Skip to main content
Erschienen in:

01.06.2019 | Original Paper

The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study

verfasst von: Daniela Mannarelli, Caterina Pauletti, Antonio Currà, Lucio Marinelli, Alessandra Corrado, Roberto Delle Chiaie, Francesco Fattapposta

Erschienen in: The Cerebellum | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

The functional domain of the cerebellum extends beyond its traditional role in motor control. In recent years, this structure has increasingly been considered to play a crucial role even in cognitive performance and attentional processes. Attention is defined as the ability to appropriately allocate processing resources to relevant stimuli. According to the Posnerian model, three interacting networks modulate attentive processes: the alerting, orienting, and executive networks. The aim of this study was to investigate the role played by the cerebellum in the functioning of the attentive networks using the Attention Network Test (ANT). We studied the effects of transcranial direct current stimulation (tDCS), delivered over the cerebellum in cathodal, anodal, and sham sessions, on ANT parameters in healthy subjects. After anodal and sham tDCS, the efficiency of the three attention networks remained stable, and a significant reduction in reaction time (RT) following the task repetition was observed for both congruent and incongruent targets, indicating a learning effect. After cathodal stimulation, instead, while the efficiency of the alerting and orienting networks remained stable, the efficiency of the executive network was significantly reduced. Moreover, a significant reduction in RT was observed for the congruent target alone, with no difference being detected for the incongruent target, indicating that cerebellar inhibition caused an attentive executive dysfunction specifically related to the ability to process complex stimuli in which conflict signals or errors are present. These results point to a role of the cerebellum, a subcortical structure that is thought to affect error processing both directly, by making predictions of errors or behaviors related to errors, and indirectly, by managing the functioning of brain cortical areas involved in the perception of conflicting signals, in the functioning of the attentional networks, particularly the executive network.
Literatur
1.
Zurück zum Zitat Holmes G. Clinical symptoms of cerebellar disease and their interpretation. Lancet. 1922;2:59–65. Holmes G. Clinical symptoms of cerebellar disease and their interpretation. Lancet. 1922;2:59–65.
2.
Zurück zum Zitat Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga M, editor. The cognitive neurosciences (2nd edn): MIT Press; 2000. p. 999–1011. Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga M, editor. The cognitive neurosciences (2nd edn): MIT Press; 2000. p. 999–1011.
3.
Zurück zum Zitat Baillieux H, DeSmet HJ, Paquier PF, DeDeyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.CrossRefPubMed Baillieux H, DeSmet HJ, Paquier PF, DeDeyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.CrossRefPubMed
5.
Zurück zum Zitat Sasaki K. Cerebello-cerebral interactions in cats and monkeys. In: Massion J, Sasaki K, editors. Cerebro-cerebellar interactions. Amsterdam: Elsevier; 1979. p. 105–24. Sasaki K. Cerebello-cerebral interactions in cats and monkeys. In: Massion J, Sasaki K, editors. Cerebro-cerebellar interactions. Amsterdam: Elsevier; 1979. p. 105–24.
6.
Zurück zum Zitat Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.CrossRefPubMed Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.CrossRefPubMed
7.
Zurück zum Zitat Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of an on human primate. J Neurosci. 2003;23:8432–44.CrossRefPubMed Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of an on human primate. J Neurosci. 2003;23:8432–44.CrossRefPubMed
8.
Zurück zum Zitat Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997. Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997.
9.
Zurück zum Zitat Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol. 2004;115:271–89.CrossRef Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol. 2004;115:271–89.CrossRef
10.
Zurück zum Zitat Ivry RB, Diener HC. Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci. 1991;3(4):355–66.CrossRefPubMed Ivry RB, Diener HC. Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci. 1991;3(4):355–66.CrossRefPubMed
11.
Zurück zum Zitat Cabeza R, Nyberg L. Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol. 2000;13(4):415–21.CrossRefPubMed Cabeza R, Nyberg L. Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol. 2000;13(4):415–21.CrossRefPubMed
12.
Zurück zum Zitat Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.CrossRefPubMed Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.CrossRefPubMed
13.
14.
Zurück zum Zitat Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.CrossRefPubMed Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.CrossRefPubMed
15.
Zurück zum Zitat Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.CrossRefPubMed Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.CrossRefPubMed
16.
Zurück zum Zitat Botez-Marquard T, Bard C, Léveillé J, Botez MI. A severe frontal-parietal lobe syndrome following cerebellar damage. Eur J Neurol. 2001;8(4):347–53.CrossRefPubMed Botez-Marquard T, Bard C, Léveillé J, Botez MI. A severe frontal-parietal lobe syndrome following cerebellar damage. Eur J Neurol. 2001;8(4):347–53.CrossRefPubMed
17.
Zurück zum Zitat Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Psychol. 2005;35:773–9.CrossRef Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Psychol. 2005;35:773–9.CrossRef
