Skip to main content
Erschienen in: BMC Cancer 1/2014

Open Access 01.12.2014 | Research article

The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma

verfasst von: Marcel Klingenberg, Jürgen Becker, Sonja Eberth, Dieter Kube, Jörg Wilting

Erschienen in: BMC Cancer | Ausgabe 1/2014

Abstract

Background

Burkitt lymphoma (BL) is an aggressive malignancy that arises from B-cells and belongs to the group of Non-Hodgkin lymphomas (NHL). Due to the lack of appropriate in vivo models NHL research is mainly performed in vitro. Here, we studied the use of the chick chorioallantoic membrane (CAM) for the generation of human BL xenograft tumors, which we compared with known characteristics of the human disease.

Methods

In order to generate experimental BL tumors, we inoculated human BL2B95 and BL2-GFP cells on the CAM. BL2B95 xenograft-tumors were grown for seven days and subsequently analyzed with transmission electron and immunofluorescence microscopy, as well as histological staining approaches. BL2-GFP cells were studied at regular intervals up to seven days, and their metastatic behavior was visualized with intravital immunofluorescence techniques.

Results

Xenografted BL2B95 cells formed solid tumors in the CAM model with a Ki67-index greater than 90%, preservation of typical tumor markers (CD10, CD19, CD20), a ‘starry sky’ morphology, production of agyrophilic fibers in the stroma, formation of blood and lymphatic vessels and lymphogenic dissemination of BL2B95 to distant sites. We identified macrophages, lymphocytes and heterophilic granulocytes (chick homolog of neutrophils) as the most abundant immune cells in the experimental tumors. BL2-GFP cells could be traced in real-time during their distribution in the CAM, and the first signs for their dissemination were visible after 2-3 days.

Conclusions

We show that xenografted BL2B95 cells generate tumors in the CAM with a high degree of cellular, molecular and proliferative concord with the human disease, supporting the application of the CAM model for NHL research with a focus on tumor-stroma interactions. Additionally we report that BL2-GFP cells, grafted on the CAM of ex ovo cultured chick embryos, provide a powerful tool to study lymphogenic dissemination in real-time.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-14-339) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MK designed and performed experiments, and worked on the manuscript. DK and SE provided cell lines, designed experiments, and prepared the manuscript. JW and JB designed experiments, analyzed data, and prepared the manuscript. All authors read and approved the final manuscript.
Abkürzungen
BECs
Blood endothelial cells
BL
Burkitt lymphoma
BL2-GFP
GFP-transfected BL2 cell line
BL2B95
Burkitt lymphoma cell line BL2, EBV serotype B95-8
CAM
Chorioallantoic membrane
CD
Cluster of differentiation
ECM
Extra-cellular matrix
Ki67
Antigen Ki67 (MKI67)
LECs
Lymphatic endothelial cells
NHL
Non-Hodgkin lymphoma
TdT
Terminal desoxyribonucleotidyltransferase.

Background

The term Non-Hodgkin-lymphoma (NHL) describes all malignant diseases of the lymphatic system not belonging to the class of Morbus Hodgkin. The distinction between Morbus Hodgkin and NHL is based on the occurrence of multinucleated Sternberg-Reed cells. When these are detected in microscopical examinations, the malignancy is classified as Morbus Hodgkin lymphoma. Various factors can lead to the formation of NHL, including chromosomal translocations and viral infections. NHL can be further subdivided according to the affected cell type into B- and T-cell lymphomas. In this study we analyzed the NHL subtype Burkitt lymphoma (BL), which arises from B-cells. BL is a very rare, aggressive disease with an incidence rate of approximately 0.2 per 100.000/year [1]. The malignancy is divided into three subgroups and often associated with the Epstein-Barr-Virus (EBV), which drives transformation [2]. BL was first described by Denis Burkitt in 1958, and this subtype is nowadays considered as the endemic, equatorial African form of the disease [3]. In this study we used the well established BL2 cell line, and a derivative of this, which was in vitro infected with EBV serotype B95-8 [4]. The BL2 cell line was initially isolated from a Caucasian patient with multiple metastases, which involved the central nervous system and the bone marrow. The cell line therefore represents a sporadic but aggressive subtype of BL [5].
Although there is a good chance of cure for NHL patients treated with stringent chemotherapeutic regimens, there are a small percentage of cases that are resistant to therapy [6, 7]. These patients cannot be identified by studies of isolated tumor cells, and it is assumed that there are specific tumor-stroma interactions that render lymphoma cells resistant to chemotherapy. There are mouse models to study the interactions of lymphomas with their microenvironment [8], but it appears unlikely that mouse models can be performed in sufficiently high quantities that allow global systems-biological analyses of tumor-stroma interactions with and without divers chemotherapeutic regimens. We have recently shown that BL cell lines can successfully be inoculated on the chick chorioallantoic membrane (CAM) [9, 10]. Several CAM experiments described in detail the tumor microenvironment and the metastatic dissemination of various tumor entities including melanoma, glioma, fibrosarcoma and colon carcinoma [1113]. This underlines the upcoming role of the CAM model in cancer research, especially in the field of tumor-stroma interactions and the analysis of the metastatic cascade. Experiments based of the CAM-tumor model appear to be highly suited to study the aforementioned aspects due to the fact that the CAM provides the presence of nearly all relevant stroma factors, e.g. immune cells, extracellular matrix components, blood and lymphatic vessels.
The formation of the CAM starts around day 4 of chick embryo development. It is an extra-embryonic organ, which develops by the fusion of the chorion with the vascularized allantoic membrane. The CAM is responsible for the gas exchange of the embryo and for that reason very well perfused. It shows a high density of blood and lymphatic vessels, which explains its main usage as a model for angiogenesis [14]. In addition, the CAM is also established as an animal model for cancer research [9, 11, 15]. However, very few studies have dealt with the CAM in the context of hematological malignancies [1618], and, to the best of our knowledge, there are no studies characterizing the host leukocytes that infiltrate the grafted tumors. Previous experiments in our lab showed that the BL cell line, BL2B95, develops tumors in the CAM that exhibit high similarities to human BL [9, 10]. Here, we followed up on these studies and validated the usefulness of the CAM model for lymphoma research. We show a high degree of molecular and morphological concord, including tumor-stoma interactions, with the human disease, supporting the application of the CAM as an in vivo model for NHL research.

