Skip to main content
Erschienen in:

01.06.2019 | Review

The Cerebellum, THC, and Cannabis Addiction: Findings from Animal and Human Studies

verfasst von: Josep Moreno-Rius

Erschienen in: The Cerebellum | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Cannabis is the third most used psychoactive drug worldwide. Despite being legally scheduled as a drug with high harm potential and no therapeutic utility in countries like the USA, evidence shows otherwise and legislative changes and reinterpretations of existing ambiguous laws make this drug increasingly available by legal means. Nevertheless, this substance is able to generate clear addiction syndromes in some individuals who use it, which are accompanied by brain alterations resembling those caused by other addictive drugs. Moreover, there is no available pharmacological treatment for this disorder. This fact motivates a deep study and comprehension of the neural basis of addiction-relevant cannabinoid effects. Interestingly, the cerebellum, a hindbrain structure which involvement in functions not related to motor control and planning is being increasingly recognized in the last decades, seems to be involved in the effects of addictive drugs and addiction-related processes and also presents a high density of cannabinoid receptors. Preclinical research on the involvement of the cerebellum in cannabis’ effects has focused in the drug’s motor incoordinating actions, potentially underestimating its participation in addiction. Therefore, this review addresses the studies reporting cerebellar involvement in cannabis effects both in experimental animals and human subjects and the possible relevance of these changes for addiction. Additionally, future experimental approaches will be proposed and hopefully this work will stimulate research on the cerebellum in cannabis addiction and help recognizing it as an important part of the neural circuitry affected in cannabis-related disorders.
Literatur
1.
Zurück zum Zitat United Nations Office on Drugs and Crime. World drug report 2015. Vienna: United Nations publications; 2016. United Nations Office on Drugs and Crime. World drug report 2015. Vienna: United Nations publications; 2016.
2.
Zurück zum Zitat European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2015. Luxembourg: Publications Office of the European Union; 2016. European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2015. Luxembourg: Publications Office of the European Union; 2016.
3.
Zurück zum Zitat Clarke RC, Merlin MD. Cannabis: evolution and ethnobotany. Berkeley: University of California Press; 2013. Clarke RC, Merlin MD. Cannabis: evolution and ethnobotany. Berkeley: University of California Press; 2013.
5.
Zurück zum Zitat Mead A. The legal status of cannabis (marijuana) and cannabidiol (CBD) under U.S. law. Epilepsy Behav. 2017;70(Pt B):288–91.CrossRefPubMed Mead A. The legal status of cannabis (marijuana) and cannabidiol (CBD) under U.S. law. Epilepsy Behav. 2017;70(Pt B):288–91.CrossRefPubMed
6.
Zurück zum Zitat Nutt DJ, King LA, Phillips LD. Independent Scientific Committee on Drugs. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010;376(9752):1558–65.CrossRefPubMed Nutt DJ, King LA, Phillips LD. Independent Scientific Committee on Drugs. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010;376(9752):1558–65.CrossRefPubMed
7.
Zurück zum Zitat Alexander SP. Therapeutic potential of cannabis-related drugs. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:157–66.CrossRef Alexander SP. Therapeutic potential of cannabis-related drugs. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:157–66.CrossRef
8.
Zurück zum Zitat Novack GD. Cannabinoids for treatment of glaucoma. Curr Opin Ophthalmol. 2016;27(2):146–50.CrossRefPubMed Novack GD. Cannabinoids for treatment of glaucoma. Curr Opin Ophthalmol. 2016;27(2):146–50.CrossRefPubMed
9.
Zurück zum Zitat Fanelli G, De Carolis G, Leonardi C, Longobardi A, Sarli E, Allegri M, et al. Cannabis and intractable chronic pain: an explorative retrospective analysis of Italian cohort of 614 patients. J Pain Res. 2017;10:1217–24.CrossRefPubMedPubMedCentral Fanelli G, De Carolis G, Leonardi C, Longobardi A, Sarli E, Allegri M, et al. Cannabis and intractable chronic pain: an explorative retrospective analysis of Italian cohort of 614 patients. J Pain Res. 2017;10:1217–24.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Kilmer B. Recreational cannabis - minimizing the health risks from legalization. N Engl J Med. 2017;376(8):705–7.CrossRefPubMed Kilmer B. Recreational cannabis - minimizing the health risks from legalization. N Engl J Med. 2017;376(8):705–7.CrossRefPubMed
12.
Zurück zum Zitat Belackova V, Wilkins C. Consumer agency in cannabis supply – exploring auto-regulatory documents of the cannabis social clubs in Spain. Int J Drug Policy. 2018;54:26–34.CrossRefPubMed Belackova V, Wilkins C. Consumer agency in cannabis supply – exploring auto-regulatory documents of the cannabis social clubs in Spain. Int J Drug Policy. 2018;54:26–34.CrossRefPubMed
13.
14.
Zurück zum Zitat Amann M, Haug S, Wenger A, Baumgartner C, Ebert DD, Berger T, et al. The effects of social presence on adherence-focused guidance in problematic cannabis users: protocol for the CANreduce 2.0 randomized controlled trial. JMIR Res Protoc. 2018;7(1):e30.CrossRefPubMedPubMedCentral Amann M, Haug S, Wenger A, Baumgartner C, Ebert DD, Berger T, et al. The effects of social presence on adherence-focused guidance in problematic cannabis users: protocol for the CANreduce 2.0 randomized controlled trial. JMIR Res Protoc. 2018;7(1):e30.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, et al. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A. 1996;93(21):12040–5.CrossRefPubMedPubMedCentral Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, et al. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A. 1996;93(21):12040–5.CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, et al. Cannabis addiction and the brain: a review. J NeuroImmune Pharmacol. 2018 (In press;13:438–52.CrossRefPubMedPubMedCentral Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, et al. Cannabis addiction and the brain: a review. J NeuroImmune Pharmacol. 2018 (In press;13:438–52.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Anderson CM, Maas LC, Bd F, Bendor JT, Spencer TJ, Livni E, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2006;31(6):1318–26.CrossRefPubMed Anderson CM, Maas LC, Bd F, Bendor JT, Spencer TJ, Livni E, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2006;31(6):1318–26.CrossRefPubMed
20.
Zurück zum Zitat Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19(3):317–31.CrossRefPubMedPubMedCentral Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19(3):317–31.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Carbo-Gas M, Moreno-Rius J, Guarque-Chabrera J, Vazquez-Sanroman D, Gil-Miravet I, Carulli D, et al. Cerebellar perineuronal nets in cocaine-induced pavlovian memory: site matters. Neuropharmacology. 2017;125:166–80.CrossRefPubMed Carbo-Gas M, Moreno-Rius J, Guarque-Chabrera J, Vazquez-Sanroman D, Gil-Miravet I, Carulli D, et al. Cerebellar perineuronal nets in cocaine-induced pavlovian memory: site matters. Neuropharmacology. 2017;125:166–80.CrossRefPubMed
22.
Zurück zum Zitat Moreno-Rius J, Miquel M. The cerebellum in drug craving. Drug Alcohol Depend. 2017;173:151–8.CrossRefPubMed Moreno-Rius J, Miquel M. The cerebellum in drug craving. Drug Alcohol Depend. 2017;173:151–8.CrossRefPubMed
23.
Zurück zum Zitat Ikai Y, Takada M, Shinonag Y, Mizuno N. Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience. 1992;51(3):719–28.CrossRefPubMed Ikai Y, Takada M, Shinonag Y, Mizuno N. Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience. 1992;51(3):719–28.CrossRefPubMed
24.
