Skip to main content
Erschienen in: Journal of Gambling Studies 2/2018

12.10.2017 | Original Paper

The Brain’s Reward Response Occurs Even Without Actual Reward!

verfasst von: A. Fielding, Y. Fu, E. A. Franz

Erschienen in: Journal of Gambling Studies | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

What if the brain’s response to reward occurs even when there is no reward? Wouldn’t that be a further concern for people prone to problem gambling and other forms of addiction, like those related to eating? Electroencephalography was employed to investigate this possibility using probabilistic feedback manipulations and measures of known event-related potentials (ERPs) related to reward processing. We tested the hypothesis—that reward-based ERPs would occur even in the absence of a tangible reward and when manipulations on expectation are implicit. The well-known P300 response potential was a key focus, and was assessed in non-gambling volunteer undergraduates on a task involving experimentally-manipulated probabilities of positive or negative feedback comprising three trial types—80, 50, or 20% positive feedback. A feedback stimulus (F1) followed a guess response between two possible outcomes (implicit win/loss), and then a second feedback stimulus (F2) was presented to confirm an alleged ‘win’ or ‘loss’ (explicit win/loss). Results revealed that amplitude of the P300 in F1-locked data (implicit manipulation) was larger (more positive) on average for feedback outcomes that were manipulated to be less likely than expected. The effect is pronounced after increased time on task (later trials), even though the majority of participants were not explicitly aware of our probability manipulations. For the explicit effects in F2-locked data, no meaningful or significant effects were observed. These findings point to the existence of proposed success-response mechanisms that operate not only explicitly but also with implicit manipulations that do not involve any direct indication of a win or loss, and are not associated with tangible rewards. Thus, there seems to be a non-explicit form of perception (we call ‘implicit’) associated with an internal experience of wins/losses (in the absence of actual rewards or losses) that can be measured in associated brain processes. The potential significance of these findings is discussed in terms of implications for problem gambling.
Literatur
Zurück zum Zitat Aine, C. J. (1994). A conceptual overview and critique of functional neuroimaging techniques in humans: I. MRI/FMRI and PET. Critical Reviews in Neurobiology, 9(2–3), 229–309. Aine, C. J. (1994). A conceptual overview and critique of functional neuroimaging techniques in humans: I. MRI/FMRI and PET. Critical Reviews in Neurobiology, 9(2–3), 229–309.
Zurück zum Zitat American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5 ® ). Arlington: American Psychiatric Association Publishing.CrossRef American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5 ® ). Arlington: American Psychiatric Association Publishing.CrossRef
Zurück zum Zitat Bednark, J. G., & Franz, E. A. (2014). Agency attribution: Event-related potentials and outcome monitoring. Experimental Brain Research, 232(4), 1117–1126.CrossRefPubMed Bednark, J. G., & Franz, E. A. (2014). Agency attribution: Event-related potentials and outcome monitoring. Experimental Brain Research, 232(4), 1117–1126.CrossRefPubMed
Zurück zum Zitat Bednark, J. G., Reynolds, J. N. J., Stafford, T., Redgrave, P., & Franz, E. A. (2013). Creating a movement heuristic for voluntary action: Electrophysiological correlates of movement-outcome learning. Cortex, 49(3), 771–780.CrossRefPubMed Bednark, J. G., Reynolds, J. N. J., Stafford, T., Redgrave, P., & Franz, E. A. (2013). Creating a movement heuristic for voluntary action: Electrophysiological correlates of movement-outcome learning. Cortex, 49(3), 771–780.CrossRefPubMed