Methods

Cell culture

The Burkitt lymphoma cell lines BL2B95 were cultured in BL-medium (RPMI 1640 medium with 10% FCS, 1% penicillin/streptomycin, 10 mM HEPES, 1 mM sodium-pyruvate, 50 μM α-thioglycerol and 20 nM BCS). Cells were cultured in cell culture flasks and incubated at 37°C and 5% CO2. BL2-GFP (BL-2 ns-c* GFP) cells were cultured in RPMI 1640 with 10% FCS and 1% penicillin/streptomycin.

Stable transduction of GFP

A self-inactivating lentivirus was prepared by transient transfection of 293 T cells using calcium phosphate precipitation method. Briefly, pGIPZ ns-control (Thermo Scientific, Schwerte, Germany) encoding GFP and a non-silencing control shRNA (ns-c) was co-transfected with packaging vector pCMVΔr8.91 and envelope vector pVSV-G in a ratio of 3:2:1 into 293 T cells. After harvesting and determination of titer, lentivirus supernatant was added to BL2 cells at a MOI < 1 in the presence of 10 μg/ml protamine sulfate, and samples were centrifuged for 1.5 h at 850 g and 37°C. After 2 days 1 μg/ml puromycin was added to select stably transduced cells expressing GFP. The GFP expression in puromycin-resistant cells was analyzed with a flow cytometer and, when the cells were positive, they were expanded (Additional file 1: Figure S1).

CAM assay with BL2B95 cells

Fertilized White Leghorn chick eggs were incubated at 80% relative humidity and 37.8°C. The eggs were windowed at day 3 and the window was sealed with cellotape. At day 10 of chick development, one million BL2B95 cells/egg were applied on the CAM. Cells were resuspended in 50% BL-medium and 50% Matrigel and incubated for 30 min at 37°C, 5% CO2 before applying them on the CAM. The tumors were dissected on day 17 of chick development. Tumors were fixed in 4% paraformaldehyde for 15 min, washed thrice in PBS and transferred into 10% sucrose for 3 h at 4°C and 30% sucrose overnight at 4°C. Tumors were then embedded in tissue freezing medium and cut with a cryotome into 4-12 μm thick sections. The experiments were performed according to the guidelines of the European Parliament (2010/63/EU) and the council for the protection of animals in science (§14 TierSchVersV).

CAM assay (ex ovo) with intravital imaging of BL2-GFP cells

Specific pathogen free fertilized White Leghorn chick eggs were incubated for 72 h at >80% relative humidity and 37.8°C. On developmental day 3 the eggs were cracked open and the embryo was carefully transferred into a plastic square weighing boat (89×89×25mm) and cultured until day 17 of embryonic development (Additional file 2: Figure S2 A-G). The weighing boat was placed in a tissue culture flask with a re-closable lid (Additional file 2: Figure S2 H). 13 ml of purified water (0.1% copper sulfate) were added to ensure sufficient humidity. On day 10, 106 BL2-GFP cells in varying percentages of Matrigel (10-50%) or without Matrigel were inoculated on the CAM (Additional file 3: Figure S3). The embryos were incubated until day 17 in the above mentioned conditions (>80% rh, 37.8°C). Pictures were taken every 24 h with Leica MZ16FA microscope. Procedures were adopted from [13]. The experiments were performed according to the guidelines of the European Parliament (2010/63/EU) and the council for the protection of animals in science (§14 TierSchVersV).

Histological staining

HE, panoptic Pappenheim, Trichrome and Gomori silver staining were performed according to standard procedures [19].

Transmission electron microscopy

Specimens with an approximate volume of 600 mm3 were fixed with Karnovsky fixative for at least two hours, washed in 0.15 M phosphate buffer for 10 min, transferred into osmium tetroxide solution and incubated for 2 h at 4°C. Then the samples were rinsed with 0.15_M phosphate buffer for 10 min and subsequently dehydrated in an ascending ethanol series of 30%, 50%, 70%, 90% and two times absolute ethanol for 10 min each. Next the samples were incubated twice in 100% propylene oxide for 10 min at 4°C. They were then incubated for 1 h at 4°C in 50% propylene oxide and 50% glycid ether, transferred into 25% propylene oxide and 75% glycid ether and incubated over night at 4°C. Then the samples were embedded in epon embedding solution and incubated for 24 h at 60°C. The embedded tissue was cut with an Ultracut E microtome (Reichert-Jung) to 90 nm sections and transferred onto formvar-coated grids. After air-drying samples were incubated 10 min in 1% uranyl acetate solution, 10 min in lead citrate (Reynolds) and rinsed with purified water. Specimens were analyzed with a Leo 906E (Zeiss) transmission electron microscope.

Immunofluorescence analyses

Immunofluorescence staining of specimens was performed by incubation for 1 h with blocking reagent (PBS, 1% BSA, 5% goat serum, 0.2% Triton X-100), 1 h incubation of primary antibody diluted in antibody solution (TBS [0.05 M, pH 7.2-7.4], 1% BSA, 0.5% Triton X-100) and 1 h incubation of secondary antibody diluted in antibody solution mixed with DAPI (1:10,000). After every step specimens were rinsed thrice with PBS. Samples were mounted with Fluoromount-G (Sigma-Aldrich) and dried over night at room temperature. Stained specimens were studied with Zeiss Axio Imager.Z1 (Carl Zeiss Goettingen) and filter sets 38HE, 43, 49 and 50. Primary antibodies were rabbit-anti-human Prox1 (Relia Tech) at a 1:500 dilution, mouse anti-human HLA A,B,C (BioLegend) at 1:200 dilution and mouse anti-Mep21 (chick CD34 homolog; M. Williams, AbLab) at dilution of 1:100. Secondary antibodies (Invitrogen) were Alexa Fluor® 594 goat anti-mouse IgG (H + L), Alexa Fluor® 488 goat anti-rabbit IgG (H + L), Alexa Fluor® 660 goat anti-rabbit IgG (H + L), highly cross-adsorbed; Alexa Fluor® 594 goat anti-mouse IgG2a (γ2a); Alexa Fluor® 488 goat anti-mouse IgG1 (γ1); at a dilution of 1:200 in antibody solution.