Zurück zum Zitat Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72.CrossRefPubMed Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72.CrossRefPubMed
25.
Zurück zum Zitat Cauda F, Cavanna AE, D'agata F, Sacco K, Duca S, Geminiani GC. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci. 2011;23(10):2864–77.CrossRefPubMed Cauda F, Cavanna AE, D'agata F, Sacco K, Duca S, Geminiani GC. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci. 2011;23(10):2864–77.CrossRefPubMed
27.
Zurück zum Zitat Watson TC, Becker N, Apps R, Jones MW. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci. 2014;8:4.CrossRefPubMedPubMedCentral Watson TC, Becker N, Apps R, Jones MW. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci. 2014;8:4.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61(4):1213–25.CrossRefPubMed Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61(4):1213–25.CrossRefPubMed
31.
Zurück zum Zitat Yu W, Krook-Magnuson E. Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;9:177.CrossRefPubMedPubMedCentral Yu W, Krook-Magnuson E. Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;9:177.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Iglói K, Doeller CF, Paradis AL, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum crus I in sequence-based but not place-based navigation. Cereb Cortex. 2015;25(11):4146–54.CrossRefPubMed Iglói K, Doeller CF, Paradis AL, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum crus I in sequence-based but not place-based navigation. Cereb Cortex. 2015;25(11):4146–54.CrossRefPubMed
33.
Zurück zum Zitat Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932–6.CrossRefPubMedPubMedCentral Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932–6.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat DeSanty KP, Dar MS. Cannabinoid-induced motor incoordination through the cerebellar CB(1) receptor in mice. Pharmacol Biochem Behav. 2001a;69(1–2):251–9.CrossRefPubMed DeSanty KP, Dar MS. Cannabinoid-induced motor incoordination through the cerebellar CB(1) receptor in mice. Pharmacol Biochem Behav. 2001a;69(1–2):251–9.CrossRefPubMed
35.
Zurück zum Zitat Dar MS, Mustafa SJ. Acute ethanol/cannabinoid-induced ataxia and its antagonism by oral/systemic/intracerebellar A1 adenosine receptor antisense in mice. Brain Res. 2002;957(1):53–60.CrossRefPubMed Dar MS, Mustafa SJ. Acute ethanol/cannabinoid-induced ataxia and its antagonism by oral/systemic/intracerebellar A1 adenosine receptor antisense in mice. Brain Res. 2002;957(1):53–60.CrossRefPubMed
36.
Zurück zum Zitat McKinney DL, Cassidy MP, Collier LM, Martin BR, Wiley JL, Selley DE, et al. Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to delta9-tetrahydrocannabinol. J Pharmacol Exp Ther. 2008;324(2):664–73.CrossRefPubMed McKinney DL, Cassidy MP, Collier LM, Martin BR, Wiley JL, Selley DE, et al. Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to delta9-tetrahydrocannabinol. J Pharmacol Exp Ther. 2008;324(2):664–73.CrossRefPubMed
37.
Zurück zum Zitat Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-González M, Delgado-García JM, Gruart A, et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013;123(7):2816–31.CrossRefPubMedPubMedCentral Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-González M, Delgado-García JM, Gruart A, et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013;123(7):2816–31.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Ho BT, Taylor D, Fritchie GE, Englert LF, McIsaac WM. Neuropharmacological study of 9- and 8-L-tetrahydrocannabinols in monkeys and mice. Brain Res. 1972;38(1):163–70.CrossRefPubMed Ho BT, Taylor D, Fritchie GE, Englert LF, McIsaac WM. Neuropharmacological study of 9- and 8-L-tetrahydrocannabinols in monkeys and mice. Brain Res. 1972;38(1):163–70.CrossRefPubMed
39.
Zurück zum Zitat Goldman H, Dagirmanjian R, Drew WG, Murphy S. delta9-tetrahydrocannabinol alters flow of blood to subcortical areas of the conscious rat brain. Life Sci. 1975;17(3):477–82.CrossRefPubMed Goldman H, Dagirmanjian R, Drew WG, Murphy S. delta9-tetrahydrocannabinol alters flow of blood to subcortical areas of the conscious rat brain. Life Sci. 1975;17(3):477–82.CrossRefPubMed
40.
Zurück zum Zitat Dolby TW, Kleinsmith LJ. Effects of delta 9-tetrahydrocannabinol on the levels of cyclic adenosine 3′,5′-monophosphate in mouse brain. Biochem Pharmacol. 1974;23(13):1817–25.CrossRefPubMed Dolby TW, Kleinsmith LJ. Effects of delta 9-tetrahydrocannabinol on the levels of cyclic adenosine 3′,5′-monophosphate in mouse brain. Biochem Pharmacol. 1974;23(13):1817–25.CrossRefPubMed
41.
Zurück zum Zitat Bartova A, Birmingham MK. Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity. J Biol Chem. 1976;251(16):5002–6.PubMed Bartova A, Birmingham MK. Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity. J Biol Chem. 1976;251(16):5002–6.PubMed
42.
Zurück zum Zitat Romero J, García L, Fernández-Ruiz JJ, Cebeira M, Ramos JA. Changes in rat brain cannabinoid binding sites after acute or chronic exposure to their endogenous agonist, anandamide, or to delta 9-tetrahydrocannabinol. Pharmacol Biochem Behav. 1995;51(4):731–7.CrossRefPubMed Romero J, García L, Fernández-Ruiz JJ, Cebeira M, Ramos JA. Changes in rat brain cannabinoid binding sites after acute or chronic exposure to their endogenous agonist, anandamide, or to delta 9-tetrahydrocannabinol. Pharmacol Biochem Behav. 1995;51(4):731–7.CrossRefPubMed
43.
Zurück zum Zitat Romero J, Garcia-Palomero E, Castro JG, Garcia-Gil L, Ramos JA, Fernandez-Ruiz JJ. Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Brain Res Mol Brain Res. 1997;46(1–2):100–8.CrossRefPubMed Romero J, Garcia-Palomero E, Castro JG, Garcia-Gil L, Ramos JA, Fernandez-Ruiz JJ. Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Brain Res Mol Brain Res. 1997;46(1–2):100–8.CrossRefPubMed
44.
Zurück zum Zitat Sim LJ, Hampson RE, Deadwyler SA, Childers SR. Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci. 1996;16(24):8057–66.CrossRefPubMed Sim LJ, Hampson RE, Deadwyler SA, Childers SR. Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci. 1996;16(24):8057–66.CrossRefPubMed
45.
Zurück zum Zitat Casu MA, Pisu C, Sanna A, Tambaro S, Spada GP, Mongeau R, et al. Effect of delta9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: an immunohistochemical study. Brain Res. 2005;1048(1–2):41–7.CrossRefPubMed Casu MA, Pisu C, Sanna A, Tambaro S, Spada GP, Mongeau R, et al. Effect of delta9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: an immunohistochemical study. Brain Res. 2005;1048(1–2):41–7.CrossRefPubMed
46.
Zurück zum Zitat Rubino T, Forlani G, Viganò D, Zippel R, Parolaro D. Modulation of extracellular signal-regulated kinases cascade by chronic delta9-tetrahydrocannabinol treatment. Mol Cell Neurosci. 2004;25(3):355–62.CrossRefPubMed Rubino T, Forlani G, Viganò D, Zippel R, Parolaro D. Modulation of extracellular signal-regulated kinases cascade by chronic delta9-tetrahydrocannabinol treatment. Mol Cell Neurosci. 2004;25(3):355–62.CrossRefPubMed
47.
