Skip to main content
Erschienen in: Osteoporosis International 8/2015

01.08.2015 | Review Article

The calcium-sensing receptor in bone metabolism: from bench to bedside and back

verfasst von: L. Cianferotti, A. R. Gomes, S. Fabbri, A. Tanini, M. L. Brandi

Erschienen in: Osteoporosis International | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Abstract

Summary

The calcium-sensing receptor (CaSR), a key player in the maintenance of calcium homeostasis, can influence bone modeling and remodeling by directly acting on bone cells, as demonstrated by in vivo and in vitro evidence. The modulation of CaSR signaling can play a role in bone anabolism.

Introduction

The calcium-sensing receptor (CaSR) is a key player in the maintenance of calcium homeostasis through the regulation of PTH secretion and calcium homeostasis, thus indirectly influencing bone metabolism. In addition to this role, in vitro and in vivo evidence points to direct effects of CaSR in bone modeling and remodeling. In addition, the activation of the CaSR is one of the anabolic mechanisms implicated in the action of strontium ranelate, to reduce fracture risk.

Methods

This review is based upon the acquisition of data from a PubMed enquiry using the terms “calcium sensing receptor,” “CaSR” AND “bone remodeling,” “bone modeling,” “bone turnover,” “osteoblast,” “osteoclast,” “osteocyte,” “chondrocyte,” “bone marrow,” “calcilytics,” “calcimimetics,” “strontium,” “osteoporosis,” “skeletal homeostasis,” and “bone metabolism.”

Results

A fully functional CaSR is expressed in osteoblasts and osteoclasts, so that these cells are able to sense changes in the extracellular calcium and as a result modulate their behavior. CaSR agonists (calcimimetics) or antagonists (calcilytics) have the potential to indirectly influence skeletal homeostasis through the modulation of PTH secretion by the parathyroid glands. The bone anabolic effect of strontium ranelate, a divalent cation used as a treatment for postmenopausal and male osteoporosis, might be explained, at least in part, by the activation of CaSR in bone cells.