18.
Zurück zum Zitat Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB, et al. Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging. AJNR Am J Neuroradiol. 2000;21(8):1407–14.PubMed Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB, et al. Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging. AJNR Am J Neuroradiol. 2000;21(8):1407–14.PubMed
19.
Zurück zum Zitat Ravnkilde B, Videbech P, Rosenberg R, Gjedde A, Gade A. Putative tests of frontal lobe function: a PET-study of brain activation during Stroop’s test and verbal fluency. J Clin Exp Neuropsychol. 2002;24:534–47.CrossRefPubMed Ravnkilde B, Videbech P, Rosenberg R, Gjedde A, Gade A. Putative tests of frontal lobe function: a PET-study of brain activation during Stroop’s test and verbal fluency. J Clin Exp Neuropsychol. 2002;24:534–47.CrossRefPubMed
20.
Zurück zum Zitat Lie CH, Specht K, Marshall JC. Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. NeuroImage. 2006;30:1038–49.CrossRefPubMed Lie CH, Specht K, Marshall JC. Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. NeuroImage. 2006;30:1038–49.CrossRefPubMed
21.
Zurück zum Zitat Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.CrossRefPubMed Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.CrossRefPubMed
22.
Zurück zum Zitat Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex. 2018;108:35–49.CrossRefPubMed Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex. 2018;108:35–49.CrossRefPubMed
24.
Zurück zum Zitat Ciesilski KT, Courchesne E, Elmasian R. Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol. 1990;75:207–20.CrossRef Ciesilski KT, Courchesne E, Elmasian R. Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol. 1990;75:207–20.CrossRef
25.
Zurück zum Zitat Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain BA, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.CrossRefPubMed Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain BA, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.CrossRefPubMed
26.
Zurück zum Zitat Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.CrossRefPubMed Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.CrossRefPubMed
27.
Zurück zum Zitat Le TH, Pardo JV, Hu X. 4T-fMRI study of non spatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol. 1998;79:1535–48.CrossRefPubMed Le TH, Pardo JV, Hu X. 4T-fMRI study of non spatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol. 1998;79:1535–48.CrossRefPubMed
28.
Zurück zum Zitat Schweizer TA, Alexander MP, Cusimano M, Stuss DT. Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia. 2007;45(13):3068–74.CrossRefPubMed Schweizer TA, Alexander MP, Cusimano M, Stuss DT. Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia. 2007;45(13):3068–74.CrossRefPubMed
29.
Zurück zum Zitat Striemer CL, Cantelmi D, Cusimano MD, Danckert JA, Schweizer TA. Deficits in reflexive covert attention following cerebellar injury. Front Hum Neurosci. 2015;9:428.CrossRefPubMedPubMedCentral Striemer CL, Cantelmi D, Cusimano MD, Danckert JA, Schweizer TA. Deficits in reflexive covert attention following cerebellar injury. Front Hum Neurosci. 2015;9:428.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41:1452–60.CrossRef Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41:1452–60.CrossRef
31.
Zurück zum Zitat Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.CrossRefPubMed Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.CrossRefPubMed
32.
Zurück zum Zitat Arasanz CP, Staines WR, Schweizer TA. Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation. Front Behav Neurosci. 2012;6:55.CrossRefPubMedPubMedCentral Arasanz CP, Staines WR, Schweizer TA. Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation. Front Behav Neurosci. 2012;6:55.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front Hum Neurosci. 2015;9:158.CrossRefPubMedPubMedCentral Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front Hum Neurosci. 2015;9:158.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, et al. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. Neuroimage. 2017;156:190–8.CrossRefPubMedPubMedCentral Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, et al. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. Neuroimage. 2017;156:190–8.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.CrossRefPubMedPubMedCentral Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, et al. Pure post stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci. 2004;25(4):220–4.CrossRefPubMed Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, et al. Pure post stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci. 2004;25(4):220–4.CrossRefPubMed
37.
Zurück zum Zitat Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Willert C, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke—a case study. Neurosci Lett. 2013;548:206–11.CrossRefPubMed Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Willert C, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke—a case study. Neurosci Lett. 2013;548:206–11.CrossRefPubMed
38.
Zurück zum Zitat Mannarelli D, Pauletti C, DeLucia MC, Currà A, Fattapposta F. Insights from ERPs into attention during recovery after cerebellar stroke: a case report. Neurocase. 2015;21(6):721–6.CrossRefPubMed Mannarelli D, Pauletti C, DeLucia MC, Currà A, Fattapposta F. Insights from ERPs into attention during recovery after cerebellar stroke: a case report. Neurocase. 2015;21(6):721–6.CrossRefPubMed
39.
Zurück zum Zitat Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.CrossRefPubMed Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.CrossRefPubMed
40.
