat Käkönen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(S3):834–9.CrossRefPubMed Käkönen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(S3):834–9.CrossRefPubMed
90.
Zurück zum Zitat Clohisy DR and PW Mantyh. Bone cancer pain. Clin Orthop Relat Res, 2003, (415 Suppl): 279-88. Clohisy DR and PW Mantyh. Bone cancer pain. Clin Orthop Relat Res, 2003, (415 Suppl): 279-88.
91.
Zurück zum Zitat Halvorson KG et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res. 2005;65(20):9426–35.CrossRefPubMed Halvorson KG et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res. 2005;65(20):9426–35.CrossRefPubMed
92.
Zurück zum Zitat Falk S et al. P2X7 receptor-mediated analgesia in cancer-induced bone pain. Neuroscience. 2015;291:93–105.CrossRefPubMed Falk S et al. P2X7 receptor-mediated analgesia in cancer-induced bone pain. Neuroscience. 2015;291:93–105.CrossRefPubMed
93.
Zurück zum Zitat Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155(1):28–36.CrossRefPubMed Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155(1):28–36.CrossRefPubMed
94.
Zurück zum Zitat Smith MR et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.CrossRefPubMed Smith MR et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.CrossRefPubMed
95.
Zurück zum Zitat Le Gall C et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res. 2007;67(20):9894–902.CrossRefPubMed Le Gall C et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res. 2007;67(20):9894–902.CrossRefPubMed
96.
Zurück zum Zitat Chavez-Macgregor M et al. Angiogenesis in the bone marrow of patients with breast cancer. Clin Cancer Res. 2005;11(15):5396–400.CrossRefPubMed Chavez-Macgregor M et al. Angiogenesis in the bone marrow of patients with breast cancer. Clin Cancer Res. 2005;11(15):5396–400.CrossRefPubMed
97.
Zurück zum Zitat Kopp H-G et al. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology. 2005;20(5):349–56.CrossRefPubMed Kopp H-G et al. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology. 2005;20(5):349–56.CrossRefPubMed
98.•
Zurück zum Zitat Ghajar CM et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17. This paper provides evidence for a link between the vascular and tumor dormancy, a subject that had not been well studied.CrossRefPubMedPubMedCentral Ghajar CM et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17. This paper provides evidence for a link between the vascular and tumor dormancy, a subject that had not been well studied.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Bone Microenvironment: a Fertile Soil for Tumor Growth
verfasst von
Denise Buenrostro
Patrick L. Mulcrone
Philip Owens
Julie A. Sterling
Publikationsdatum
02.06.2016
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 4/2016
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-016-0315-2

Weitere Artikel der Ausgabe 4/2016

Current Osteoporosis Reports 4/2016 Zur Ausgabe

Muscle and Bone (L Bonewald and M Hamrick, Section Editors)

Crosstalk Between Muscle and Bone Via the Muscle-Myokine Irisin

Rare Bone Disease (CB Langman and E Shore, Section Editors)

Hajdu-Cheney Syndrome, a Disease Associated with NOTCH2 Mutations

Biomechanics (M Silva and K Jepsen, Section Editors)

Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.