Immunohistolochemical analyses

Cryosections were fixed in 100% methanol for 3 min, incubated for 3 min in TBS/0.1% Tween, and transferred into 3% H2O2. Specimens were then washed thrice in TBS/0.1% Tween, blocked with PBS/1% BSA. Subsequently anti-Ki67 antibody was added (rabbit mAb, clone D3B5, Cell Signaling Technology, Danvers, MA, USA) at a concentration of 1:200 (diluted in PBS/1% BSA) and incubated over night at 4°C on a rocking table. Specimen were then washed thrice with TBS/0.1% Tween, secondary HRP-conjugated goat-anti-rabbit antibody (St. Cruz Biotechnology, Heidelberg, Germany) was added at a concentration of 1:200 (diluted in PBS/1%BSA) and incubated for 30 min at room temperature. After that the sections were washed thrice with TBS/0.1% Tween, incubated for 5 min in TrisHCl-buffer/0.125% ammonium sulfate/0.05% DAB/0.015% H2O2 and washed with tab water. Section were then counterstained with 0.1% nuclear fast red-aluminum sulfate solution (Merck Millipore, Darmstadt, Germany), washed with tab water, incubated twice in 100% ethanol for 3 min, and incubated twice in xylene for 3 min. Samples were mounted with DePeX (Serva, Heidelberg, Germany). Staining with antibodies against CD20, CD19, CD10, CD5, TdT (IR604, IR656, IR648, IR082, IR001; Dako, Hamburg, Germany), and HLA A,B,C (BioLegend) was performed as described above except for the counterstaining, which was performed with hematoxylin, but omitted for CD10 and HLA.

Western blot

Immunoblot analyses were performed as described previously [20]. Bcl-6 antibody was obtained from Cell Signaling, c-Myc antibody was from Abcam, alpha-Tubulin antibody was from Millipore.

3H thymidine assay

Proliferation of cell lines was assessed using 3H thymidine incorporation assay as recently described [10].

Results

Tumor formation

BL2B95 were inoculated on the CAM of day-10 chick embryo development. The embryos were sacrificed after 7 days and BL2B95-derived tumors were dissected. We observed that BL2B95 cells formed solid tumors on the CAM in 100% of the experiments (n = 63). Tumors formed by BL2B95 assumed a lentiform shape and varied in color between reddish (highly vascularized) and whitish (sparsely vascularized) (Figure 1A). BL2-GFP cells formed tumors on the CAM, too, but showed uniformly a more whitish color (n = 11), suggesting a higher angiogenic potential of the EBV-transduced cells.

Histological characteristics of experimental BL-tumors

Tumor cryosections were analyzed with classical histological staining protocols including HE, panoptic Pappenheim, Trichrome and Gomori silver staining. A modified protocol of the panoptic Pappenheim stain illustrated the immigration of chick leukocytes into the tumor periphery (Figure 1A, B). Thereby, chick macrophages possessed a light-blue cytoplasm and reddish granules, whereas the BL2B95 cells stained dark-blue (basophilic) and were considerably larger than the chick leukocytes. We observed that the borders of the tumors were seamed by immigrating chick macrophages. They were discernible as lightly stained cell clusters in the dark-blue BL2B95 tumor mass. The hematoxylin and eosin staining, too, revealed a ‘starry sky’ appearance of the tumor, consisting of dark and lightly stained areas (Figure 1C). The chick macrophages were visible as light cells loaded with cellular debris and apoptotic tumor cells. This ‘starry sky’-like appearance does reflect the characteristics of human BL histology and shows that, like the primary tumors, the experimental tumors largely consist of BL2B95 cells and interacting leukocytes. Trichrome staining of the tumor specimens showed that they contained small portions of connective tissue, which, upon further analyses by silver staining, was characterized by agyrophilic fibers (Figure 1D, F). These fibers bind Ag+-ions during the staining procedure. Agyrophilia is a feature of type-III collagen, which is characteristic of lymphatic tissues and areas of active inflammatory reactions. Ki67 staining of the experimental tumors showed a mitotic index greater than 90% (Figure 1E). The immunohistochemical staining with established BL markers showed that the tumor cells show the characteristic pattern of classical BL. The experimental BL2B95 tumors were positive for CD20, CD19, and CD10 (Figure 2A-C). CD5 and TdT staining turned out to be negative (Figure 2D, E). HLA, which was used to differentiate between human and chick cells, clearly stained all BL cells (Figure 2F).
In order to characterize in greater detail the chick leukocytes, which immigrated into the BL2B95 tumors, we performed transmission electron microscopy (TEM)-based analyses (Figure 3A-D). The studies confirm that the tumors consisted mainly of BL2B95 cells and chick leukocytes (Figure 3A). BL2B95 cell nuclei often presented condensed or precondensed chromosomes, revealing high mitotic activity (Figure 3C, D). The nuclei of the tumor cells were mainly euchromatic with one or several prominent nucleoli. The cytoplasm possessed a lower electron density compared to the chick leukocytes and appeared therefore lighter in the TEM pictures. Lipid vesicles in the BL2B95 cell cytoplasm and plasmalemmal microvesicles were also observed, showing that the BL cells maintained their initial morphologic features in the CAM model (Figure 3A, C, D). The identification of chick leukocyte subgroups was performed according to morphological criteria and revealed the presence of dendritic cells, macrophages and heterophilic granulocytes (chick granulocytes corresponding to human neutrophils) within or in close proximity to the BL2B95 tumors (Figure 3A-D). In accordance with previous studies, lymphogenic dissemination of BL2B95 cells was also observed with this method [9, 10]. Thereby the tumor cells often filled the lumen of lymphatic vessels completely (Figure 3C, D).