Zurück zum Zitat Bednark, J. G., Reynolds, J. N. J., Stafford, T., Redgrave, P., & Franz, E. A. (2016). Action experience and action discovery in medicated individuals with Parkinson’s disease. Frontiers in Human Neuroscience, 10. Bednark, J. G., Reynolds, J. N. J., Stafford, T., Redgrave, P., & Franz, E. A. (2016). Action experience and action discovery in medicated individuals with Parkinson’s disease. Frontiers in Human Neuroscience, 10.
Zurück zum Zitat Bondolfi, G., Osiek, C., & Ferrero, F. (2000). Prevalence estimates of pathological gambling in Switzerland. Acta Psychiatrica Scandinavica, 101(6), 473–475.CrossRefPubMed Bondolfi, G., Osiek, C., & Ferrero, F. (2000). Prevalence estimates of pathological gambling in Switzerland. Acta Psychiatrica Scandinavica, 101(6), 473–475.CrossRefPubMed
Zurück zum Zitat Caplin, A., Dean, M., Glimcher, P. W., & Rutledge, R. B. (2010). Measuring beliefs and rewards: A neuroeconomic approach. The Quarterly Journal of Economics, 125(3), 923–960.CrossRefPubMedPubMedCentral Caplin, A., Dean, M., Glimcher, P. W., & Rutledge, R. B. (2010). Measuring beliefs and rewards: A neuroeconomic approach. The Quarterly Journal of Economics, 125(3), 923–960.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage, 35(2), 968–978.CrossRefPubMedPubMedCentral Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage, 35(2), 968–978.CrossRefPubMedPubMedCentral
Zurück zum Zitat Comings, D., Gade-Andavolu, R., Gonzalez, N., Wu, S., Muhleman, D., Chen, C. E., et al. (2001). The additive effect of neurotransmitter genes in pathological gambling. Clinical Genetics, 60(2), 107–116.CrossRefPubMed Comings, D., Gade-Andavolu, R., Gonzalez, N., Wu, S., Muhleman, D., Chen, C. E., et al. (2001). The additive effect of neurotransmitter genes in pathological gambling. Clinical Genetics, 60(2), 107–116.CrossRefPubMed
Zurück zum Zitat Courchesne, E., Hillyard, S. A., & Courchesne, R. Y. (1977). P3 waves to the discrimination of targets in homogeneous and heterogeneous stimulus sequences. Psychophysiology, 14(6), 590–597.CrossRefPubMed Courchesne, E., Hillyard, S. A., & Courchesne, R. Y. (1977). P3 waves to the discrimination of targets in homogeneous and heterogeneous stimulus sequences. Psychophysiology, 14(6), 590–597.CrossRefPubMed
Zurück zum Zitat Debnath, R., & Franz, E. A. (2016). Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex, 81, 118–125.CrossRefPubMed Debnath, R., & Franz, E. A. (2016). Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex, 81, 118–125.CrossRefPubMed
Zurück zum Zitat Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefPubMed Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefPubMed
Zurück zum Zitat Eitam, B., Kennedy, P. M., & Higgins, E. T. (2013). Motivation from control. Experimental Brain Research, 229(3), 475–484.CrossRefPubMed Eitam, B., Kennedy, P. M., & Higgins, E. T. (2013). Motivation from control. Experimental Brain Research, 229(3), 475–484.CrossRefPubMed
Zurück zum Zitat Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, and Psychophysics, 16(1), 143–149.CrossRef Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, and Psychophysics, 16(1), 143–149.CrossRef
Zurück zum Zitat Feigelman, W., Kleinman, P. H., Lesieur, H. R., Millman, R. B., & Lesser, M. L. (1995). Pathological gambling among methadone patients. Drug and Alcohol Dependence, 39(2), 75–81.CrossRefPubMed Feigelman, W., Kleinman, P. H., Lesieur, H. R., Millman, R. B., & Lesser, M. L. (1995). Pathological gambling among methadone patients. Drug and Alcohol Dependence, 39(2), 75–81.CrossRefPubMed
Zurück zum Zitat Franz, E. A., & Fu, Y. (2017). Pre-movement planning processes in people with congenital mirror movements. Clinical Neurophysiology, 128, 1985–1993.CrossRefPubMed Franz, E. A., & Fu, Y. (2017). Pre-movement planning processes in people with congenital mirror movements. Clinical Neurophysiology, 128, 1985–1993.CrossRefPubMed