Conclusions

Calcium released in the bone microenvironment during remodeling is a major factor in regulating bone cells. Osteoblast and osteoclast proliferation, differentiation, and apoptosis are influenced by local extracellular calcium concentration. Thus, the calcium-sensing properties of skeletal cells can be exploited in order to modulate bone turnover and can explain the bone anabolic effects of agents developed and employed to revert osteoporosis.
Literatur
1.
Zurück zum Zitat Brown EM, Gamba G, Riccardi D et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580PubMed Brown EM, Gamba G, Riccardi D et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580PubMed
2.
Zurück zum Zitat Brown EM (2000) Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 1:307–315PubMed Brown EM (2000) Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 1:307–315PubMed
3.
Zurück zum Zitat Egbuna OI, Brown EM (2008) Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 22:129–148PubMedCentralPubMed Egbuna OI, Brown EM (2008) Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 22:129–148PubMedCentralPubMed
4.
Zurück zum Zitat Loupy A, Ramakrishnan SK, Wootla B et al (2012) PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 122:3355–3367PubMedCentralPubMed Loupy A, Ramakrishnan SK, Wootla B et al (2012) PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 122:3355–3367PubMedCentralPubMed
5.
Zurück zum Zitat Brown EM, Chattopadhyay N, Yano S (2004) Calcium-sensing receptors in bone cells. J Musculoskelet Neuronal Interact 4:412–413PubMed Brown EM, Chattopadhyay N, Yano S (2004) Calcium-sensing receptors in bone cells. J Musculoskelet Neuronal Interact 4:412–413PubMed
6.
Zurück zum Zitat Martin TJ, Seeman E (2008) Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22:701–722PubMed Martin TJ, Seeman E (2008) Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22:701–722PubMed
7.
8.
Zurück zum Zitat Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576PubMed Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576PubMed
9.
Zurück zum Zitat Ward DT, Riccardi D (2012) New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol 165:35–48PubMedCentralPubMed Ward DT, Riccardi D (2012) New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol 165:35–48PubMedCentralPubMed
10.
Zurück zum Zitat Chakravarti B, Chattopadhyay N, Brown EM (2012) Signaling through the extracellular calcium-sensing receptor (CaSR). Adv Exp Med Biol 740:103–142PubMed Chakravarti B, Chattopadhyay N, Brown EM (2012) Signaling through the extracellular calcium-sensing receptor (CaSR). Adv Exp Med Biol 740:103–142PubMed
11.
Zurück zum Zitat Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255PubMed Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255PubMed
12.
Zurück zum Zitat Parfitt AM (1989) Plasma calcium control at quiescent bone surfaces: a new approach to the homeostatic function of bone lining cells. Bone 10:87–88PubMed Parfitt AM (1989) Plasma calcium control at quiescent bone surfaces: a new approach to the homeostatic function of bone lining cells. Bone 10:87–88PubMed
13.
Zurück zum Zitat Ye CP, Yamaguchi T, Chattopadhyay N et al (2000) Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone 27:21–27PubMed Ye CP, Yamaguchi T, Chattopadhyay N et al (2000) Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone 27:21–27PubMed
14.
Zurück zum Zitat Huang Z, Cheng SL, Slatopolsky E (2001) Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 276:21351–21358PubMed Huang Z, Cheng SL, Slatopolsky E (2001) Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 276:21351–21358PubMed
15.
Zurück zum Zitat Dvorak MM, Siddiqua A, Ward DT et al (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145PubMedCentralPubMed Dvorak MM, Siddiqua A, Ward DT et al (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145PubMedCentralPubMed
16.
Zurück zum Zitat Berger CE, Rathod H, Gillespie JI et al (2001) Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Miner Res 16:2092–2102PubMed Berger CE, Rathod H, Gillespie JI et al (2001) Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Miner Res 16:2092–2102PubMed
17.
Zurück zum Zitat Raisz LG, Niemann I (1969) Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 85:446–452PubMed Raisz LG, Niemann I (1969) Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 85:446–452PubMed
19.
Zurück zum Zitat House MG, Kohlmeier L, Chattopadhyay N et al (1997) Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J Bone Miner Res 12:1959–1970PubMed House MG, Kohlmeier L, Chattopadhyay N et al (1997) Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J Bone Miner Res 12:1959–1970PubMed
20.
Zurück zum Zitat Yamaguchi T, Chattopadhyay N, Kifor O, Brown EM (1998) Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells. Endocrinology 139:3561–3568PubMed Yamaguchi T, Chattopadhyay N, Kifor O, Brown EM (1998) Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells. Endocrinology 139:3561–3568PubMed
21.
Zurück zum Zitat Pi M, Hinson TK, Quarles LD (1999) Failure to detect the extracellular calcium-sensing receptor (CasR) in human osteoblast cell lines. J Bone Miner Res 14:1310–1319PubMed Pi M, Hinson TK, Quarles LD (1999) Failure to detect the extracellular calcium-sensing receptor (CasR) in human osteoblast cell lines. J Bone Miner Res 14:1310–1319PubMed