Lymphatic dissemination of BL cells

The lymphatic dissemination of BL2B95 cells was analyzed by immunofluorescence staining of tumor cryosections and whole-mount specimens (Figure 4A-D). Tumor cells were visualized with anti-HLA-antibodies and lymphatic vessels with lymphatic endothelial cell (LEC)-specific anti-Prox1 antibodies (staining of LEC nuclei). The borders of the tumors appeared fuzzy and several lymphoma cells migrated into the stroma of the CAM, confirming our previous observations [9]. Our analyses of tumor sections showed that BL2B95 cells infiltrated lymphatic vessels both within the tumors (Figure 4A) and in the vicinity of the tumors. Additionally, whole-mount and cryosection staining showed that BL2B95 cells migrated long distances and were found in lymphatic vessels several millimeters apart from the primary tumors (Figure 3C, D; Figure 4D; Figure 5). The dissemination along lymphatics was even more clearly shown for the BL2-GFP cell line (Figure 6; Additional file 3: Figure S3). BL2-GFP cells were visualized with intravital GFP imaging. Pictures were taken every 24 h, beginning 48 h after the inoculation (day 12 of embryonic development). The time lapse image arrangement demonstrates the migratory routes of BL2-GFP cells along the outside of the CAM blood vessels (Figure 6; Additional file 3: Figure S3). The cells were often arranged in a characteristic pattern along the blood vessels, which overlays perfectly with the localization of the lymphatic vessels within the CAM. Immunofluorescence staining of the CAM revealed that blood vessels are often flanked by lymphatic vessels on each side (Figure 4D; Additional file 4: Figure S4). Of note, this technique allows to study the distribution of single GFP+ lymphoma cells within the CAM tissue in real-time. The CAM is lucent enough to trace even cells, which have migrated into deeper layers of the CAM, provided that the cells show a strong GFP expression. Thereby, the density of the Matrigel, which was used for the inoculation, was found to influence the timing of the immigration into the CAM stroma and lymphatics. BL2-GFP cells inoculated in 50% Matrigel showed much lesser infiltration of lymphatics compared to cells, which were inoculated with 10% and 0% Matrigel (Table 1). This is most probably caused by the matrix-metalloprotease (MMP)-independent (amoeboid) migratory mode of lymphoma cell lines, which impedes migration through a collagen-rich matrix.
Table 1
Formation of metastatic foci (MF) dependent on the proportion of matrigel, used in the inoculation process
Percent matrigel
Mean No. of MF
Variance
n
50
0.25
0-1
4
10
2.3
1-5
3
0
0.25
0-1
4

Lymphatic and blood vessel formation

The determination of the lymphatic and blood vessels was performed by immuno-fluorescence (IF) on experimental BL2B95 tumors. Blood vessels were detected with MEP21 (CD34 homolog) antibody staining, which is a marker for chick blood endothelial cells (BECs). The lymphatic vessels were immunostained in cryosections with anti-Prox1 antibodies, which mark the nuclei of LECs. The IF analyses revealed prominent MEP21+ and Prox1+ vessels in all BL2B95 tumors (Figure 4B, C). This clearly shows an interaction of both types of vessels with the BL2B95-derived tumors and indicates the secretion of hem- and lymphangiogenic growth factors by the tumors. The presence of blood vessels within the BL2B95 tumors was also observed in the histological stainings, shown in Figure 2. In contrast, BL2-GFP derived tumors showed a lesser degree of vascularization and appeared therefore more whitish.

Discussion

Our investigations of BL cells in the chicken CAM model show a great degree of conformity with the human disease. BL cells formed solid tumors and disseminated in the animal mainly via the ECM and the lymphatics to distant sites. This is the same behavior as in the human and underlines that the CAM is a highly suited model to investigate the initial steps of BL-stroma interactions and the metastatic behavior even of single tumor cells.
Tumor interactions with various cellular components in the CAM are highly reminiscent of human BL. HE staining showed that the BL2B95 cells form tumors with a ‘starry sky’-like appearance, caused by ‘tingible body macrophages’, which are scattered in the tumors at regular intervals. This is extremely significant because the ‘starry sky’ is the major histological characteristic of BL in humans [21]. Furthermore we were able to identify the involvement of various chick leukocytes in the BL2B95 tumor formation. Transmission electron microscopy (TEM) depicted the presence of heterophilic granulocytes, the avian counterparts of mammalian neutrophils, which, besides macrophages, are the most abundant leukocytes in the tumors. This is in concord with findings of previous studies performed in the CAM [22]. Additionally we found dendritic cells in the tumor, which formed cell-cell contacts with other avian leukocytes, indicating an active immune response of the host. Altogether our findings depict a highly complex tumor-stroma interaction in the CAM model, which can at least partly simulate the situation in the human disease [23].
The formation of blood vessels and lymphatics in the BL2B95 tumors is an additional characteristic, which underlines the highly complex tumor microenvironment in this model. Although we found a varying degree of angiogenesis in the EBV-transduced BL2B95 tumors, the degree of vascularization appeared to be higher than in the EBV-negative BL2 tumors. It is likely that the virus modulates the composition and quantity of immigrating leukocytes, which then secrete angiogenic and lymphangiogenic growth factors. The production of such factors by neutrophils and macrophages has frequently been shown [24]. The variability of the vessel density in tumors derived from the same cell line makes quantitative assessments more laborious than in genetically homogenous, inbred, mice; but this probably better reflects the intra- and inter-individual heterogeneity of human tumors. Although the CAM is an embryonic organ and the immune system of the host is in the process of development, the main components of the immune system are present, which may render the model superior to immunocompromised mouse models.
Despite the species barrier and the embryonic environment, human BL cell lines acquire many of the morphological characteristics, and retain the molecular characteristics, of primary lymphomas when grafted on the chicken CAM. Besides the typical starry sky morphology, the stroma turns into the typical stroma of lymphoid organs, with production of agyrophilic fibers. The morphological features of the BL cells, such as the production of microvesicles, remains unaltered. The B-lymphocyte antigens CD19 and CD20, as well as neprilysin (CD10), which is characteristic of early B-cells, are positive in the CAM lymphomas. The proliferation index of the experimental tumors is greater than 90% (Ki67), which is again a major feature of human BL [25]. The development and maintenance of so many lymphoma characteristics substantiates the comparability of the CAM-tumor model with the human disease, and provides the basis for the transferability of the experimental results to the human.
An additional focus of this study was the metastatic spread of the BL cells in the CAM. After dissection of the CAM, we were able to visualize BL2B95 cells in the stroma and abundantly in lymphatic vessels by immunofluorescence staining and TEM. BL2B95 cells are present in the lymphatics at great distances from the primary inoculation site. The BL2B95 cells that have migrated furthest are almost exclusively located in the lumen of lymphatics. This indicated that the cells had spread via the lymphatics to distant sites. To validate this observation, we applied an intravital real-time imaging approach with BL2-GFP cells. BL2-GFP cells showed the same migration pattern in the CAM as the BL2B95 cells. Single BL2-GFP cells could be seen leaving the tumor as early as 2 days after inoculation, providing evidence for early micrometastasis formation. The cells thereby migrated along the outside of CAM blood vessels, which is the typical localization of CAM lymphatics. Only one or two days later, the formation of metastases can be observed at distant sites. In numerous specimens, no significant numbers of tumor cells were present between the metastatic foci and the primary tumors, strongly indicating that the distant foci are the result of lymphogenic spread. Nevertheless, migration of BL2-GFP cells in the ECM adjacent to the primary tumor occurred as well, but the cells migrated only shorter distances. It may be of interest to study if the travelling of cells within CAM lymphatics is restricted to malignant cells or if normal human leukocytes disseminate via chicken lymphatics as well. If so, the CAM might be a suitable model for studies on B-cell homing.
In summary, our data show that the CAM is an excellent model to study tumor-stroma interactions with a focus on tumor angiogenesis, lymphangiogenesis and metastasis formation. Our results are in concord with cancer studies employing the CAM and expand the characterization of the CAM model to hematological malignancies [9, 10, 13, 15].