Zurück zum Zitat Rubino T, Vigano' D, Massi P, Spinello M, Zagato E, Giagnoni G, et al. Chronic delta-9-tetrahydrocannabinol treatment increases cAMP levels and cAMP-dependent protein kinase activity in some rat brain regions. Neuropharmacology. 2000;39(7):1331–6.CrossRefPubMed Rubino T, Vigano' D, Massi P, Spinello M, Zagato E, Giagnoni G, et al. Chronic delta-9-tetrahydrocannabinol treatment increases cAMP levels and cAMP-dependent protein kinase activity in some rat brain regions. Neuropharmacology. 2000;39(7):1331–6.CrossRefPubMed
48.
Zurück zum Zitat Whitlow CT, Freedland CS, Porrino LJ. Metabolic mapping of the time-dependent effects of delta 9-tetrahydrocannabinol administration in the rat. Psychopharmacology. 2002;161(2):129–36.CrossRefPubMed Whitlow CT, Freedland CS, Porrino LJ. Metabolic mapping of the time-dependent effects of delta 9-tetrahydrocannabinol administration in the rat. Psychopharmacology. 2002;161(2):129–36.CrossRefPubMed
49.
Zurück zum Zitat Senn R, Keren O, Hefetz A, Sarne Y. Long-term cognitive deficits induced by a single, extremely low dose of tetrahydrocannabinol (THC): behavioral, pharmacological and biochemical studies in mice. Pharmacol Biochem Behav. 2008;88(3):230–7.CrossRefPubMed Senn R, Keren O, Hefetz A, Sarne Y. Long-term cognitive deficits induced by a single, extremely low dose of tetrahydrocannabinol (THC): behavioral, pharmacological and biochemical studies in mice. Pharmacol Biochem Behav. 2008;88(3):230–7.CrossRefPubMed
50.
Zurück zum Zitat Amal H, Fridman-Rozevich L, Senn R, Strelnikov A, Gafni M, Keren O, et al. Long-term consequences of a single treatment of mice with an ultra-low dose of Δ9-tetrahydrocannabinol (THC). Behav Brain Res. 2010;206(2):245–53.CrossRefPubMed Amal H, Fridman-Rozevich L, Senn R, Strelnikov A, Gafni M, Keren O, et al. Long-term consequences of a single treatment of mice with an ultra-low dose of Δ9-tetrahydrocannabinol (THC). Behav Brain Res. 2010;206(2):245–53.CrossRefPubMed
51.
Zurück zum Zitat Fishbein M, Gov S, Assaf F, Gafni M, Keren O, Sarne Y. Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling. Exp Brain Res. 2012;221(4):437–48.CrossRefPubMed Fishbein M, Gov S, Assaf F, Gafni M, Keren O, Sarne Y. Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling. Exp Brain Res. 2012;221(4):437–48.CrossRefPubMed
52.
Zurück zum Zitat Smith AD, Dar MS. Mouse cerebellar nicotinic-cholinergic receptor modulation of Δ9-THC ataxia: role of the α4β2 subtype. Brain Res. 2006;1115(1):16–25.CrossRefPubMed Smith AD, Dar MS. Mouse cerebellar nicotinic-cholinergic receptor modulation of Δ9-THC ataxia: role of the α4β2 subtype. Brain Res. 2006;1115(1):16–25.CrossRefPubMed
53.
Zurück zum Zitat Smith AD, Dar MS. Involvement of the alpha4beta2 nicotinic receptor subtype in nicotine-induced attenuation of delta9-THC cerebellar ataxia: role of cerebellar nitric oxide. Pharmacol Biochem Behav. 2007;86(1):103–12.CrossRefPubMed Smith AD, Dar MS. Involvement of the alpha4beta2 nicotinic receptor subtype in nicotine-induced attenuation of delta9-THC cerebellar ataxia: role of cerebellar nitric oxide. Pharmacol Biochem Behav. 2007;86(1):103–12.CrossRefPubMed
54.
Zurück zum Zitat Lorivel T, Hilber P. Motor effects of delta 9 THC in cerebellar Lurcher mutant mice. Behav Brain Res. 2007;181(2):248–53.CrossRefPubMed Lorivel T, Hilber P. Motor effects of delta 9 THC in cerebellar Lurcher mutant mice. Behav Brain Res. 2007;181(2):248–53.CrossRefPubMed
55.
Zurück zum Zitat Luthra YK, Rosenkrantz H, Braude MC. Cerebral and cerebellar neurochemical changes and behavioral manifestations in rats chronically exposed to marijuana smoke. Toxicol Appl Pharmacol. 1976;35(3):455–65.CrossRefPubMed Luthra YK, Rosenkrantz H, Braude MC. Cerebral and cerebellar neurochemical changes and behavioral manifestations in rats chronically exposed to marijuana smoke. Toxicol Appl Pharmacol. 1976;35(3):455–65.CrossRefPubMed
56.
Zurück zum Zitat Matsuda LA, Bonner TI, Lolait SJ. Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol. 1993;327(4):535–50.CrossRefPubMed Matsuda LA, Bonner TI, Lolait SJ. Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol. 1993;327(4):535–50.CrossRefPubMed
57.
Zurück zum Zitat Patel S, Hillard CJ. Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J Pharmacol Exp Ther. 2001;297(2):629–37.PubMed Patel S, Hillard CJ. Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J Pharmacol Exp Ther. 2001;297(2):629–37.PubMed
58.
Zurück zum Zitat DeSanty KP, Dar MS. Involvement of the cerebellar adenosine A(1) receptor in cannabinoid-induced motor incoordination in the acute and tolerant state in mice. Brain Res. 2001;905(1–2):178–87.CrossRefPubMed DeSanty KP, Dar MS. Involvement of the cerebellar adenosine A(1) receptor in cannabinoid-induced motor incoordination in the acute and tolerant state in mice. Brain Res. 2001;905(1–2):178–87.CrossRefPubMed
59.
Zurück zum Zitat Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Vogt LJ, Sim-Selley LJ. Chronic Δ9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem. 1999;73(6):2447–59.CrossRefPubMed Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Vogt LJ, Sim-Selley LJ. Chronic Δ9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem. 1999;73(6):2447–59.CrossRefPubMed
60.
Zurück zum Zitat Zhuang S, Kittler J, Grigorenko EV, Kirby MT, Sim LJ, Hampson RE, et al. Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res. 1998;62(2):141–9.CrossRefPubMed Zhuang S, Kittler J, Grigorenko EV, Kirby MT, Sim LJ, Hampson RE, et al. Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res. 1998;62(2):141–9.CrossRefPubMed
61.
Zurück zum Zitat Breivogel CS, Scates SM, Beletskaya IO, Lowery OB, Aceto MD, Martin BR. The effects of Δ9-tetrahydrocannabinol physical dependence on brain cannabinoid receptors. Eur J Pharmacol. 2003;459(2–3):139–50.CrossRefPubMed Breivogel CS, Scates SM, Beletskaya IO, Lowery OB, Aceto MD, Martin BR. The effects of Δ9-tetrahydrocannabinol physical dependence on brain cannabinoid receptors. Eur J Pharmacol. 2003;459(2–3):139–50.CrossRefPubMed
62.