22.
Zurück zum Zitat Yamaguchi T, Kifor O, Chattopadhyay N, Brown EM (1998) Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem Biophys Res Commun 243:753–757PubMed Yamaguchi T, Kifor O, Chattopadhyay N, Brown EM (1998) Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem Biophys Res Commun 243:753–757PubMed
23.
Zurück zum Zitat Yamaguchi T, Chattopadhyay N, Kifor O et al (1998) Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res 13:1530–1538PubMed Yamaguchi T, Chattopadhyay N, Kifor O et al (1998) Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res 13:1530–1538PubMed
24.
Zurück zum Zitat Yamaguchi T, Chattopadhyay N, Kifor O et al (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol 280:C382–C393PubMed Yamaguchi T, Chattopadhyay N, Kifor O et al (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol 280:C382–C393PubMed
25.
Zurück zum Zitat Yamaguchi T, Olozak I, Chattopadhyay N et al (1998) Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes. Biochem Biophys Res Commun 246:501–506PubMed Yamaguchi T, Olozak I, Chattopadhyay N et al (1998) Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes. Biochem Biophys Res Commun 246:501–506PubMed
26.
Zurück zum Zitat Kameda T, Mano H, Yamada Y et al (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245:419–422PubMed Kameda T, Mano H, Yamada Y et al (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245:419–422PubMed
27.
Zurück zum Zitat Chang W, Tu C, Chen TH et al (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140:5883–5893PubMed Chang W, Tu C, Chen TH et al (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140:5883–5893PubMed
28.
Zurück zum Zitat Kamioka H, Miki Y, Sumitani K et al (1995) Extracellular calcium causes the release of calcium from intracellular stores in chick osteocytes. Biochem Biophys Res Commun 212:692–696PubMed Kamioka H, Miki Y, Sumitani K et al (1995) Extracellular calcium causes the release of calcium from intracellular stores in chick osteocytes. Biochem Biophys Res Commun 212:692–696PubMed
29.
Zurück zum Zitat Godwin SL, Soltoff SP (1997) Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J Biol Chem 272:11307–11312PubMed Godwin SL, Soltoff SP (1997) Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J Biol Chem 272:11307–11312PubMed
30.
Zurück zum Zitat Nakade O, Takahashi K, Takuma T et al (2001) Effect of extracellular calcium on the gene expression of bone morphogenetic protein-2 and -4 of normal human bone cells. J Bone Miner Metab 19:13–19PubMed Nakade O, Takahashi K, Takuma T et al (2001) Effect of extracellular calcium on the gene expression of bone morphogenetic protein-2 and -4 of normal human bone cells. J Bone Miner Metab 19:13–19PubMed
31.
Zurück zum Zitat Yamauchi M, Yamaguchi T, Kaji H et al (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616PubMed Yamauchi M, Yamaguchi T, Kaji H et al (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616PubMed
32.
Zurück zum Zitat Deyama A, Deyama Y, Matsumoto A et al (1999) A low calcium environment enhances AP-1 transcription factor-mediated gene expression in the development of osteoblastic MC3T3-E1 cells. Miner Electrolyte Metab 25:147–160PubMed Deyama A, Deyama Y, Matsumoto A et al (1999) A low calcium environment enhances AP-1 transcription factor-mediated gene expression in the development of osteoblastic MC3T3-E1 cells. Miner Electrolyte Metab 25:147–160PubMed
33.
Zurück zum Zitat Godwin SL, Soltoff SP (2002) Calcium-sensing receptor-mediated activation of phospholipase C-gamma1 is downstream of phospholipase C-beta and protein kinase C in MC3T3-E1 osteoblasts. Bone 30:559–566PubMed Godwin SL, Soltoff SP (2002) Calcium-sensing receptor-mediated activation of phospholipase C-gamma1 is downstream of phospholipase C-beta and protein kinase C in MC3T3-E1 osteoblasts. Bone 30:559–566PubMed
34.
Zurück zum Zitat Chattopadhyay N, Yano S, Tfelt-Hansen J et al (2004) Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 145:3451–3462PubMed Chattopadhyay N, Yano S, Tfelt-Hansen J et al (2004) Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 145:3451–3462PubMed
35.
Zurück zum Zitat Rybchyn MS, Slater M, Conigrave AD, Mason RS (2011) An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 286:23771–23779PubMedCentralPubMed Rybchyn MS, Slater M, Conigrave AD, Mason RS (2011) An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 286:23771–23779PubMedCentralPubMed
36.
Zurück zum Zitat Hu F, Pan L, Zhang K et al (2014) Elevation of extracellular Ca2+ induces store-operated calcium entry via calcium-sensing receptors: a pathway contributes to the proliferation of osteoblasts. PLoS One 9:e107217PubMedCentralPubMed Hu F, Pan L, Zhang K et al (2014) Elevation of extracellular Ca2+ induces store-operated calcium entry via calcium-sensing receptors: a pathway contributes to the proliferation of osteoblasts. PLoS One 9:e107217PubMedCentralPubMed
37.
Zurück zum Zitat Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718PubMed Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718PubMed
38.
