Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2021

Open Access 01.12.2021 | Research

The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma

verfasst von: Zemin Ren, Hildo Lantermans, Annemieke Kuil, Willem Kraan, Fernando Arenzana-Seisdedos, Marie José Kersten, Marcel Spaargaren, Steven T. Pals

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2021

Abstract

Background

The survival and proliferation of multiple myeloma (MM) cells in the bone marrow (BM) critically depend on interaction with stromal cells expressing the chemokine CXCL12. CXCL12 regulates the homing to the BM niche by mediating the transendothelial migration and adhesion/retention of the MM cells. The gamma isoform of CXCL12 (CXCL12γ) has been reported to be highly expressed in mouse BM and to show enhanced biological activity compared to the ‘common’ CXCL12α isoform, mediated by its unique extended C-terminal domain, which binds heparan sulfate proteoglycans (HSPGs) with an extraordinary high affinity. Here, we investigated the expression of CXCL12γ in human BM and studied its functional role in the interaction of MM cells with BM stromal cells (BMSCs).

Methods

We assessed CXCL12γ mRNA and protein expression by human BMSCs using qPCR, flow cytometry, and immunohistochemistry. CRISPR-Cas9 was employed to delete CXCL12γ and the heparan sulfate (HS) co-polymerase EXT1 in BMSCs. To study the functional roles of BMSC-derived CXCL12γ and HSPGs in the interaction of MM cells with BMSCs cells, MM cell lines and primary MM cells were co-cultured with BMSCs.

Results

We observed that CXCL12γ is expressed in situ by reticular stromal cells in both normal and MM BM, as well as by primary BMSC isolates and BMSC lines. Importantly, upon secretion, CXCL12γ, unlike the CXCL12α isoform, was retained on the surface of BMSCs. This membrane retention of CXCL12γ is HSPG mediated, since it was completely annulated by CRISPR-Cas9-mediated deletion of the HS co-polymerase EXT1. CXCL12γ expressed by BMSCs and membrane-retained by HSPGs supported robust adhesion of MM cells to the BMSCs. Specific genetic deletion of either CXCL12γ or EXT1 significantly attenuated the ability of BMSCs to support MM cell adhesion and, in addition, impaired their capacity to protect MM cells from bortezomib-induced cell death.

Conclusions

We show that CXCL12γ is expressed by human BMSCs and upon secretion is retained on their cell surface by HSPGs. The membrane-bound CXCL12γ controls adhesion of MM cells to the stromal niche and mediates drug resistance. These findings designate CXCL12γ and associated HSPGs as partners in mediating MM–niche interaction and as potential therapeutic targets in MM.
Hinweise
Marcel Spaargaren and Steven T. Pals share the last authorship
A correction to this article is available online at https://​doi.​org/​10.​1186/​s13045-021-01038-w.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-021-01031-3.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MM
Multiple myeloma
BM
Bone marrow
HSPGs
Heparan sulfate proteoglycans
BMSCs
Bone marrow stromal cells
HSCs
Hematopoietic stem cells
CAR
CXCL12-abundant reticular
BMPs
Morphogenetic proteins
FGF
Fibroblast growth factor
HMCLs
Human multiple myeloma cell lines
SFM-DR
Soluble factor-mediated drug resistance
CAM-DR
Cell adhesion-mediated drug resistance
HGF
Hepatocyte growth factor
EGF
Epidermal growth factor
APRIL
A proliferation-inducing ligand