Zurück zum Zitat Franz, E. A., Fu, Y., Moore, M., Winter, T., Mayne, T., Debnath, R., et al. (2016). Fooling the brain by mirroring the hand: Brain correlates of the perceptual capture of limb ownership. Restorative Neurology and Neuroscience, 34(5), 721–732.CrossRefPubMed Franz, E. A., Fu, Y., Moore, M., Winter, T., Mayne, T., Debnath, R., et al. (2016). Fooling the brain by mirroring the hand: Brain correlates of the perceptual capture of limb ownership. Restorative Neurology and Neuroscience, 34(5), 721–732.CrossRefPubMed
Zurück zum Zitat Franz, E. A., & Miller, J. (2002). Effects of response readiness on reaction time and force output in people with Parkinson’s disease. Brain, 125, 1733–1750.CrossRefPubMed Franz, E. A., & Miller, J. (2002). Effects of response readiness on reaction time and force output in people with Parkinson’s disease. Brain, 125, 1733–1750.CrossRefPubMed
Zurück zum Zitat Galvan, A., Hare, T. A., Davidson, M., Spicer, J., Glover, G., & Casey, B. (2005). The role of ventral frontostriatal circuitry in reward-based learning in humans. Journal of Neuroscience, 25(38), 8650–8656.CrossRefPubMed Galvan, A., Hare, T. A., Davidson, M., Spicer, J., Glover, G., & Casey, B. (2005). The role of ventral frontostriatal circuitry in reward-based learning in humans. Journal of Neuroscience, 25(38), 8650–8656.CrossRefPubMed
Zurück zum Zitat Gehring, W. J., Coles, M. G., Meyer, D. E., & Donchin, E. (1995). A brain potential manifestation of error-related processing. Electroencephalography and Clinical Neurophysiology-Supplements Only, 44, 261–272. Gehring, W. J., Coles, M. G., Meyer, D. E., & Donchin, E. (1995). A brain potential manifestation of error-related processing. Electroencephalography and Clinical Neurophysiology-Supplements Only, 44, 261–272.
Zurück zum Zitat Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390.CrossRef Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390.CrossRef
Zurück zum Zitat Gneezy, U., & Rustichini, A. (2000). Pay enough or don’t pay at all. The Quarterly Journal of Economics, 115(3), 791–810.CrossRef Gneezy, U., & Rustichini, A. (2000). Pay enough or don’t pay at all. The Quarterly Journal of Economics, 115(3), 791–810.CrossRef
Zurück zum Zitat Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005). Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology, 42(2), 161–170.CrossRefPubMed Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005). Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology, 42(2), 161–170.CrossRefPubMed
Zurück zum Zitat Hall, G. W., Carriero, N. J., Takushi, R. Y., Montoya, I. D., Preston, K. L., & Gorelick, D. A. (2000). Pathological gambling among cocaine-dependent outpatients. American Journal of Psychiatry, 157(7), 1127–1133.CrossRefPubMed Hall, G. W., Carriero, N. J., Takushi, R. Y., Montoya, I. D., Preston, K. L., & Gorelick, D. A. (2000). Pathological gambling among cocaine-dependent outpatients. American Journal of Psychiatry, 157(7), 1127–1133.CrossRefPubMed
Zurück zum Zitat Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.CrossRefPubMed Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.CrossRefPubMed
Zurück zum Zitat Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. NeuroReport, 14(18), 2481–2484.CrossRefPubMed Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. NeuroReport, 14(18), 2481–2484.CrossRefPubMed
Zurück zum Zitat Ito, T. A., Larsen, J. T., Smith, N. K., & Cacioppo, J. T. (1998). Negative information weighs more heavily on the brain: the negativity bias in evaluative categorizations. Journal of Personality and Social Psychology, 75(4), 887–900.CrossRefPubMed Ito, T. A., Larsen, J. T., Smith, N. K., & Cacioppo, J. T. (1998). Negative information weighs more heavily on the brain: the negativity bias in evaluative categorizations. Journal of Personality and Social Psychology, 75(4), 887–900.CrossRefPubMed