Zurück zum Zitat Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.CrossRefPubMed Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.CrossRefPubMed
41.
Zurück zum Zitat Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.CrossRefPubMedPubMedCentral Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216:1–10.CrossRefPubMed Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216:1–10.CrossRefPubMed
43.
Zurück zum Zitat Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;3:468–75.CrossRef Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;3:468–75.CrossRef
44.
Zurück zum Zitat Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.CrossRefPubMed Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.CrossRefPubMed
45.
Zurück zum Zitat Pellicciari MC, Brignani D, Miniussi C. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. NeuroImage. 2013;83:569–80.CrossRefPubMed Pellicciari MC, Brignani D, Miniussi C. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. NeuroImage. 2013;83:569–80.CrossRefPubMed
46.
Zurück zum Zitat Romero Lauro LJ, Pisoni A, Rosanova M, Casarotto S, Mattavelli G, Bolognini N, et al. Localizing the effects of anodal tDCS at the level of cortical sources: a reply to bailey et al., 2015. Cortex. 2016;74:323–8.CrossRefPubMed Romero Lauro LJ, Pisoni A, Rosanova M, Casarotto S, Mattavelli G, Bolognini N, et al. Localizing the effects of anodal tDCS at the level of cortical sources: a reply to bailey et al., 2015. Cortex. 2016;74:323–8.CrossRefPubMed
47.
Zurück zum Zitat Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ. Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex. 2017:1–9. Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ. Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex. 2017:1–9.
48.
Zurück zum Zitat Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/ transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008;1:326–36.CrossRefPubMed Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/ transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008;1:326–36.CrossRefPubMed
49.
Zurück zum Zitat Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.CrossRefPubMed Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.CrossRefPubMed
50.
Zurück zum Zitat Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.CrossRefPubMed Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.CrossRefPubMed
52.
Zurück zum Zitat Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9.CrossRef Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9.CrossRef
53.
Zurück zum Zitat Howes D, Boller F. Simple reaction time: evidence for focal impairments from lesions of the right hemisphere. Brain. 1975;98:317–32.CrossRefPubMed Howes D, Boller F. Simple reaction time: evidence for focal impairments from lesions of the right hemisphere. Brain. 1975;98:317–32.CrossRefPubMed
54.
Zurück zum Zitat Ladavas E. Is hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? Brain. 1987;110:167–80.CrossRefPubMed Ladavas E. Is hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? Brain. 1987;110:167–80.CrossRefPubMed
55.
Zurück zum Zitat Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.CrossRefPubMedPubMedCentral Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, et al. Formation of a motor memory by action observation. J Neurosci. 2005;25:9339–46.CrossRefPubMed Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, et al. Formation of a motor memory by action observation. J Neurosci. 2005;25:9339–46.CrossRefPubMed
57.
Zurück zum Zitat Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20:1687–97.CrossRefPubMed Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20:1687–97.CrossRefPubMed
58.
Zurück zum Zitat Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 2003;114(11):2220–2, 2222. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 2003;114(11):2220–2, 2222.
59.
Zurück zum Zitat Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.CrossRefPubMed Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.CrossRefPubMed
60.
Zurück zum Zitat Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14.CrossRefPubMed Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14.CrossRefPubMed
61.
Zurück zum Zitat Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.CrossRefPubMedPubMedCentral Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review. 2011;6:135–47.CrossRef Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review. 2011;6:135–47.CrossRef
63.
Zurück zum Zitat Colebatch JG. Bereitschafts potential and movement-related potentials: origin, significance, and application in disorders of human movement. Mov Disord. 2007;22:601–10.CrossRefPubMed Colebatch JG. Bereitschafts potential and movement-related potentials: origin, significance, and application in disorders of human movement. Mov Disord. 2007;22:601–10.CrossRefPubMed
65.
Zurück zum Zitat Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T. Post-error slowing: an orienting account. Cognition. 2009;111:275–9.CrossRefPubMed Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T. Post-error slowing: an orienting account. Cognition. 2009;111:275–9.CrossRefPubMed
66.
Zurück zum Zitat Wessel JR, Danielmeier C, Morton JB, Ullsperger M. Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci. 2012;32(22):7528–37.CrossRefPubMedPubMedCentral Wessel JR, Danielmeier C, Morton JB, Ullsperger M. Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci. 2012;32(22):7528–37.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol. 1991;78:447–55.CrossRefPubMed Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol. 1991;78:447–55.CrossRefPubMed
68.
Zurück zum Zitat Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error-detection and compensation. Psychol Sci. 1993;4:385–90.CrossRef Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error-detection and compensation. Psychol Sci. 1993;4:385–90.CrossRef