Zurück zum Zitat Selley DE, Cassidy MP, Martin BR, Sim-Selley LJ. Long-term administration of Δ9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum. Mol Pharmacol. 2004;66(5):1275–84.CrossRefPubMed Selley DE, Cassidy MP, Martin BR, Sim-Selley LJ. Long-term administration of Δ9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum. Mol Pharmacol. 2004;66(5):1275–84.CrossRefPubMed
63.
Zurück zum Zitat Filipeanu CM, Guidry JJ, Leonard ST, Winsauer PJ. Δ9-THC increases endogenous AHA1 expression in rat cerebellum and may modulate CB1 receptor function during chronic use. J Neurochem. 2011;118(6):1101–12.CrossRefPubMedPubMedCentral Filipeanu CM, Guidry JJ, Leonard ST, Winsauer PJ. Δ9-THC increases endogenous AHA1 expression in rat cerebellum and may modulate CB1 receptor function during chronic use. J Neurochem. 2011;118(6):1101–12.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Colombo G, Rusconi F, Rubino T, Cattaneo A, Martegani E, Parolaro D, et al. Transcriptomic and proteomic analyses of mouse cerebellum reveals alterations in RasGRF1 expression following in vivo chronic treatment with delta 9-tetrahydrocannabinol. J Mol Neurosci. 2009;37(2):111–22.CrossRefPubMed Colombo G, Rusconi F, Rubino T, Cattaneo A, Martegani E, Parolaro D, et al. Transcriptomic and proteomic analyses of mouse cerebellum reveals alterations in RasGRF1 expression following in vivo chronic treatment with delta 9-tetrahydrocannabinol. J Mol Neurosci. 2009;37(2):111–22.CrossRefPubMed
65.
Zurück zum Zitat Rubino T, Viganò D, Premoli F, Castiglioni C, Bianchessi S, Zippel R, et al. Changes in the expression of G protein-coupled receptor kinases and beta-arrestins in mouse brain during cannabinoid tolerance: a role for RAS-ERK cascade. Mol Neurobiol. 2006;33(3):199–213.CrossRefPubMed Rubino T, Viganò D, Premoli F, Castiglioni C, Bianchessi S, Zippel R, et al. Changes in the expression of G protein-coupled receptor kinases and beta-arrestins in mouse brain during cannabinoid tolerance: a role for RAS-ERK cascade. Mol Neurobiol. 2006;33(3):199–213.CrossRefPubMed
66.
Zurück zum Zitat Tonini R, Ciardo S, Cerovic M, Rubino T, Parolaro D, Mazzanti M, et al. ERK-dependent modulation of cerebellar synaptic plasticity after chronic Δ9-tetrahydrocannabinol exposure. J Neurosci. 2006;26(21):5810–8.CrossRefPubMedPubMedCentral Tonini R, Ciardo S, Cerovic M, Rubino T, Parolaro D, Mazzanti M, et al. ERK-dependent modulation of cerebellar synaptic plasticity after chronic Δ9-tetrahydrocannabinol exposure. J Neurosci. 2006;26(21):5810–8.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Hutcheson DM, Tzavara ET, Smadja C, Valjent E, Roques BP, Hanoune J, et al. Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with Δ-9-tetrahydrocannabinol. Br J Pharmacol. 1998;125(7):1567–77.CrossRefPubMedPubMedCentral Hutcheson DM, Tzavara ET, Smadja C, Valjent E, Roques BP, Hanoune J, et al. Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with Δ-9-tetrahydrocannabinol. Br J Pharmacol. 1998;125(7):1567–77.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Wise LE, Varvel SA, Selley DE, Wiebelhaus JM, Long KA, Middleton LS, et al. Δ(9)-Tetrahydrocannabinol-dependent mice undergoing withdrawal display impaired spatial memory. Psychopharmacology. 2011;217(4):485–94.CrossRefPubMedPubMedCentral Wise LE, Varvel SA, Selley DE, Wiebelhaus JM, Long KA, Middleton LS, et al. Δ(9)-Tetrahydrocannabinol-dependent mice undergoing withdrawal display impaired spatial memory. Psychopharmacology. 2011;217(4):485–94.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Tzavara ET, Valjent E, Firmo C, Mas M, Beslot F, Defer N, et al. Cannabinoid withdrawal is dependent upon PKA activation in the cerebellum. Eur J Neurosci. 2000;12(3):1038–46.CrossRefPubMed Tzavara ET, Valjent E, Firmo C, Mas M, Beslot F, Defer N, et al. Cannabinoid withdrawal is dependent upon PKA activation in the cerebellum. Eur J Neurosci. 2000;12(3):1038–46.CrossRefPubMed
70.
Zurück zum Zitat Rubino T, Viganò D, Massi P, Parolaro D. Cellular mechanisms of Δ9-tetrahydrocannabinol behavioural sensitization. Eur J Neurosci. 2003;17(2):325–30.CrossRefPubMed Rubino T, Viganò D, Massi P, Parolaro D. Cellular mechanisms of Δ9-tetrahydrocannabinol behavioural sensitization. Eur J Neurosci. 2003;17(2):325–30.CrossRefPubMed
71.
Zurück zum Zitat Suárez I, Bodega G, Fernández-Ruiz JJ, Ramos JA, Rubio M, Fernández B. Reduced glial fibrillary acidic protein and glutamine synthetase expression in astrocytes and Bergmann glial cells in the rat cerebellum caused by Δ(9)-tetrahydrocannabinol administration during development. Dev Neurosci. 2002;24(4):300–12.CrossRefPubMed Suárez I, Bodega G, Fernández-Ruiz JJ, Ramos JA, Rubio M, Fernández B. Reduced glial fibrillary acidic protein and glutamine synthetase expression in astrocytes and Bergmann glial cells in the rat cerebellum caused by Δ(9)-tetrahydrocannabinol administration during development. Dev Neurosci. 2002;24(4):300–12.CrossRefPubMed
72.
Zurück zum Zitat Suárez I, Bodega G, Rubio M, Fernández-Ruiz JJ, Ramos JA, Fernández B. Prenatal cannabinoid exposure down- regulates glutamate transporter expressions (GLAST and EAAC1) in the rat cerebellum. Dev Neurosci. 2004a;26(1):45–53.CrossRefPubMed Suárez I, Bodega G, Rubio M, Fernández-Ruiz JJ, Ramos JA, Fernández B. Prenatal cannabinoid exposure down- regulates glutamate transporter expressions (GLAST and EAAC1) in the rat cerebellum. Dev Neurosci. 2004a;26(1):45–53.CrossRefPubMed
73.
Zurück zum Zitat Suárez I, Bodega G, Fernández-Ruiz J, Ramos JA, Rubio M, Fernández B. Down-regulation of the AMPA glutamate receptor subunits GluR1 and GluR2/3 in the rat cerebellum following pre- and perinatal Δ9-tetrahydrocannabinol exposure. Cerebellum. 2004b;3(2):66–74.CrossRefPubMed Suárez I, Bodega G, Fernández-Ruiz J, Ramos JA, Rubio M, Fernández B. Down-regulation of the AMPA glutamate receptor subunits GluR1 and GluR2/3 in the rat cerebellum following pre- and perinatal Δ9-tetrahydrocannabinol exposure. Cerebellum. 2004b;3(2):66–74.CrossRefPubMed
74.
Zurück zum Zitat Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.CrossRefPubMed Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.CrossRefPubMed
75.