Zurück zum Zitat Bennett BD, Alvarez U, Hruska KA (2001) Receptor-operated osteoclast calcium sensing. Endocrinology 142:1968–1974PubMed Bennett BD, Alvarez U, Hruska KA (2001) Receptor-operated osteoclast calcium sensing. Endocrinology 142:1968–1974PubMed
39.
Zurück zum Zitat Kanatani M, Sugimoto T, Kanzawa M et al (1999) High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun 261:144–148PubMed Kanatani M, Sugimoto T, Kanzawa M et al (1999) High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun 261:144–148PubMed
40.
Zurück zum Zitat Lorget F, Kamel S, Mentaverri R et al (2000) High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun 268:899–903PubMed Lorget F, Kamel S, Mentaverri R et al (2000) High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun 268:899–903PubMed
41.
Zurück zum Zitat Takeyama S, Yoshimura Y, Shirai Y et al (2000) Low calcium environment effects osteoprotegerin ligand/osteoclast differentiation factor. Biochem Biophys Res Commun 276:524–529PubMed Takeyama S, Yoshimura Y, Shirai Y et al (2000) Low calcium environment effects osteoprotegerin ligand/osteoclast differentiation factor. Biochem Biophys Res Commun 276:524–529PubMed
42.
Zurück zum Zitat Mentaverri R, Yano S, Chattopadhyay N et al (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20:2562–2564PubMed Mentaverri R, Yano S, Chattopadhyay N et al (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20:2562–2564PubMed
43.
Zurück zum Zitat Boudot C, Saidak Z, Boulanouar AK et al (2010) Implication of the calcium sensing receptor and the phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone 46:1416–1423PubMed Boudot C, Saidak Z, Boulanouar AK et al (2010) Implication of the calcium sensing receptor and the phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone 46:1416–1423PubMed
44.
Zurück zum Zitat Bonen DK, Schmid TM (1991) Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 115:1171–1178PubMed Bonen DK, Schmid TM (1991) Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 115:1171–1178PubMed
45.
Zurück zum Zitat Jacenko O, Tuan RS (1995) Chondrogenic potential of chick embryonic calvaria: I. Low calcium permits cartilage differentiation. Dev Dyn 202:13–26PubMed Jacenko O, Tuan RS (1995) Chondrogenic potential of chick embryonic calvaria: I. Low calcium permits cartilage differentiation. Dev Dyn 202:13–26PubMed
46.
Zurück zum Zitat Wang D, Canaff L, Davidson D et al (2001) Alterations in the sensing and transport of phosphate and calcium by differentiating chondrocytes. J Biol Chem 276:33995–34005PubMed Wang D, Canaff L, Davidson D et al (2001) Alterations in the sensing and transport of phosphate and calcium by differentiating chondrocytes. J Biol Chem 276:33995–34005PubMed
47.
Zurück zum Zitat Chang W, Tu C, Pratt S et al (2002) Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474PubMed Chang W, Tu C, Pratt S et al (2002) Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474PubMed
48.
Zurück zum Zitat Wu S, Palese T, Mishra OP et al (2004) Effects of Ca2+ sensing receptor activation in the growth plate. FASEB J 18:143–145PubMed Wu S, Palese T, Mishra OP et al (2004) Effects of Ca2+ sensing receptor activation in the growth plate. FASEB J 18:143–145PubMed
49.
Zurück zum Zitat Ho C, Conner DA, Pollak MR et al (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11:389–394PubMed Ho C, Conner DA, Pollak MR et al (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11:389–394PubMed
50.
Zurück zum Zitat Garner SC, Pi M, Tu Q, Quarles LD (2001) Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 142:3996–4005PubMed Garner SC, Pi M, Tu Q, Quarles LD (2001) Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 142:3996–4005PubMed
51.
Zurück zum Zitat Tu Q, Pi M, Karsenty G et al (2003) Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 111:1029–1037PubMedCentralPubMed Tu Q, Pi M, Karsenty G et al (2003) Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 111:1029–1037PubMedCentralPubMed
52.
Zurück zum Zitat Kos CH, Karaplis AC, Peng JB et al (2003) The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 111:1021–1028PubMedCentralPubMed Kos CH, Karaplis AC, Peng JB et al (2003) The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 111:1021–1028PubMedCentralPubMed
53.
Zurück zum Zitat Liu J, Lv F, Sun W et al (2011) The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet 7:e1002294PubMedCentralPubMed Liu J, Lv F, Sun W et al (2011) The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet 7:e1002294PubMedCentralPubMed
54.
Zurück zum Zitat Oda Y, Tu CL, Pillai S, Bikle DD (1998) The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 273:23344–23352PubMed Oda Y, Tu CL, Pillai S, Bikle DD (1998) The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 273:23344–23352PubMed
55.
Zurück zum Zitat Rodriguez L, Tu C, Cheng Z et al (2005) Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology 146:5294–5303PubMed Rodriguez L, Tu C, Cheng Z et al (2005) Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology 146:5294–5303PubMed
56.
Zurück zum Zitat Hough TA, Bogani D, Cheeseman MT et al (2004) Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc Natl Acad Sci U S A 101:13566–13571PubMedCentralPubMed Hough TA, Bogani D, Cheeseman MT et al (2004) Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc Natl Acad Sci U S A 101:13566–13571PubMedCentralPubMed