Zurück zum Zitat Johnson, R., & Donchin, E. (1980). P300 and stimulus categorization: Two plus one is not so different from one plus one. Psychophysiology, 17(2), 167–178.CrossRefPubMed Johnson, R., & Donchin, E. (1980). P300 and stimulus categorization: Two plus one is not so different from one plus one. Psychophysiology, 17(2), 167–178.CrossRefPubMed
Zurück zum Zitat Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21(16), 159.CrossRef Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21(16), 159.CrossRef
Zurück zum Zitat Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240.CrossRefPubMed Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240.CrossRefPubMed
Zurück zum Zitat Nakahara, D., Ozaki, N., Miura, Y., Miura, H., & Nagatsu, T. (1989). Increased dopamine and serotonin metabolism in rat nucleus accumbens produced by intracranial self-stimulation of medial forebrain bundle as measured by in vivo microdialysis. Brain Research, 495(1), 178–181.CrossRefPubMed Nakahara, D., Ozaki, N., Miura, Y., Miura, H., & Nagatsu, T. (1989). Increased dopamine and serotonin metabolism in rat nucleus accumbens produced by intracranial self-stimulation of medial forebrain bundle as measured by in vivo microdialysis. Brain Research, 495(1), 178–181.CrossRefPubMed
Zurück zum Zitat Oberg, S. A., Christie, G. J., & Tata, M. S. (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49(13), 3768–3775.CrossRefPubMed Oberg, S. A., Christie, G. J., & Tata, M. S. (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49(13), 3768–3775.CrossRefPubMed
Zurück zum Zitat Pavlov, I. (1903). 1928 Lectures on conditioned reflexes (W. H. Gantt, Trans.). New York: International. Pavlov, I. (1903). 1928 Lectures on conditioned reflexes (W. H. Gantt, Trans.). New York: International.
Zurück zum Zitat Pavlov, I. P., & Anrep, G. V. E. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex (Translated and Edited by G. V. Anrep). London. Pavlov, I. P., & Anrep, G. V. E. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex (Translated and Edited by G. V. Anrep). London.
Zurück zum Zitat Sato, A., Yasuda, A., Ohira, H., Miyawaki, K., Nishikawa, M., Kumano, H., et al. (2005). Effects of value and reward magnitude on feedback negativity and P300. NeuroReport, 16(4), 407–411.CrossRefPubMed Sato, A., Yasuda, A., Ohira, H., Miyawaki, K., Nishikawa, M., Kumano, H., et al. (2005). Effects of value and reward magnitude on feedback negativity and P300. NeuroReport, 16(4), 407–411.CrossRefPubMed
Zurück zum Zitat Volberg, R. A., Abbott, M. W., Rönnberg, S., & Munck, I. M. (2001). Prevalence and risks of pathological gambling in Sweden. Acta Psychiatrica Scandinavica, 104(4), 250–256.CrossRefPubMed Volberg, R. A., Abbott, M. W., Rönnberg, S., & Munck, I. M. (2001). Prevalence and risks of pathological gambling in Sweden. Acta Psychiatrica Scandinavica, 104(4), 250–256.CrossRefPubMed
Zurück zum Zitat Wu, Y., & Zhou, X. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114–122.CrossRefPubMed Wu, Y., & Zhou, X. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114–122.CrossRefPubMed
Zurück zum Zitat Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24(28), 6258–6264.CrossRefPubMed Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24(28), 6258–6264.CrossRefPubMed
Metadaten
Titel
The Brain’s Reward Response Occurs Even Without Actual Reward!
verfasst von
A. Fielding
Y. Fu
E. A. Franz
Publikationsdatum
12.10.2017
Verlag
Springer US
Erschienen in
Journal of Gambling Studies / Ausgabe 2/2018
Elektronische ISSN: 1573-3602
DOI
https://doi.org/10.1007/s10899-017-9721-3

Weitere Artikel der Ausgabe 2/2018

Journal of Gambling Studies 2/2018 Zur Ausgabe