Conclusions

Our data show that the CAM is an excellent in vivo model for NHL research, but has until recently been underestimated with regards to its similarities with primary human lymphoma. We would like to stress that, depending on the scientific questions, the CAM model may well be used instead of mouse models in preclinical studies. In addition to the pros illustrated above, further advantages of the CAM are the low costs per animal, the convenient handling and the minor bureaucratic effort (summarized in Table 2). For the testing of new drugs, the CAM model can be interposed between cell culture and mouse experiments to serve as an in vivo screening platform [13, 15], as we have recently shown for the anti-tumor drug imipramine-blue [10]. This might save scientific resources and accelerate the development of new chemotherapeutics due to the higher throughput and the earlier focus on promising drugs, especially those that may alter their effectiveness due to tumor-stroma interactions. Additionally, real-time imaging approaches of cells migrating within the lymphatics can be used to study the mechanisms of lymphogenic metastasis, and probably B-cell homing.
Table 2
Characteristics of BL tumors in chick and mouse xenograft models compared to the human disease
Feature/host
Chick (CAM xenograft)
Mouse ((NOD-) SCID xenograft)
Human
Characteristics of BL tumors
Formation of solid tumors
+[9, 17, 26]
+[27, 28]
+[3]
Lymphogenic dissemination
+[9] (Figures 3, 4, 5 and 6)
+[27]
+[29]
Distant organ metastasis
Not yet reported
+[27]
+[30]
Macrophage infiltration of tumor (‘starry sky’)
+ (Figures 1E, F; 3A)
+[23, 31]
+[32]
Tumor cell morphology
-Blast-like
-Blast-like
- Blast-like
-Basophilic cytoplasm
-Basophilic cytoplasm
- Basophilic cytoplasm
-Lipid vacuoles
-Lipid vacuoles
-Lipid vacuoles
-Prominent nucleoli (Figures 1, 2, 3, 4 and 5)
-Prominent nucleoli [33]
-Prominent nucleoli [34]
Lymphatic/blood vessel formation
+ [9] (Figure 4B, C)/+[18]
-/+[18]
+[35]/+[36]
Ki67+% of tumor cells
>90% (Figure 1E)
>90% [31]
90-100% [37]
Experimental parameters
Immune status of host
Weakly immunocompetent (developing immune system)
Immunodeficient (depletion of B- and T-cells)
Mature immune system
Investigation period
Max. 8 -9 days
Weeks - months
Weeks - years
Bureaucratic efforts
None*
Medium (Animal experiment)
High (Clinical trial)
Premises
Incubator, Cell culture and imaging devices
Animal facility, Cell culture and imaging devices
Fully equipped hospital and staff
Costs/n
2 $
100 $[38]
−11000 $[39]
*According to German protection of animals act.