57.
Zurück zum Zitat Dvorak MM, Chen TH, Orwoll B et al (2007) Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology 148:3156–3163PubMed Dvorak MM, Chen TH, Orwoll B et al (2007) Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology 148:3156–3163PubMed
58.
Zurück zum Zitat Chang W, Dvorak M, Shoback D (2010) Assessing constitutive activity of extracellular calcium-sensing receptors in vitro and in bone. Methods Enzymol 484:253–266PubMedCentralPubMed Chang W, Dvorak M, Shoback D (2010) Assessing constitutive activity of extracellular calcium-sensing receptors in vitro and in bone. Methods Enzymol 484:253–266PubMedCentralPubMed
60.
Zurück zum Zitat Liu F, Woitge HW, Braut A et al (2004) Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 48:645–653PubMed Liu F, Woitge HW, Braut A et al (2004) Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 48:645–653PubMed
61.
Zurück zum Zitat Dvorak-Ewell MM, Chen TH, Liang N et al (2011) Osteoblast extracellular Ca2+-sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res 26:2935–2947PubMedCentralPubMed Dvorak-Ewell MM, Chen TH, Liang N et al (2011) Osteoblast extracellular Ca2+-sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res 26:2935–2947PubMedCentralPubMed
62.
Zurück zum Zitat Richard C, Huo R, Samadfam R et al (2010) The calcium-sensing receptor and 25-hydroxyvitamin D-1alpha-hydroxylase interact to modulate skeletal growth and bone turnover. J Bone Miner Res 25:1627–1636PubMed Richard C, Huo R, Samadfam R et al (2010) The calcium-sensing receptor and 25-hydroxyvitamin D-1alpha-hydroxylase interact to modulate skeletal growth and bone turnover. J Bone Miner Res 25:1627–1636PubMed
63.
Zurück zum Zitat Sun W, Sun W, Liu J et al (2010) Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 137:985–992PubMedCentralPubMed Sun W, Sun W, Liu J et al (2010) Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 137:985–992PubMedCentralPubMed
64.
Zurück zum Zitat Shu L, Ji J, Zhu Q et al (2011) The calcium-sensing receptor mediates bone turnover induced by dietary calcium and parathyroid hormone in neonates. J Bone Miner Res 26:1057–1071PubMedCentralPubMed Shu L, Ji J, Zhu Q et al (2011) The calcium-sensing receptor mediates bone turnover induced by dietary calcium and parathyroid hormone in neonates. J Bone Miner Res 26:1057–1071PubMedCentralPubMed
65.
Zurück zum Zitat Xue Y, Xiao Y, Liu J et al (2012) The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am J Physiol Endocrinol Metab 302:E841–E851PubMedCentralPubMed Xue Y, Xiao Y, Liu J et al (2012) The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am J Physiol Endocrinol Metab 302:E841–E851PubMedCentralPubMed
66.
Zurück zum Zitat Blair HC, Schlesinger PH, Huang CL, Zaidi M (2007) Calcium signalling and calcium transport in bone disease. Subcell Biochem 45:539–562PubMedCentralPubMed Blair HC, Schlesinger PH, Huang CL, Zaidi M (2007) Calcium signalling and calcium transport in bone disease. Subcell Biochem 45:539–562PubMedCentralPubMed
67.
Zurück zum Zitat Zaidi M, Shankar VS, Tunwell R et al (1995) A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 96:1582–1590PubMedCentralPubMed Zaidi M, Shankar VS, Tunwell R et al (1995) A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 96:1582–1590PubMedCentralPubMed
68.
Zurück zum Zitat Tu Q, Pi M, Quarles LD (2003) Calcyclin mediates serum response element (SRE) activation by an osteoblastic extracellular cation-sensing mechanism. J Bone Miner Res 18:1825–1833PubMed Tu Q, Pi M, Quarles LD (2003) Calcyclin mediates serum response element (SRE) activation by an osteoblastic extracellular cation-sensing mechanism. J Bone Miner Res 18:1825–1833PubMed
69.
Zurück zum Zitat Pi M, Quarles LD (2004) A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J Bone Miner Res 19:862–869PubMed Pi M, Quarles LD (2004) A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J Bone Miner Res 19:862–869PubMed
70.
Zurück zum Zitat Pi M, Faber P, Ekema G et al (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209PubMedCentralPubMed Pi M, Faber P, Ekema G et al (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209PubMedCentralPubMed
71.
Zurück zum Zitat Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H (2014) The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171:1129–1141PubMedCentralPubMed Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H (2014) The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171:1129–1141PubMedCentralPubMed
72.
Zurück zum Zitat Pi M, Chen L, Huang MZ et al (2008) GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3:e3858PubMedCentralPubMed Pi M, Chen L, Huang MZ et al (2008) GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3:e3858PubMedCentralPubMed
73.
Zurück zum Zitat Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123:2421–2433PubMedCentralPubMed Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123:2421–2433PubMedCentralPubMed
74.
Zurück zum Zitat Wellendorph P, Johansen LD, Jensen AA et al (2009) No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J Mol Endocrinol 42:215–223PubMed Wellendorph P, Johansen LD, Jensen AA et al (2009) No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J Mol Endocrinol 42:215–223PubMed