Zurück zum Zitat Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Ivanovic M, et al. Cerebellar metabolic activation by delta-9-tetrahydro-cannabinol in human brain: a study with positron emission tomography and 18F-2-fluoro-2-deoxyglucose. Psychiatry Res. 1991;40(1):69–78.CrossRefPubMed Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Ivanovic M, et al. Cerebellar metabolic activation by delta-9-tetrahydro-cannabinol in human brain: a study with positron emission tomography and 18F-2-fluoro-2-deoxyglucose. Psychiatry Res. 1991;40(1):69–78.CrossRefPubMed
76.
Zurück zum Zitat van Hell HH, Bossong MG, Jager G, Kristo G, van Osch MJ, Zelaya F, et al. Evidence for involvement of the insula in the psychotropic effects of THC in humans: a double-blind, randomized pharmacological MRI study. Int J Neuropsychopharmacol. 2011;14(10):1377–88.CrossRefPubMed van Hell HH, Bossong MG, Jager G, Kristo G, van Osch MJ, Zelaya F, et al. Evidence for involvement of the insula in the psychotropic effects of THC in humans: a double-blind, randomized pharmacological MRI study. Int J Neuropsychopharmacol. 2011;14(10):1377–88.CrossRefPubMed
77.
Zurück zum Zitat Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SA, et al. Manipulating brain connectivity with δ9-tetrahydrocannabinol: a pharmacological resting state FMRI study. NeuroImage. 2012;63(3):1701–11.CrossRefPubMed Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SA, et al. Manipulating brain connectivity with δ9-tetrahydrocannabinol: a pharmacological resting state FMRI study. NeuroImage. 2012;63(3):1701–11.CrossRefPubMed
78.
Zurück zum Zitat Mathew RJ, Wilson WH, Turkington TG, Coleman RE. Cerebellar activity and disturbed time sense after THC. Brain Res. 1998;797(2):183–9.CrossRefPubMed Mathew RJ, Wilson WH, Turkington TG, Coleman RE. Cerebellar activity and disturbed time sense after THC. Brain Res. 1998;797(2):183–9.CrossRefPubMed
79.
Zurück zum Zitat Atakan Z, Bhattacharyya S, Allen P, Martín-Santos R, Crippa JA, Borgwardt SJ, et al. Cannabis affects people differently: inter-subject variation in the psychotogenic effects of Δ9-tetrahydrocannabinol: a functional magnetic resonance imaging study with healthy volunteers. Psychol Med. 2013;43(6):1255–67.CrossRefPubMed Atakan Z, Bhattacharyya S, Allen P, Martín-Santos R, Crippa JA, Borgwardt SJ, et al. Cannabis affects people differently: inter-subject variation in the psychotogenic effects of Δ9-tetrahydrocannabinol: a functional magnetic resonance imaging study with healthy volunteers. Psychol Med. 2013;43(6):1255–67.CrossRefPubMed
80.
Zurück zum Zitat O'Leary DS, Block RI, Koeppel JA, Flaum M, Schultz SK, Andreasen NC, et al. Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology. 2002;26(6):802–16.CrossRefPubMed O'Leary DS, Block RI, Koeppel JA, Flaum M, Schultz SK, Andreasen NC, et al. Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology. 2002;26(6):802–16.CrossRefPubMed
81.
Zurück zum Zitat O'Leary DS, Block RI, Koeppel JA, Schultz SK, Magnotta VA, Ponto LB, et al. Effects of smoking marijuana on focal attention and brain blood flow. Hum Psychopharmacol. 2007;22(3):135–48.CrossRefPubMed O'Leary DS, Block RI, Koeppel JA, Schultz SK, Magnotta VA, Ponto LB, et al. Effects of smoking marijuana on focal attention and brain blood flow. Hum Psychopharmacol. 2007;22(3):135–48.CrossRefPubMed
82.
Zurück zum Zitat Bossong MG, Jansma JM, van Hell HH, Jager G, Oudman E, Saliasi E, et al. Effects of δ9-tetrahydrocannabinol on human working memory function. Biol Psychiatry. 2012;71(8):693–9.CrossRefPubMed Bossong MG, Jansma JM, van Hell HH, Jager G, Oudman E, Saliasi E, et al. Effects of δ9-tetrahydrocannabinol on human working memory function. Biol Psychiatry. 2012;71(8):693–9.CrossRefPubMed
83.
Zurück zum Zitat O'Leary DS, Block RI, Turner BM, Koeppel J, Magnotta VA, Ponto LB, et al. Marijuana alters the human cerebellar clock. Neuroreport. 2003;14(8):1145–51.CrossRefPubMed O'Leary DS, Block RI, Turner BM, Koeppel J, Magnotta VA, Ponto LB, et al. Marijuana alters the human cerebellar clock. Neuroreport. 2003;14(8):1145–51.CrossRefPubMed
84.
Zurück zum Zitat Smith AM, Fried PA, Hogan MJ, Cameron I. Effects of prenatal marijuana on visuospatial working memory: an fMRI study in young adults. Neurotoxicol Teratol. 2006;28(2):286–95.CrossRefPubMed Smith AM, Fried PA, Hogan MJ, Cameron I. Effects of prenatal marijuana on visuospatial working memory: an fMRI study in young adults. Neurotoxicol Teratol. 2006;28(2):286–95.CrossRefPubMed
85.
Zurück zum Zitat Smith AM, Fried PA, Hogan MJ, Cameron I. Effects of prenatal marijuana on response inhibition: an fMRI study of young adults. Neurotoxicol Teratol. 2004;26(4):533–42.CrossRefPubMed Smith AM, Fried PA, Hogan MJ, Cameron I. Effects of prenatal marijuana on response inhibition: an fMRI study of young adults. Neurotoxicol Teratol. 2004;26(4):533–42.CrossRefPubMed
86.
87.
88.
Zurück zum Zitat Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. NeuroImage. 2012a;59(4):3845–51.CrossRefPubMed Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. NeuroImage. 2012a;59(4):3845–51.CrossRefPubMed
89.
Zurück zum Zitat Battistella G, Fornari E, Annoni JM, Chtioui H, Dao K, Fabritius M, et al. Long-term effects of cannabis on brain structure. Neuropsychopharmacology. 2014;39(9):2041–8.CrossRefPubMedPubMedCentral Battistella G, Fornari E, Annoni JM, Chtioui H, Dao K, Fabritius M, et al. Long-term effects of cannabis on brain structure. Neuropsychopharmacology. 2014;39(9):2041–8.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat James A, Hough M, James S, Winmill L, Burge L, Nijhawan S, et al. Greater white and grey matter changes associated with early cannabis use in adolescent-onset schizophrenia (AOS). Schizophr Res. 2011;128(1–3):91–7.CrossRefPubMed James A, Hough M, James S, Winmill L, Burge L, Nijhawan S, et al. Greater white and grey matter changes associated with early cannabis use in adolescent-onset schizophrenia (AOS). Schizophr Res. 2011;128(1–3):91–7.CrossRefPubMed
91.
Zurück zum Zitat Solowij N, Yücel M, Respondek C, Whittle S, Lindsay E, Pantelis C, et al. Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychol Med. 2011;41(11):2349–59.CrossRefPubMed Solowij N, Yücel M, Respondek C, Whittle S, Lindsay E, Pantelis C, et al. Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychol Med. 2011;41(11):2349–59.CrossRefPubMed
92.