69.
Zurück zum Zitat Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci. 2005;25:11730–7.CrossRefPubMed Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci. 2005;25:11730–7.CrossRefPubMed
70.
Zurück zum Zitat Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during a go/NoGo response inhibition task. Hum Brain Mapp. 2001;12(3):131–43.CrossRefPubMed Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during a go/NoGo response inhibition task. Hum Brain Mapp. 2001;12(3):131–43.CrossRefPubMed
71.
Zurück zum Zitat Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306:443–7.CrossRef Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306:443–7.CrossRef
72.
Zurück zum Zitat Taylor SF, Welsh RC, Chen AC, Velander AJ, Liberzon I. Medial frontal hyperactivity in reality distortion. Biol Psychiatry. 2007;61(10):1171–8.CrossRefPubMed Taylor SF, Welsh RC, Chen AC, Velander AJ, Liberzon I. Medial frontal hyperactivity in reality distortion. Biol Psychiatry. 2007;61(10):1171–8.CrossRefPubMed
73.
Zurück zum Zitat Posner MI, Inhoff A, Friedrich F. Isolating attentional systems: a cognitive anatomical analysis. Psychobiology. 1987;15:107–21. Posner MI, Inhoff A, Friedrich F. Isolating attentional systems: a cognitive anatomical analysis. Psychobiology. 1987;15:107–21.
74.
Zurück zum Zitat Mesulam MM. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999;354:1325–46.CrossRefPubMedPubMedCentral Mesulam MM. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999;354:1325–46.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.CrossRefPubMed Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.CrossRefPubMed
76.
Zurück zum Zitat Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.CrossRefPubMed Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.CrossRefPubMed
77.
Zurück zum Zitat Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.CrossRefPubMed Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.CrossRefPubMed
78.
Zurück zum Zitat O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.CrossRefPubMed O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.CrossRefPubMed
79.
Zurück zum Zitat Liu X, Robertson E, Miall RC. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol. 2003;89:1223–37.CrossRefPubMed Liu X, Robertson E, Miall RC. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol. 2003;89:1223–37.CrossRefPubMed
80.
81.
Zurück zum Zitat Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.CrossRefPubMedPubMedCentral Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010a;1349:76–89.CrossRefPubMed Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010a;1349:76–89.CrossRefPubMed
83.
Zurück zum Zitat Bolognini N, Olgiati E, Rossetti A, Maravita A. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci. 2010b;31(10):1800–6.CrossRefPubMed Bolognini N, Olgiati E, Rossetti A, Maravita A. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci. 2010b;31(10):1800–6.CrossRefPubMed
84.
Zurück zum Zitat Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci. 2012;13:108.CrossRefPubMedPubMedCentral Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci. 2012;13:108.CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Roy LB, Sparing R, Fink GR, Hesse MD. Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia. 2015;74:96–107.CrossRefPubMed Roy LB, Sparing R, Fink GR, Hesse MD. Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia. 2015;74:96–107.CrossRefPubMed
86.
Zurück zum Zitat Moos K, Vossel S, Weidner R, Sparing R, Fink GR. Modulation of top-down control of visual attention by cathodal tDCS over right IPS. J Neurosci. 2012;32(46):16360–8.CrossRefPubMed Moos K, Vossel S, Weidner R, Sparing R, Fink GR. Modulation of top-down control of visual attention by cathodal tDCS over right IPS. J Neurosci. 2012;32(46):16360–8.CrossRefPubMed
87.
Zurück zum Zitat Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.CrossRefPubMed Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.CrossRefPubMed
88.
Zurück zum Zitat Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17(2):228–36.CrossRefPubMed Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17(2):228–36.CrossRefPubMed
89.
Zurück zum Zitat Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.CrossRefPubMedPubMedCentral Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Ball K, Lane AR, Smith DT, Ellison A. Site-dependent effects of tDCS uncover dissociations in the communication network underlying the processing of visual search. Brain Stimul. 2013;6(6):959–65.CrossRefPubMed Ball K, Lane AR, Smith DT, Ellison A. Site-dependent effects of tDCS uncover dissociations in the communication network underlying the processing of visual search. Brain Stimul. 2013;6(6):959–65.CrossRefPubMed
91.
Zurück zum Zitat Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000.CrossRefPubMedPubMedCentral Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Pirulli C, Fertonani A, Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 2013;6(4):683–9.CrossRefPubMed Pirulli C, Fertonani A, Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 2013;6(4):683–9.CrossRefPubMed
93.
Zurück zum Zitat Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226.CrossRefPubMedPubMedCentral Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study
verfasst von
Daniela Mannarelli
Caterina Pauletti
Antonio Currà
Lucio Marinelli
Alessandra Corrado
Roberto Delle Chiaie
Francesco Fattapposta
Publikationsdatum
01.06.2019
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 3/2019
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-019-01014-8