Acknowledgements

We thank Mrs. S. Schwoch, Mrs. Ch. Zelent and Mr. B. Manshausen for their excellent technical assistance. We also thank Prof. P. Ströbel (Department of Pathology, University Medicine Goettingen, Germany) for providing a panel of diagnostic antibodies to characterize BL cells. The studies were supported by the Deutsche Forschungsgemeinschaft FOR942/12-1 and GRK1034.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MK designed and performed experiments, and worked on the manuscript. DK and SE provided cell lines, designed experiments, and prepared the manuscript. JW and JB designed experiments, analyzed data, and prepared the manuscript. All authors read and approved the final manuscript.
Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS: Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood. 2006, 107: 265-276. 10.1182/blood-2005-06-2508.CrossRefPubMedPubMedCentral Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS: Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood. 2006, 107: 265-276. 10.1182/blood-2005-06-2508.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Chene A, Donati D, Orem J, Mbidde ER, Kironde F, Wahlgren M, Bejarano MT: Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol. 2009, 19: 411-420. 10.1016/j.semcancer.2009.10.002.CrossRefPubMed Chene A, Donati D, Orem J, Mbidde ER, Kironde F, Wahlgren M, Bejarano MT: Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol. 2009, 19: 411-420. 10.1016/j.semcancer.2009.10.002.CrossRefPubMed
3.
Zurück zum Zitat Burkitt D: A sarcoma involving the jaws in African children. Br J Surg. 1958, 46: 218-223. 10.1002/bjs.18004619704.CrossRefPubMed Burkitt D: A sarcoma involving the jaws in African children. Br J Surg. 1958, 46: 218-223. 10.1002/bjs.18004619704.CrossRefPubMed
4.
Zurück zum Zitat Faili A, Aoufouchi S, Guéranger Q, Zober C, Léon A, Bertocci B, Weill J-C, Reynaud C-A: AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat Immunol. 2002, 3: 815-821. 10.1038/ni826.CrossRefPubMed Faili A, Aoufouchi S, Guéranger Q, Zober C, Léon A, Bertocci B, Weill J-C, Reynaud C-A: AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat Immunol. 2002, 3: 815-821. 10.1038/ni826.CrossRefPubMed
5.
Zurück zum Zitat Bertrand S, Berger R, Philip T, Bernheim A, Bryon PA, Bertoglio J, Doré JF, Brunat-Mentigny M, Lenoir GM: Variant translocation in a non endemic case of Burkitt’s lymphoma: t (8;22) in an Epstein–Barr virus negative tumour and in a derived cell line. Eur J Cancer. 1981, 17: 577-584. 10.1016/0014-2964(81)90060-8.CrossRefPubMed Bertrand S, Berger R, Philip T, Bernheim A, Bryon PA, Bertoglio J, Doré JF, Brunat-Mentigny M, Lenoir GM: Variant translocation in a non endemic case of Burkitt’s lymphoma: t (8;22) in an Epstein–Barr virus negative tumour and in a derived cell line. Eur J Cancer. 1981, 17: 577-584. 10.1016/0014-2964(81)90060-8.CrossRefPubMed
6.
Zurück zum Zitat Kaiser U, Uebelacker I, Abel U, Birkmann J, Trümper L, Schmalenberg H, Karakas T, Metzner B, Hossfeld DK, Bischoff HG, Franke A, Reiser M, Müller P, Mantovani L, Grundeis M, Rothmann F, von Seydewitz C-U, Mesters RM, Steinhauer EU, Krahl D, Schumacher K, Kneba M, Baudis M, Schmitz N, Pfab R, Köppler H, Parwaresch R, Pfreundschuh M, Havemann K: Randomized study to evaluate the use of high-dose therapy as part of primary treatment for “aggressive” lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2002, 20: 4413-4419. 10.1200/JCO.2002.07.075.CrossRef Kaiser U, Uebelacker I, Abel U, Birkmann J, Trümper L, Schmalenberg H, Karakas T, Metzner B, Hossfeld DK, Bischoff HG, Franke A, Reiser M, Müller P, Mantovani L, Grundeis M, Rothmann F, von Seydewitz C-U, Mesters RM, Steinhauer EU, Krahl D, Schumacher K, Kneba M, Baudis M, Schmitz N, Pfab R, Köppler H, Parwaresch R, Pfreundschuh M, Havemann K: Randomized study to evaluate the use of high-dose therapy as part of primary treatment for “aggressive” lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2002, 20: 4413-4419. 10.1200/JCO.2002.07.075.CrossRef
7.
Zurück zum Zitat Wunderlich A, Kloess M, Reiser M, Rudolph C, Truemper L, Bittner S, Schmalenberg H, Schmits R, Pfreundschuh M, Loeffler M: German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL): practicability and acute haematological toxicity of 2- and 3-weekly CHOP and CHOEP chemotherapy for aggressive non-Hodgkin’s lymphoma: results from the NHL-B trial of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann Oncol Off J Eur Soc Med Oncol ESMO. 2003, 14: 881-893. 10.1093/annonc/mdg249.CrossRef Wunderlich A, Kloess M, Reiser M, Rudolph C, Truemper L, Bittner S, Schmalenberg H, Schmits R, Pfreundschuh M, Loeffler M: German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL): practicability and acute haematological toxicity of 2- and 3-weekly CHOP and CHOEP chemotherapy for aggressive non-Hodgkin’s lymphoma: results from the NHL-B trial of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann Oncol Off J Eur Soc Med Oncol ESMO. 2003, 14: 881-893. 10.1093/annonc/mdg249.CrossRef
8.
Zurück zum Zitat Macor P, Secco E, Zorzet S, Tripodo C, Celeghini C, Tedesco F: An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies. Curr Pharm Des. 2008, 14: 2023-2039. 10.2174/138161208785294591.CrossRefPubMed Macor P, Secco E, Zorzet S, Tripodo C, Celeghini C, Tedesco F: An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies. Curr Pharm Des. 2008, 14: 2023-2039. 10.2174/138161208785294591.CrossRefPubMed
9.
Zurück zum Zitat Becker J, Covelo-Fernandez A, von Bonin F, Kube D, Wilting J: Specific tumor-stroma interactions of EBV-positive Burkitt’s lymphoma cells in the chick chorioallantoic membrane. Vasc Cell. 2012, 4: 3-10.1186/2045-824X-4-3.CrossRefPubMedPubMedCentral Becker J, Covelo-Fernandez A, von Bonin F, Kube D, Wilting J: Specific tumor-stroma interactions of EBV-positive Burkitt’s lymphoma cells in the chick chorioallantoic membrane. Vasc Cell. 2012, 4: 3-10.1186/2045-824X-4-3.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Klingenberg M, Becker J, Eberth S, Kube D, Wilting J: The NADPH oxidase inhibitor imipramine-blue in the treatment of Burkitt’s lymphoma. Mol Cancer Ther. 2014, [Epub ahead of print] PMID: 24482381- Klingenberg M, Becker J, Eberth S, Kube D, Wilting J: The NADPH oxidase inhibitor imipramine-blue in the treatment of Burkitt’s lymphoma. Mol Cancer Ther. 2014, [Epub ahead of print] PMID: 24482381-