75.
Zurück zum Zitat Barradas AM, Fernandes HA, Groen N et al (2012) A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33:3205–3215PubMed Barradas AM, Fernandes HA, Groen N et al (2012) A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33:3205–3215PubMed
76.
Zurück zum Zitat Khoshniat S, Bourgine A, Julien M et al (2011) Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48:894–902PubMed Khoshniat S, Bourgine A, Julien M et al (2011) Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48:894–902PubMed
77.
Zurück zum Zitat Law WM Jr, Wahner HW, Heath H 3rd (1984) Bone mineral density and skeletal fractures in familial benign hypercalcemia (hypocalciuric hypercalcemia). Mayo Clin Proc 59:811–815PubMed Law WM Jr, Wahner HW, Heath H 3rd (1984) Bone mineral density and skeletal fractures in familial benign hypercalcemia (hypocalciuric hypercalcemia). Mayo Clin Proc 59:811–815PubMed
78.
Zurück zum Zitat Kristiansen JH, Rødbro P, Christiansen C et al (1987) Familial hypocalciuric hypercalcaemia. III: bone mineral metabolism. Clin Endocrinol (Oxf) 26:713–716 Kristiansen JH, Rødbro P, Christiansen C et al (1987) Familial hypocalciuric hypercalcaemia. III: bone mineral metabolism. Clin Endocrinol (Oxf) 26:713–716
79.
Zurück zum Zitat Abugassa S, Nordenström J, Järhult J (1992) Bone mineral density in patients with familial hypocalciuric hypercalcaemia (FHH). Eur J Surg 158:397–402PubMed Abugassa S, Nordenström J, Järhult J (1992) Bone mineral density in patients with familial hypocalciuric hypercalcaemia (FHH). Eur J Surg 158:397–402PubMed
80.
Zurück zum Zitat Christensen SE, Nissen PH, Vestergaard P et al (2009) Skeletal consequences of familial hypocalciuric hypercalcaemia vs. primary hyperparathyroidism. Clin Endocrinol (Oxf) 71:798–807 Christensen SE, Nissen PH, Vestergaard P et al (2009) Skeletal consequences of familial hypocalciuric hypercalcaemia vs. primary hyperparathyroidism. Clin Endocrinol (Oxf) 71:798–807
81.
Zurück zum Zitat Theman TA, Collins MT, Dempster DW et al (2009) PTH(1-34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res 24:964–973PubMedCentralPubMed Theman TA, Collins MT, Dempster DW et al (2009) PTH(1-34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res 24:964–973PubMedCentralPubMed
82.
Zurück zum Zitat Jakobsen NF, Rolighed L, Moser E et al (2014) Increased trabecular volumetric bone mass density in familial hypocalciuric hypercalcemia (FHH) type 1: a cross-sectional study. Calcif Tissue Int 95:141–152PubMed Jakobsen NF, Rolighed L, Moser E et al (2014) Increased trabecular volumetric bone mass density in familial hypocalciuric hypercalcemia (FHH) type 1: a cross-sectional study. Calcif Tissue Int 95:141–152PubMed
83.
Zurück zum Zitat Nemeth EF, Shoback D (2013) Calcimimetic and calcilytic drugs for treating bone and mineral-related disorders. Best Pract Res Clin Endocrinol Metab 27:373–384PubMed Nemeth EF, Shoback D (2013) Calcimimetic and calcilytic drugs for treating bone and mineral-related disorders. Best Pract Res Clin Endocrinol Metab 27:373–384PubMed
84.
Zurück zum Zitat Cianferotti L, D’Asta F, Brandi ML (2013) A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis 5:127–139PubMedCentralPubMed Cianferotti L, D’Asta F, Brandi ML (2013) A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis 5:127–139PubMedCentralPubMed
85.
Zurück zum Zitat Leach K, Conigrave AD, Sexton PM, Christopoulos A (2015) Towards tissue-specific pharmacology: insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends Pharmacol Sci 36:215–225PubMed Leach K, Conigrave AD, Sexton PM, Christopoulos A (2015) Towards tissue-specific pharmacology: insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends Pharmacol Sci 36:215–225PubMed
86.
Zurück zum Zitat Nemeth EF, Delmar EG, Heaton WL et al (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 299:323–331PubMed Nemeth EF, Delmar EG, Heaton WL et al (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 299:323–331PubMed
87.
Zurück zum Zitat Rubin MR, Bilezikian JP (2005) Parathyroid hormone as an anabolic skeletal therapy. Drugs 65:2481–2498PubMed Rubin MR, Bilezikian JP (2005) Parathyroid hormone as an anabolic skeletal therapy. Drugs 65:2481–2498PubMed
88.
Zurück zum Zitat Toulis KA, Anastasilakis AD, Polyzos SA, Makras P (2011) Targeting the osteoblast: approved and experimental anabolic agents for the treatment of osteoporosis. Hormones (Athens) 10:174–195 Toulis KA, Anastasilakis AD, Polyzos SA, Makras P (2011) Targeting the osteoblast: approved and experimental anabolic agents for the treatment of osteoporosis. Hormones (Athens) 10:174–195
89.
Zurück zum Zitat Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297PubMed Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297PubMed
90.
Zurück zum Zitat Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2011) The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab 96:2441–2449PubMed Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2011) The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab 96:2441–2449PubMed
91.