Zurück zum Zitat Wetherill RR, Jagannathan K, Hager N, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: disentangling differences in gray matter volume. Int J Neuropsychopharmacol. 2015a;18(10):pyv061.CrossRefPubMedPubMedCentral Wetherill RR, Jagannathan K, Hager N, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: disentangling differences in gray matter volume. Int J Neuropsychopharmacol. 2015a;18(10):pyv061.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Valentine A, et al. Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Res. 1996;67(1):29–38.CrossRefPubMed Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Valentine A, et al. Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Res. 1996;67(1):29–38.CrossRefPubMed
94.
Zurück zum Zitat Sneider JT, Pope HG Jr, Silveri MM, Simpson NS, Gruber SA, Yurgelun-Todd DA. Altered regional blood volume in chronic cannabis smokers. Exp Clin Psychopharmacol. 2006;14(4):422–8.CrossRefPubMed Sneider JT, Pope HG Jr, Silveri MM, Simpson NS, Gruber SA, Yurgelun-Todd DA. Altered regional blood volume in chronic cannabis smokers. Exp Clin Psychopharmacol. 2006;14(4):422–8.CrossRefPubMed
95.
Zurück zum Zitat Sneider JT, Pope HG Jr, Silveri MM, Simpson NS, Gruber SA, Yurgelun-Todd DA. Differences in regional blood volume during a 28-day period of abstinence in chronic cannabis smokers. Eur Neuropsychopharmacol. 2008;18(8):612–9.CrossRefPubMedPubMedCentral Sneider JT, Pope HG Jr, Silveri MM, Simpson NS, Gruber SA, Yurgelun-Todd DA. Differences in regional blood volume during a 28-day period of abstinence in chronic cannabis smokers. Eur Neuropsychopharmacol. 2008;18(8):612–9.CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Orr C, Morioka R, Behan B, Datwani S, Doucet M, Ivanovic J, et al. Altered resting-state connectivity in adolescent cannabis users. Am J Drug Alcohol Abuse. 2013;39(6):372–81.CrossRefPubMed Orr C, Morioka R, Behan B, Datwani S, Doucet M, Ivanovic J, et al. Altered resting-state connectivity in adolescent cannabis users. Am J Drug Alcohol Abuse. 2013;39(6):372–81.CrossRefPubMed
97.
Zurück zum Zitat Cheng H, Skosnik PD, Pruce BJ, Brumbaugh MS, Vollmer JM, Fridberg DJ, et al. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users - a multi-voxel pattern analysis. J Psychopharmacol. 2014;28(11):1030–40.CrossRefPubMedPubMedCentral Cheng H, Skosnik PD, Pruce BJ, Brumbaugh MS, Vollmer JM, Fridberg DJ, et al. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users - a multi-voxel pattern analysis. J Psychopharmacol. 2014;28(11):1030–40.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Wetherill RR, Fang Z, Jagannathan K, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: disentangling differences in default mode network functional connectivity. Drug Alcohol Depend. 2015b;153:116–23.CrossRefPubMedPubMedCentral Wetherill RR, Fang Z, Jagannathan K, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: disentangling differences in default mode network functional connectivity. Drug Alcohol Depend. 2015b;153:116–23.CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Skosnik PD, Edwards CR, O'Donnell BF, Steffen A, Steinmetz JE, Hetrick WP. Cannabis use disrupts eyeblink conditioning: evidence for cannabinoid modulation of cerebellar-dependent learning. Neuropsychopharmacology. 2008;33(6):1432–40.CrossRefPubMed Skosnik PD, Edwards CR, O'Donnell BF, Steffen A, Steinmetz JE, Hetrick WP. Cannabis use disrupts eyeblink conditioning: evidence for cannabinoid modulation of cerebellar-dependent learning. Neuropsychopharmacology. 2008;33(6):1432–40.CrossRefPubMed
100.
Zurück zum Zitat Steinmetz AB, Edwards CR, Vollmer JM, Erickson MA, O'Donnell BF, Hetrick WP, et al. Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans. Psychopharmacology. 2012;221(1):133–41.CrossRefPubMed Steinmetz AB, Edwards CR, Vollmer JM, Erickson MA, O'Donnell BF, Hetrick WP, et al. Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans. Psychopharmacology. 2012;221(1):133–41.CrossRefPubMed
101.
Zurück zum Zitat Lopez-Larson MP, Rogowska J, Bogorodzki P, Bueler CE, McGlade EC, Yurgelun-Todd DA. Cortico-cerebellar abnormalities in adolescents with heavy marijuana use. Psychiatry Res. 2012;202(3):224–32.CrossRefPubMedPubMedCentral Lopez-Larson MP, Rogowska J, Bogorodzki P, Bueler CE, McGlade EC, Yurgelun-Todd DA. Cortico-cerebellar abnormalities in adolescents with heavy marijuana use. Psychiatry Res. 2012;202(3):224–32.CrossRefPubMedPubMedCentral
102.
Zurück zum Zitat Volkow ND, Wang GJ, Telang F, Fowler JS, Alexoff D, Logan J, et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A. 2014b;111(30):E3149–56.CrossRefPubMedPubMedCentral Volkow ND, Wang GJ, Telang F, Fowler JS, Alexoff D, Logan J, et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A. 2014b;111(30):E3149–56.CrossRefPubMedPubMedCentral
103.
Zurück zum Zitat Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, et al. Cannabis abusers show hypofrontality and blunted brain responses to a stimulant challenge in females but not in males. Neuropsychopharmacology. 2016;41(10):2596–605.CrossRefPubMedPubMedCentral Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, et al. Cannabis abusers show hypofrontality and blunted brain responses to a stimulant challenge in females but not in males. Neuropsychopharmacology. 2016;41(10):2596–605.CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Chang L, Yakupov R, Cloak C, Ernst T. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain. 2006;129(Pt 5):1096–112.CrossRefPubMed Chang L, Yakupov R, Cloak C, Ernst T. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain. 2006;129(Pt 5):1096–112.CrossRefPubMed
105.
Zurück zum Zitat Block RI, O'Leary DS, Hichwa RD, Augustinack JC, Boles Ponto LL, Ghoneim MM, et al. Effects of frequent marijuana use on memory-related regional cerebral blood flow. Pharmacol Biochem Behav. 2002;72(1–2):237–50.CrossRefPubMed Block RI, O'Leary DS, Hichwa RD, Augustinack JC, Boles Ponto LL, Ghoneim MM, et al. Effects of frequent marijuana use on memory-related regional cerebral blood flow. Pharmacol Biochem Behav. 2002;72(1–2):237–50.CrossRefPubMed
106.
Zurück zum Zitat Behan B, Connolly CG, Datwani S, Doucet M, Ivanovic J, Morioka R, et al. Response inhibition and elevated parietal-cerebellar correlations in chronic adolescent cannabis users. Neuropharmacology. 2014;84:131–7.CrossRefPubMed Behan B, Connolly CG, Datwani S, Doucet M, Ivanovic J, Morioka R, et al. Response inhibition and elevated parietal-cerebellar correlations in chronic adolescent cannabis users. Neuropharmacology. 2014;84:131–7.CrossRefPubMed
107.
Zurück zum Zitat Bolla KI, Eldreth DA, Matochik JA, Cadet JL. Neural substrates of faulty decision-making in abstinent marijuana users. NeuroImage. 2005;26(2):480–92.CrossRefPubMed Bolla KI, Eldreth DA, Matochik JA, Cadet JL. Neural substrates of faulty decision-making in abstinent marijuana users. NeuroImage. 2005;26(2):480–92.CrossRefPubMed
108.