11.
Zurück zum Zitat Deryugina EI, Quigley JP: Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008, 130: 1119-1130. 10.1007/s00418-008-0536-2.CrossRefPubMedPubMedCentral Deryugina EI, Quigley JP: Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008, 130: 1119-1130. 10.1007/s00418-008-0536-2.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chambers AF, Wilson SM, Tuck AB, Denhardt GH, Cairncross JG: Comparison of metastatic properties of a variety of mouse, rat, and human cells in assays in nude mice and chick embryos. Vivo Athens Greece. 1990, 4: 215-219. Chambers AF, Wilson SM, Tuck AB, Denhardt GH, Cairncross JG: Comparison of metastatic properties of a variety of mouse, rat, and human cells in assays in nude mice and chick embryos. Vivo Athens Greece. 1990, 4: 215-219.
13.
Zurück zum Zitat Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP: The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell. 2008, 13: 221-234. 10.1016/j.ccr.2008.01.031.CrossRefPubMedPubMedCentral Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP: The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell. 2008, 13: 221-234. 10.1016/j.ccr.2008.01.031.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Wilting J, Birkenhäger R, Eichmann A, Kurz H, Martiny-Baron G, Marmé D, McCarthy JE, Christ B, Weich HA: VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol. 1996, 176: 76-85. 10.1006/dbio.1996.9993.CrossRefPubMed Wilting J, Birkenhäger R, Eichmann A, Kurz H, Martiny-Baron G, Marmé D, McCarthy JE, Christ B, Weich HA: VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol. 1996, 176: 76-85. 10.1006/dbio.1996.9993.CrossRefPubMed
15.
Zurück zum Zitat Lokman NA, Elder ASF, Ricciardelli C, Oehler MK: Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci. 2012, 13: 9959-9970. 10.3390/ijms13089959.CrossRefPubMedPubMedCentral Lokman NA, Elder ASF, Ricciardelli C, Oehler MK: Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci. 2012, 13: 9959-9970. 10.3390/ijms13089959.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Ganor Y, Grinberg I, Reis A, Cooper I, Goldstein RS, Levite M: Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemia in vivo. Leuk Lymphoma. 2009, 50: 985-997. 10.1080/10428190902878448.CrossRefPubMed Ganor Y, Grinberg I, Reis A, Cooper I, Goldstein RS, Levite M: Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemia in vivo. Leuk Lymphoma. 2009, 50: 985-997. 10.1080/10428190902878448.CrossRefPubMed
17.
Zurück zum Zitat Ribatti D, Vacca A, Bertossi M, De Benedictis G, Roncali L, Dammacco F: Angiogenesis induced by B-cell non-Hodgkin’s lymphomas. Lack of correlation with tumor malignancy and immunologic phenotype. Anticancer Res. 1990, 10: 401-406.PubMed Ribatti D, Vacca A, Bertossi M, De Benedictis G, Roncali L, Dammacco F: Angiogenesis induced by B-cell non-Hodgkin’s lymphomas. Lack of correlation with tumor malignancy and immunologic phenotype. Anticancer Res. 1990, 10: 401-406.PubMed
18.
Zurück zum Zitat Vacca A, Ribatti D, Iurlaro M, Albini A, Minischetti M, Bussolino F, Pellegrino A, Ria R, Rusnati M, Presta M, Vincenti V, Persico MG, Dammacco F: Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int J Clin Lab Res. 1998, 28: 55-68. 10.1007/s005990050018.CrossRefPubMed Vacca A, Ribatti D, Iurlaro M, Albini A, Minischetti M, Bussolino F, Pellegrino A, Ria R, Rusnati M, Presta M, Vincenti V, Persico MG, Dammacco F: Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int J Clin Lab Res. 1998, 28: 55-68. 10.1007/s005990050018.CrossRefPubMed
19.
Zurück zum Zitat Mulisch M, Welsch U: Romeis - Mikroskopische Technik. 2010, Heidelberg: Spektrum Akademischer Verlag Mulisch M, Welsch U: Romeis - Mikroskopische Technik. 2010, Heidelberg: Spektrum Akademischer Verlag
20.
Zurück zum Zitat Walther N, Ulrich A, Vockerodt M, von Bonin F, Klapper W, Meyer K, Eberth S, Pukrop T, Spang R, Trümper L, Kube D: Aberrant lymphocyte enhancer-binding factor 1 expression is characteristic for sporadic Burkitt’s lymphoma. Am J Pathol. 2013, 182: 1092-1098. 10.1016/j.ajpath.2012.12.013.CrossRefPubMed Walther N, Ulrich A, Vockerodt M, von Bonin F, Klapper W, Meyer K, Eberth S, Pukrop T, Spang R, Trümper L, Kube D: Aberrant lymphocyte enhancer-binding factor 1 expression is characteristic for sporadic Burkitt’s lymphoma. Am J Pathol. 2013, 182: 1092-1098. 10.1016/j.ajpath.2012.12.013.CrossRefPubMed
21.
Zurück zum Zitat Jaffe ES, Pittaluga S: Aggressive B-Cell lymphomas: a review of new and old entities in the who classification. ASH Educ Program Book. 2011, 2011: 506-514. Jaffe ES, Pittaluga S: Aggressive B-Cell lymphomas: a review of new and old entities in the who classification. ASH Educ Program Book. 2011, 2011: 506-514.
22.
Zurück zum Zitat Zijlstra A, Seandel M, Kupriyanova TA, Partridge JJ, Madsen MA, Hahn-Dantona EA, Quigley JP, Deryugina EI: Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells. Blood. 2006, 107: 317-327. 10.1182/blood-2005-04-1458.CrossRefPubMedPubMedCentral Zijlstra A, Seandel M, Kupriyanova TA, Partridge JJ, Madsen MA, Hahn-Dantona EA, Quigley JP, Deryugina EI: Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells. Blood. 2006, 107: 317-327. 10.1182/blood-2005-04-1458.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD: Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol Baltim Md 1950. 2005, 174: 3015-3023. Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD: Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol Baltim Md 1950. 2005, 174: 3015-3023.
24.
Zurück zum Zitat Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S: Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 2011, 30: 83-95. 10.1007/s10555-011-9281-4.CrossRefPubMed Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S: Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 2011, 30: 83-95. 10.1007/s10555-011-9281-4.CrossRefPubMed