Zurück zum Zitat Fitzpatrick LA, Smith PL, McBride TA et al (2011) Ronacaleret, a calcium-sensing receptor antagonist, has no significant effect on radial fracture healing time: results of a randomized, double-blinded, placebo-controlled Phase II clinical trial. Bone 49:845–852PubMed Fitzpatrick LA, Smith PL, McBride TA et al (2011) Ronacaleret, a calcium-sensing receptor antagonist, has no significant effect on radial fracture healing time: results of a randomized, double-blinded, placebo-controlled Phase II clinical trial. Bone 49:845–852PubMed
92.
Zurück zum Zitat Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2012) Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res 27:255–262PubMed Fitzpatrick LA, Dabrowski CE, Cicconetti G et al (2012) Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res 27:255–262PubMed
93.
Zurück zum Zitat Caltabiano S, Dollery CT, Hossain M et al (2013) Characterization of the effect of chronic administration of a calcium-sensing receptor antagonist, ronacaleret, on renal calcium excretion and serum calcium in postmenopausal women. Bone 56:154–162PubMed Caltabiano S, Dollery CT, Hossain M et al (2013) Characterization of the effect of chronic administration of a calcium-sensing receptor antagonist, ronacaleret, on renal calcium excretion and serum calcium in postmenopausal women. Bone 56:154–162PubMed
94.
Zurück zum Zitat Dempster DW, Müller R, Zhou H et al (2007) Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 41:19–24PubMedCentralPubMed Dempster DW, Müller R, Zhou H et al (2007) Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 41:19–24PubMedCentralPubMed
95.
Zurück zum Zitat Fitzpatrick LA, Wooddell M, Dabrowski CE et al (2014) Bone mineral density changes following discontinuation of ronacaleret treatment: off-treatment extension of a randomized, dose-finding phase II trial. Bone 67:104–108PubMed Fitzpatrick LA, Wooddell M, Dabrowski CE et al (2014) Bone mineral density changes following discontinuation of ronacaleret treatment: off-treatment extension of a randomized, dose-finding phase II trial. Bone 67:104–108PubMed
96.
Zurück zum Zitat Shinagawa Y, Inoue T, Katsushima T et al (2010) Discovery of a potent and short-acting oral calcilytic with a pulsatile secretion of parathyroid hormone. ACS Med Chem Lett 2:238–242PubMedCentralPubMed Shinagawa Y, Inoue T, Katsushima T et al (2010) Discovery of a potent and short-acting oral calcilytic with a pulsatile secretion of parathyroid hormone. ACS Med Chem Lett 2:238–242PubMedCentralPubMed
97.
Zurück zum Zitat Kimura S, Nakagawa T, Matsuo Y et al (2011) JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats. Eur J Pharmacol 668:331–336PubMed Kimura S, Nakagawa T, Matsuo Y et al (2011) JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats. Eur J Pharmacol 668:331–336PubMed
98.
Zurück zum Zitat Fukumoto S, Nakamura T, Nishizawa Y et al (2009) Randomized, single‐blinded placebo‐controlled study of a novel calcilytic, JTT‐305, in patients with postmenopausal osteoporosis. J Bone Miner Res 24(Suppl 1):S40 Fukumoto S, Nakamura T, Nishizawa Y et al (2009) Randomized, single‐blinded placebo‐controlled study of a novel calcilytic, JTT‐305, in patients with postmenopausal osteoporosis. J Bone Miner Res 24(Suppl 1):S40
99.
Zurück zum Zitat Halse J, Greenspan S, Cosman F et al (2014) A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J Clin Endocrinol Metab 99(11):E2207–E2215PubMed Halse J, Greenspan S, Cosman F et al (2014) A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J Clin Endocrinol Metab 99(11):E2207–E2215PubMed
100.
Zurück zum Zitat John MR, Widler L, Gamse R et al (2011) ATF936, a novel oral calcilytic, increases bone mineral density in rats and transiently releases parathyroid hormone in humans. Bone 49:233–241PubMed John MR, Widler L, Gamse R et al (2011) ATF936, a novel oral calcilytic, increases bone mineral density in rats and transiently releases parathyroid hormone in humans. Bone 49:233–241PubMed
101.
Zurück zum Zitat John MR, Harfst E, Loeffler J et al (2014) AXT914 a novel, orally-active parathyroid hormone-releasing drug in two early studies of healthy volunteers and postmenopausal women. Bone 64:204–210PubMed John MR, Harfst E, Loeffler J et al (2014) AXT914 a novel, orally-active parathyroid hormone-releasing drug in two early studies of healthy volunteers and postmenopausal women. Bone 64:204–210PubMed
102.
Zurück zum Zitat Widler L (2011) Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem 3:535–547PubMed Widler L (2011) Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem 3:535–547PubMed
103.
Zurück zum Zitat Letz S, Rus R, Haag C et al (2010) Novel activating mutations of the calcium-sensing receptor: the calcilytic NPS-2143 mitigates excessive signal transduction of mutant receptors. J Clin Endocrinol Metab 95:E229–E233PubMed Letz S, Rus R, Haag C et al (2010) Novel activating mutations of the calcium-sensing receptor: the calcilytic NPS-2143 mitigates excessive signal transduction of mutant receptors. J Clin Endocrinol Metab 95:E229–E233PubMed
104.
Zurück zum Zitat Park SY, Mun HC, Eom YS et al (2013) Identification and characterization of D410E, a novel mutation in the loop 3 domain of CASR, in autosomal dominant hypocalcemia and a therapeutic approach using a novel calcilytic, AXT914. Clin Endocrinol (Oxf) 78:687–693 Park SY, Mun HC, Eom YS et al (2013) Identification and characterization of D410E, a novel mutation in the loop 3 domain of CASR, in autosomal dominant hypocalcemia and a therapeutic approach using a novel calcilytic, AXT914. Clin Endocrinol (Oxf) 78:687–693