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

CGRP-Antikörper auch bei älteren Migränekranken sicher

Beginnen ältere Migränekranke eine Prophylaxe mit CGRP-Antikörpern, kommt es anschließend nicht häufiger zu kardiovaskulären Problemen als unter einer Prophylaxe mit Botulinumtoxin. Darauf deutet eine US-Analyse von Medicare-Versicherten.

Frühwarnzeichen für multiple Sklerose bei Kindern und Jugendlichen

Ein Forschungsteam aus Deutschland und Kanada hat eine Reihe metabolischer, okulärer, muskuloskelettaler, gastrointestinaler und kardiovaskulärer Symptome identifiziert, die bei Kindern und Jugendlichen der Diagnose einer multiplen Sklerose (MS) vorausgehen können.

Migräne verstehen und psychotherapeutisch behandeln

Das Wissen über die Mechanismen, die im Gehirn bei einer Migräneattacke ablaufen, und mögliche Auslöser wird immer breiter. Der psychologische Psychotherapeut Dr. Dipl.-Psych. Timo Klan fasst den aktuellen Erkenntnisstand zusammen. Und er gibt Tipps für eine differenzierte, individuelle Diagnostik auch von Begleiterkrankungen und beschreibt erfolgreiche psychotherapeutische Interventionen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.