25.
Zurück zum Zitat Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, Harrison CJ, Israels T, Bailey S: Burkitt’s lymphoma. Lancet. 2012, 379: 1234-1244. 10.1016/S0140-6736(11)61177-X.CrossRefPubMed Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, Harrison CJ, Israels T, Bailey S: Burkitt’s lymphoma. Lancet. 2012, 379: 1234-1244. 10.1016/S0140-6736(11)61177-X.CrossRefPubMed
26.
Zurück zum Zitat Vacca A, Ribatti D, Roncali L, Dammacco F: Angiogenesis in B cell lymphoproliferative diseases. Biological and clinical studies. Leuk Lymphoma. 1995, 20: 27-38. 10.3109/10428199509054750.CrossRefPubMed Vacca A, Ribatti D, Roncali L, Dammacco F: Angiogenesis in B cell lymphoproliferative diseases. Biological and clinical studies. Leuk Lymphoma. 1995, 20: 27-38. 10.3109/10428199509054750.CrossRefPubMed
27.
Zurück zum Zitat Secchiero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L, Bosco R, Ingrao S, Zavan B, Zauli G: Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One. 2010, 5: e11140-10.1371/journal.pone.0011140.CrossRefPubMedPubMedCentral Secchiero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L, Bosco R, Ingrao S, Zavan B, Zauli G: Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One. 2010, 5: e11140-10.1371/journal.pone.0011140.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Numbenjapon T, Wang J, Colcher D, Schluep T, Davis ME, Duringer J, Kretzner L, Yen Y, Forman SJ, Raubitschek A: Preclinical results of camptothecin-polymer conjugate (IT-101) in multiple human lymphoma xenograft models. Clin Cancer Res Off J Am Assoc Cancer Res. 2009, 15: 4365-4373. 10.1158/1078-0432.CCR-08-2619.CrossRef Numbenjapon T, Wang J, Colcher D, Schluep T, Davis ME, Duringer J, Kretzner L, Yen Y, Forman SJ, Raubitschek A: Preclinical results of camptothecin-polymer conjugate (IT-101) in multiple human lymphoma xenograft models. Clin Cancer Res Off J Am Assoc Cancer Res. 2009, 15: 4365-4373. 10.1158/1078-0432.CCR-08-2619.CrossRef
29.
Zurück zum Zitat Burkitt D, O’Conor GT: Malignant lymphoma in African children. I. A clinical syndrome. Cancer. 1961, 14: 258-269. 10.1002/1097-0142(196103/04)14:2<258::AID-CNCR2820140206>3.0.CO;2-7.CrossRefPubMed Burkitt D, O’Conor GT: Malignant lymphoma in African children. I. A clinical syndrome. Cancer. 1961, 14: 258-269. 10.1002/1097-0142(196103/04)14:2<258::AID-CNCR2820140206>3.0.CO;2-7.CrossRefPubMed
31.
Zurück zum Zitat Saint-Hubert MD, Brepoels L, Devos E, Vermaelen P, Groot TD, Tousseyn T, Mortelmans L, Mottaghy FM: Molecular imaging of therapy response with (18)F-FLT and (18)F-FDG following cyclophosphamide and mTOR inhibition. Am J Nucl Med Mol Imaging. 2012, 2: 110-121.PubMed Saint-Hubert MD, Brepoels L, Devos E, Vermaelen P, Groot TD, Tousseyn T, Mortelmans L, Mottaghy FM: Molecular imaging of therapy response with (18)F-FLT and (18)F-FDG following cyclophosphamide and mTOR inhibition. Am J Nucl Med Mol Imaging. 2012, 2: 110-121.PubMed
33.
Zurück zum Zitat Joshi SS, Deboer JM, Strandjord SJ, Pirruccello SJ, Sanger WG, Weisenburger DD, Sharp JG: Characterization of a newly established human Burkitt’s lymphoma cell line, OMA‒BL‒1. Int J Cancer. 1991, 47: 643-648. 10.1002/ijc.2910470502.CrossRefPubMed Joshi SS, Deboer JM, Strandjord SJ, Pirruccello SJ, Sanger WG, Weisenburger DD, Sharp JG: Characterization of a newly established human Burkitt’s lymphoma cell line, OMA‒BL‒1. Int J Cancer. 1991, 47: 643-648. 10.1002/ijc.2910470502.CrossRefPubMed
34.
Zurück zum Zitat Achong BG, Epstein MA: Fine structure of the Burkitt tumor. J Natl Cancer Inst. 1966, 36: 877-887. Achong BG, Epstein MA: Fine structure of the Burkitt tumor. J Natl Cancer Inst. 1966, 36: 877-887.
35.
Zurück zum Zitat Kadowaki I, Ichinohasama R, Harigae H, Ishizawa K, Okitsu Y, Kameoka J, Sasaki T: Accelerated lymphangiogenesis in malignant lymphoma: possible role of VEGF-A and VEGF-C. Br J Haematol. 2005, 130: 869-877. 10.1111/j.1365-2141.2005.05695.x.CrossRefPubMed Kadowaki I, Ichinohasama R, Harigae H, Ishizawa K, Okitsu Y, Kameoka J, Sasaki T: Accelerated lymphangiogenesis in malignant lymphoma: possible role of VEGF-A and VEGF-C. Br J Haematol. 2005, 130: 869-877. 10.1111/j.1365-2141.2005.05695.x.CrossRefPubMed
36.
Zurück zum Zitat Crivellato E, Nico B, Vacca A, Ribatti D: B-cell non-Hodgkin’s lymphomas express heterogeneous patterns of neovascularization. Haematologica. 2003, 88: 671-678.PubMed Crivellato E, Nico B, Vacca A, Ribatti D: B-cell non-Hodgkin’s lymphomas express heterogeneous patterns of neovascularization. Haematologica. 2003, 88: 671-678.PubMed
37.
Zurück zum Zitat Forteza-Vila J, Fraga M: Burkitt lymphoma and diffuse aggressive B-Cell lymphoma. Int J Surg Pathol. 2010, 18: 133S-135S. 10.1177/1066896910370614.CrossRefPubMed Forteza-Vila J, Fraga M: Burkitt lymphoma and diffuse aggressive B-Cell lymphoma. Int J Surg Pathol. 2010, 18: 133S-135S. 10.1177/1066896910370614.CrossRefPubMed
39.
Zurück zum Zitat Liniker E, Harrison M, Weaver JMJ, Agrawal N, Chhabra A, Kingshott V, Bailey S, Eisen TGG, Corrie PG: Treatment costs associated with interventional cancer clinical trials conducted at a single UK institution over 2 years (2009-2010). Br J Cancer. 2013, 109: 2051-2057. 10.1038/bjc.2013.495.CrossRefPubMedPubMedCentral Liniker E, Harrison M, Weaver JMJ, Agrawal N, Chhabra A, Kingshott V, Bailey S, Eisen TGG, Corrie PG: Treatment costs associated with interventional cancer clinical trials conducted at a single UK institution over 2 years (2009-2010). Br J Cancer. 2013, 109: 2051-2057. 10.1038/bjc.2013.495.CrossRefPubMedPubMedCentral
Metadaten
Titel
The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma
verfasst von
Marcel Klingenberg
Jürgen Becker
Sonja Eberth
Dieter Kube
Jörg Wilting
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2014
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-339

Weitere Artikel der Ausgabe 1/2014

BMC Cancer 1/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.