105.
Zurück zum Zitat Nemeth EF, Steffey ME, Hammerland LG et al (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci U S A 95:4040–4045PubMedCentralPubMed Nemeth EF, Steffey ME, Hammerland LG et al (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci U S A 95:4040–4045PubMedCentralPubMed
106.
Zurück zum Zitat Brown EM (2010) Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Biochem Pharmacol 80:297–307PubMed Brown EM (2010) Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Biochem Pharmacol 80:297–307PubMed
107.
Zurück zum Zitat Peacock M, Bilezikian JP, Klassen PS et al (2005) Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 90:135–141PubMed Peacock M, Bilezikian JP, Klassen PS et al (2005) Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 90:135–141PubMed
108.
Zurück zum Zitat Peacock M, Bolognese MA, Borofsky M et al (2009) Cinacalcet treatment of primary hyperparathyroidism: biochemical and bone densitometric outcomes in a five-year study. J Clin Endocrinol Metab 94:4860–4867PubMed Peacock M, Bolognese MA, Borofsky M et al (2009) Cinacalcet treatment of primary hyperparathyroidism: biochemical and bone densitometric outcomes in a five-year study. J Clin Endocrinol Metab 94:4860–4867PubMed
109.
Zurück zum Zitat Strippoli GF, Tong A, Palmer SC et al (2006) Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev 4:CD006254PubMed Strippoli GF, Tong A, Palmer SC et al (2006) Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev 4:CD006254PubMed
110.
Zurück zum Zitat Nemeth EF (2010) Calcimimetics and calcilytics in the treatment of chronic kidney disease-mineral bone disorder. In: Olgaard K, Salusky IB, Silver J (eds) The spectrum of mineral and bone disorders in chronic kidney disease, 2nd edn. Oxford University Press, Oxford, pp 443–461 Nemeth EF (2010) Calcimimetics and calcilytics in the treatment of chronic kidney disease-mineral bone disorder. In: Olgaard K, Salusky IB, Silver J (eds) The spectrum of mineral and bone disorders in chronic kidney disease, 2nd edn. Oxford University Press, Oxford, pp 443–461
111.
112.
Zurück zum Zitat Reginster JY, Neuprez A, Dardenne N et al (2014) Efficacy and safety of currently marketed anti-osteoporosis medications. Best Pract Res Clin Endocrinol Metab 28:809–834PubMed Reginster JY, Neuprez A, Dardenne N et al (2014) Efficacy and safety of currently marketed anti-osteoporosis medications. Best Pract Res Clin Endocrinol Metab 28:809–834PubMed
113.
Zurück zum Zitat Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15PubMed Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15PubMed
114.
Zurück zum Zitat Baron R, Tsouderos Y (2002) In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 450:11–17PubMed Baron R, Tsouderos Y (2002) In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 450:11–17PubMed
115.
Zurück zum Zitat Ammann P, Shen V, Robin B et al (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020PubMed Ammann P, Shen V, Robin B et al (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020PubMed
116.
Zurück zum Zitat Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMed Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMed
117.
Zurück zum Zitat Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822PubMed Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822PubMed
118.
Zurück zum Zitat Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136:216–226PubMed Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136:216–226PubMed
119.
Zurück zum Zitat Caudrillier A, Hurtel-Lemaire AS, Wattel A et al (2010) Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576PubMed Caudrillier A, Hurtel-Lemaire AS, Wattel A et al (2010) Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576PubMed
120.
Zurück zum Zitat Hurtel-Lemaire AS, Mentaverri R, Caudrillier A et al (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284:575–584PubMed Hurtel-Lemaire AS, Mentaverri R, Caudrillier A et al (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284:575–584PubMed
121.
Zurück zum Zitat Fromigué O, Haÿ E, Barbara A et al (2009) Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199PubMed Fromigué O, Haÿ E, Barbara A et al (2009) Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199PubMed
122.
Zurück zum Zitat Brennan TC, Rybchyn MS, Green W et al (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300PubMedCentralPubMed Brennan TC, Rybchyn MS, Green W et al (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300PubMedCentralPubMed
Metadaten
Titel
The calcium-sensing receptor in bone metabolism: from bench to bedside and back
verfasst von
L. Cianferotti
A. R. Gomes
S. Fabbri
A. Tanini
M. L. Brandi
Publikationsdatum
01.08.2015
Verlag
Springer London
Erschienen in
Osteoporosis International / Ausgabe 8/2015
Print ISSN: 0937-941X
Elektronische ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-015-3203-1

Weitere Artikel der Ausgabe 8/2015

Osteoporosis International 8/2015 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.