Zurück zum Zitat Vaidya JG, Block RI, O'Leary DS, Ponto LB, Ghoneim MM, Bechara A. Effects of chronic marijuana use on brain activity during monetary decision-making. Neuropsychopharmacology. 2012;37(3):618–29.CrossRefPubMed Vaidya JG, Block RI, O'Leary DS, Ponto LB, Ghoneim MM, Bechara A. Effects of chronic marijuana use on brain activity during monetary decision-making. Neuropsychopharmacology. 2012;37(3):618–29.CrossRefPubMed
109.
Zurück zum Zitat Wesley MJ, Hanlon CA, Porrino LJ. Poor decision-making by chronic marijuana users is associated with decreased functional responsiveness to negative consequences. Psychiatry Res. 2011;191(1):51–9.CrossRefPubMed Wesley MJ, Hanlon CA, Porrino LJ. Poor decision-making by chronic marijuana users is associated with decreased functional responsiveness to negative consequences. Psychiatry Res. 2011;191(1):51–9.CrossRefPubMed
110.
Zurück zum Zitat Charboneau EJ, Dietrich MS, Park S, Cao A, Watkins TJ, Blackford JU, et al. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: preliminary results. Psychiatry Res. 2013;214(2):122–31.CrossRefPubMedPubMedCentral Charboneau EJ, Dietrich MS, Park S, Cao A, Watkins TJ, Blackford JU, et al. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: preliminary results. Psychiatry Res. 2013;214(2):122–31.CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Filbey FM, Dunlop J, Ketcherside A, Baine J, Rhinehardt T, Kuhn B, et al. fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users. Hum Brain Mapp. 2016;37(10):3431–43.CrossRefPubMedPubMedCentral Filbey FM, Dunlop J, Ketcherside A, Baine J, Rhinehardt T, Kuhn B, et al. fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users. Hum Brain Mapp. 2016;37(10):3431–43.CrossRefPubMedPubMedCentral
112.
Zurück zum Zitat Filbey FM, Dunlop J. Differential reward network functional connectivity in cannabis dependent and non-dependent users. Drug Alcohol Depend. 2014;140:101–11.CrossRefPubMedPubMedCentral Filbey FM, Dunlop J. Differential reward network functional connectivity in cannabis dependent and non-dependent users. Drug Alcohol Depend. 2014;140:101–11.CrossRefPubMedPubMedCentral
113.
Zurück zum Zitat Filbey FM, Schacht JP, Myers US, Chavez RS, Hutchison KE. Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology. 2010;35(4):967–75.CrossRefPubMed Filbey FM, Schacht JP, Myers US, Chavez RS, Hutchison KE. Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology. 2010;35(4):967–75.CrossRefPubMed
114.
Zurück zum Zitat Cousijn J, Goudriaan AE, Ridderinkhof KR, van den Brink W, Veltman DJ, Wiers RW. Approach-bias predicts development of cannabis problem severity in heavy cannabis users: results from a prospective FMRI study. PLoS One. 2012b;7(9):e42394.CrossRefPubMedPubMedCentral Cousijn J, Goudriaan AE, Ridderinkhof KR, van den Brink W, Veltman DJ, Wiers RW. Approach-bias predicts development of cannabis problem severity in heavy cannabis users: results from a prospective FMRI study. PLoS One. 2012b;7(9):e42394.CrossRefPubMedPubMedCentral
115.
Zurück zum Zitat Wise RA, Bozarth MA. Brain mechanisms of drug reward and euphoria. Psychiatr Med. 1985;3(4):445–60.PubMed Wise RA, Bozarth MA. Brain mechanisms of drug reward and euphoria. Psychiatr Med. 1985;3(4):445–60.PubMed
116.
Zurück zum Zitat Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94(4):469–92.CrossRef Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94(4):469–92.CrossRef
117.
118.
Zurück zum Zitat Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.CrossRef Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.CrossRef
119.
Zurück zum Zitat Ehrman R, Ternes J, O'Brien CP, McLellan AT. Conditioned tolerance in human opiate addicts. Psychopharmacology. 1992;108(1–2):218–24.CrossRefPubMed Ehrman R, Ternes J, O'Brien CP, McLellan AT. Conditioned tolerance in human opiate addicts. Psychopharmacology. 1992;108(1–2):218–24.CrossRefPubMed
120.
Zurück zum Zitat Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.CrossRefPubMed Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.CrossRefPubMed
121.
Zurück zum Zitat Ahmed SH. Escalation of drug use. In: Olmstead MC, editor. Animal models of drug addiction, neuromethods, vol. 53. New York: Humana; 2011. p. 267–92.CrossRef Ahmed SH. Escalation of drug use. In: Olmstead MC, editor. Animal models of drug addiction, neuromethods, vol. 53. New York: Humana; 2011. p. 267–92.CrossRef
122.
Zurück zum Zitat Volicer L, Puri SK, Choma P. Cyclic GMP and GABA levels in rat striatum and cerebellum during morphine withdrawal: effect of apomorphine. Neuropharmacology. 1977;16(11):791–4.CrossRefPubMed Volicer L, Puri SK, Choma P. Cyclic GMP and GABA levels in rat striatum and cerebellum during morphine withdrawal: effect of apomorphine. Neuropharmacology. 1977;16(11):791–4.CrossRefPubMed
123.
Zurück zum Zitat Leza JC, Lizasoain I, Cuéllar B, Moro MA, Lorenzo P. Correlation between brain nitric oxide synthase activity and opiate withdrawal. Naunyn Schmiedeberg's Arch Pharmacol. 1996;353(3):349–54.CrossRef Leza JC, Lizasoain I, Cuéllar B, Moro MA, Lorenzo P. Correlation between brain nitric oxide synthase activity and opiate withdrawal. Naunyn Schmiedeberg's Arch Pharmacol. 1996;353(3):349–54.CrossRef
124.
Zurück zum Zitat Phillips SC, Cragg BG. Alcohol withdrawal causes a loss of cerebellar Purkinje cells in mice. J Stud Alcohol. 1984;45(6):475–80.CrossRefPubMed Phillips SC, Cragg BG. Alcohol withdrawal causes a loss of cerebellar Purkinje cells in mice. J Stud Alcohol. 1984;45(6):475–80.CrossRefPubMed
125.
Zurück zum Zitat Beckmann AM, Matsumoto I, Wilce PA. AP-1 and Egr DNA-binding activities are increased in rat brain during ethanol withdrawal. J Neurochem. 1997;69(1):306–14.CrossRefPubMed Beckmann AM, Matsumoto I, Wilce PA. AP-1 and Egr DNA-binding activities are increased in rat brain during ethanol withdrawal. J Neurochem. 1997;69(1):306–14.CrossRefPubMed
126.
Zurück zum Zitat Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1507):3137–46.CrossRef Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1507):3137–46.CrossRef
127.
Zurück zum Zitat Bhargava HN, Kumar S. Sensitization to the locomotor stimulant activity of cocaine is associated with increases in nitric oxide synthase activity in brain regions and spinal cord of mice. Pharmacology. 1997;55(6):292–8.CrossRefPubMed Bhargava HN, Kumar S. Sensitization to the locomotor stimulant activity of cocaine is associated with increases in nitric oxide synthase activity in brain regions and spinal cord of mice. Pharmacology. 1997;55(6):292–8.CrossRefPubMed
128.
Zurück zum Zitat Hamamura M, Ozawa H, Kimuro Y, Okouchi J, Higasa K, Iwaki A, et al. Differential decreases in c-fos and aldolase C mRNA expression in the rat cerebellum after repeated administration of methamphetamine. Brain Res Mol Brain Res. 1999;64(1):119–31.CrossRefPubMed Hamamura M, Ozawa H, Kimuro Y, Okouchi J, Higasa K, Iwaki A, et al. Differential decreases in c-fos and aldolase C mRNA expression in the rat cerebellum after repeated administration of methamphetamine. Brain Res Mol Brain Res. 1999;64(1):119–31.CrossRefPubMed
129.
Zurück zum Zitat Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci. 2008;1141:1–21.CrossRefPubMed Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci. 2008;1141:1–21.CrossRefPubMed
130.
Zurück zum Zitat Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res. 2016;224:25–52.CrossRefPubMed Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res. 2016;224:25–52.CrossRefPubMed
131.
Zurück zum Zitat Schneider F, Habel U, Wagner M, Franke P, Salloum JB, Shah NJ, et al. Subcortical correlates of craving in recently abstinent alcoholic patients. Am J Psychiatry. 2001;158(7):1075–83.CrossRefPubMed Schneider F, Habel U, Wagner M, Franke P, Salloum JB, Shah NJ, et al. Subcortical correlates of craving in recently abstinent alcoholic patients. Am J Psychiatry. 2001;158(7):1075–83.CrossRefPubMed
132.
Zurück zum Zitat Smolka MN, Bühler M, Klein S, Zimmermann U, Mann K, Heinz A, et al. Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology. 2006;184(3–4):577–88.CrossRefPubMed Smolka MN, Bühler M, Klein S, Zimmermann U, Mann K, Heinz A, et al. Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology. 2006;184(3–4):577–88.CrossRefPubMed
133.
Zurück zum Zitat Wakeford AGP, Wetzell BB, Pomfrey RL, Clasen MM, Taylor WW, Hempel BJ, et al. The effects of cannabidiol (CBD) on Δ9-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats. Exp Clin Psychopharmacol. 2017;25(4):242–8.CrossRefPubMed Wakeford AGP, Wetzell BB, Pomfrey RL, Clasen MM, Taylor WW, Hempel BJ, et al. The effects of cannabidiol (CBD) on Δ9-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats. Exp Clin Psychopharmacol. 2017;25(4):242–8.CrossRefPubMed
134.
Zurück zum Zitat Manwell LA, Charchoglyan A, Brewer D, Matthews BA, Heipel H, Mallet PE. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part I: development and validation of a pulmonary cannabinoid route of exposure for experimental pharmacology studies in rodents. J Pharmacol Toxicol Methods. 2014;70(1):120–7.CrossRefPubMed Manwell LA, Charchoglyan A, Brewer D, Matthews BA, Heipel H, Mallet PE. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part I: development and validation of a pulmonary cannabinoid route of exposure for experimental pharmacology studies in rodents. J Pharmacol Toxicol Methods. 2014;70(1):120–7.CrossRefPubMed
135.
Zurück zum Zitat Manwell LA, Ford B, Matthews BA, Heipel H, Mallet PE. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part II: comparison of behavioural effects of pulmonary versus parenteral cannabinoid exposure in rodents. J Pharmacol Toxicol Methods. 2014 Jul-Aug;70(1):112–9.CrossRefPubMed Manwell LA, Ford B, Matthews BA, Heipel H, Mallet PE. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part II: comparison of behavioural effects of pulmonary versus parenteral cannabinoid exposure in rodents. J Pharmacol Toxicol Methods. 2014 Jul-Aug;70(1):112–9.CrossRefPubMed
136.
Zurück zum Zitat Nguyen JD, Aarde SM, Vandewater SA, Grant Y, Stouffer DG, Parsons LH, et al. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology. Neuropharmacology. 2016 Oct;109:112–20.CrossRefPubMedPubMedCentral Nguyen JD, Aarde SM, Vandewater SA, Grant Y, Stouffer DG, Parsons LH, et al. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology. Neuropharmacology. 2016 Oct;109:112–20.CrossRefPubMedPubMedCentral
137.
Zurück zum Zitat Vendruscolo JCM, Tunstall BJ, Carmack SA, Schmeichel BE, Lowery-Gionta EG, Cole M, et al. Compulsive-like sufentanil vapor self-administration in rats. Neuropsychopharmacology. 2018;43(4):801–9.CrossRefPubMed Vendruscolo JCM, Tunstall BJ, Carmack SA, Schmeichel BE, Lowery-Gionta EG, Cole M, et al. Compulsive-like sufentanil vapor self-administration in rats. Neuropsychopharmacology. 2018;43(4):801–9.CrossRefPubMed
138.
Zurück zum Zitat Kallupi M, George O. Nicotine vapor method to induce nicotine dependence in rodents. Curr Protoc Neurosci. 2017;80:8.41.1–8.41.10.CrossRef Kallupi M, George O. Nicotine vapor method to induce nicotine dependence in rodents. Curr Protoc Neurosci. 2017;80:8.41.1–8.41.10.CrossRef
139.
Zurück zum Zitat de Guglielmo G, Kallupi M, Cole MD, George O. Voluntary induction and maintenance of alcohol dependence in rats using alcohol vapor self-administration. Psychopharmacology. 2017 Jul;234(13):2009–18.CrossRefPubMedPubMedCentral de Guglielmo G, Kallupi M, Cole MD, George O. Voluntary induction and maintenance of alcohol dependence in rats using alcohol vapor self-administration. Psychopharmacology. 2017 Jul;234(13):2009–18.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Cerebellum, THC, and Cannabis Addiction: Findings from Animal and Human Studies
verfasst von
Josep Moreno-Rius
Publikationsdatum
01.06.2019
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 3/2019
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-018-0993-7

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Neuer FcRn-Blocker bremst Myasthenia gravis

Eine weitere Immuntherapie hat sich in einer Phase-3-Studie bei Myasthenia gravis bewährt: Mit dem Antikörper Nipocalimab gingen die Beschwerden bei Personen mit schlecht kontrollierter Erkrankung deutlich zurück.

Parkinsoninzidenz in Deutschland geht zurück

In Deutschland erkranken altersbezogen immer weniger Menschen an Morbus Parkinson: In den vergangenen 20 Jahren ist die Inzidenz um ein Fünftel gesunken. Das ergibt eine Analyse von AOK-Daten. Weshalb die Inzidenz zurückgeht, ist jedoch unklar.

„Wir wollen die Bedeutung von Gen- und Umwelteinflüssen besser verstehen“

Eine Mutation in einem einzelnen Gen kann bei Mäusen eine Art Bipolarstörung auslösen. PD Dr. Jan Deussing vom Max-Planck-Institut für Psychiatrie in München sieht in solchen Tiermodellen eine Möglichkeit, den Ursachen der Erkrankung auf den Grund zu gehen.

Suizidassistenz erhöht Suizidzahlen: Aktuelle Ergebnisse der geplanten S3-Leitlinie

Erstmals wird in Deutschland eine S3-Leitlinie zum Thema Suizidalität erarbeitet. Ziel ist es, die Versorgung in suizidalen Krisen durch einheitliche Standards zu verbessern. Erste Ergebnisse der bisherigen Leitlinienarbeit wurden auf dem DGPPN-Kongress vorgestellt.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.