Background

The uncontrolled growth of cancer cells is driven by mutations in essential growth control genes, but their growth and survival are also strongly dependent on signals from the tumor microenvironment. In multiple myeloma (MM), a clonal expansion of malignant plasma cells in the bone marrow (BM), the interaction with specific BM niches plays an important role in tumor cell proliferation and survival. This interaction involves signaling via cell surface receptors, including adhesion molecules, as well as by soluble factors secreted by various cells in the BM niche [13]. Despite improved survival due to the introduction of proteasome inhibitors, immunomodulatory drugs, and, more recently, monoclonal antibodies targeting MM cells [46], MM is generally still incurable, which is largely due to the development of therapy resistance. MM cell interaction with the BM niche is believed to play a key role in this resistance; hence, targeting this interaction presents a promising therapeutic strategy [1, 7, 8].
The homing of hematopoietic stem cells (HSCs) as well as plasma cell precursors to the BM is controlled by the chemokine CXCL12 [9, 10]. This chemokine also regulates the adhesion, transendothelial migration, and homing of MM cells to the BM by binding its receptor CXCR4 on the MM cells [1113]. In the BM microenvironment, CXCL12 is mainly produced by specialized reticular BMSCs, also referred to as ‘CXCL12-abundant reticular (CAR)’ cells. Several splice variants of CXCL12 have been identified [14], which all contain the CXCR4-binding motif but are differentially expressed in various murine and human tissues [15]. To date, the functional differences and biological significance of these distinct isoforms have remained largely unexplored. Virtually all in vitro functional studies, including those on MM cell migration and adhesion, have exclusively employed the CXCL12α isoform. Moreover, reported in vivo studies do not allow conclusions concerning the specific functions of the distinct CXCL12 isoforms, since the mice employed carried either a full deletion of CXCL12 or a deletion of CXCR4, the cognate receptor for all isoforms [1619]. Interestingly, the recently characterized gamma isoform of CXCL12 (CXCL12γ) has been shown to promote leukocyte accumulation and angiogenesis with a much higher efficacy than the ‘canonical’ CXCL12α isoform [15]. This enhanced biological activity of CXCL12γ is mediated by its extended C-terminal domain, which binds heparan sulfate proteoglycans (HSPGs) with an unprecedentedly high affinity [15, 20, 21]. Notably, in mouse BM, CXCL12γ was reported to be the dominant CXCL12 isoform. Furthermore, mice with a partial deletion in the HSPG-binding motives of CXCL12 showed increased numbers of circulating HSCs, suggesting a role for CXCL12-HSPG interaction in the retention of HSCs in the BM [22].
HSPGs are membrane-bound or extracellular matrix proteins, consisting of a core protein decorated by covalently linked HS side chains composed of repeating disaccharide units. These HS chains undergo complex enzymatic modifications, which determine their binding capacity and specificity [23, 24] for a wide variety of morphogens, growth factor, and chemokines, thereby controlling the spatial distribution and activity of these ligands [2527]. Given these properties, HSPGs appear well equipped to act as organizers of growth and survival niches. Indeed, studies in Drosophila have shown a crucial role for HSPGs in the germ cell as well as hematopoietic stem cell niches, controlling the activity of bone morphogenetic proteins (BMPs) [28, 29]. In addition, HSPGs are known to bind a variety of proteins like Wnts, fibroblast growth factor (FGF), Midkine, and CXCL12, involved in the control of intestinal, neural, and hematopoietic niches [25, 26, 30].
The extraordinary high affinity of CXCL12γ for HS, and its strong expression in mouse BM, prompted us to hypothesize that CXCL12γ could have a specific role in the organization of BM niches, including the plasma/MM cell niche. To explore this notion, we investigated the expression of this CXCL12 isoform in human BM and studied its functional role in the interaction of MM cells with BMSCs cells.

Materials and methods

Cell culture

The human multiple myeloma cell lines (HMCLs) XG-1, MM1.S, and L363 were cultured as described previously [30]. For XG-1, medium was supplemented with 500 pg/mL IL-6 (Prospec, Rehovot, Israel). BMSC lines HS5 and HS27a were cultured in DMEM (Invitrogen Life Technologies, Breda, The Netherlands) with 10% FBS (Invitrogen Life Technologies), 100 µg/ml streptomycin, and 100 units/ml penicillin (Sigma-Aldrich, St Louis, USA), and bone marrow endothelial cell lines HBMEC60 and 4LHBMEC were cultured in EGM-2MV medium (Lonza, Geleen, The Netherlands). Primary MM cells and BMSCs were derived from MM patients diagnosed at the Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands. This study was conducted and approved by the AMC Medical Committee on Human Experimentation. Informed consent was obtained in accordance with the Declaration of Helsinki.

Cloning, transfection, and transduction

pLenti-CRISPR-sgEXT1 was constructed by inserting sgRNA-EXT1 (GACCCAAGCCTGCGACCACG) into pL-CRISPR.EFS.GFP (Addgene plasmid # 57818) as previously described [30]. pLenti-CRISPR-sgCXCL12γ was constructed by inserting sgRNA-CXCL12γ#1 (TTTAACACTGGCCCGTGTAC) and sgRNA-CXCL12γ#2 (AACTGTGGTCCATCTCGAGG) into pL-CRISPR.EFS.GFP [31]. pBABE-CXCL12α and pBABE-CXCL12γ were constructed by inserting CXCL12α or CXCL12γ cDNA containing C-terminally C9-tagged (TETSQVAPA) sequences into pBABE-puro (Addgene plasmid # 1764). Lentiviral and retroviral particle production and transduction were performed as described before [30].

Quantitative PCR and genomic DNA PCR

Total RNA was isolated using TRI reagent (Invitrogen Life Technologies) according to the manufacturer’s instructions and converted to cDNA using oligo-dT. Quantitative PCR was conducted using SensiFast (Bioline, London, UK) on the CFX384 RT-PCR detection system (Bio-Rad). Isoform-specific primers sequences and housekeeping gene primers are shown in Additional file 1: Table 1. Genomic DNA was isolated using QIAamp DNA kit according to the manufacturer’s instructions. PCR primers used to detect CXCL12γ deletion are: forward primer: TCCCCAGTGGGAATCAGGTT; reverse primer: CTGGAGCTCCCAGGCTATTC.

Adhesion assays

CXCL12α- and CXCL12γ-induced adhesion to VCAM-1 was performed as described previously [32]. For adhesion to BMSCs and BM endothelial cells, MM cells were added to 96-well plates with confluent BMSCs or BM endothelial cells expressing a GFP marker. MM cells were spun down for 30 s at 400 RPM and subsequently incubated for 20 min to allow adhesion of MM cells to BMSCs or BM endothelial cells. Non-adherent cells were removed by washing with RPMI containing 1% BSA. Adherent cells were detached by trypsin and quantified by flow cytometry.

Co-culture assays

For the co-culture assays, BMSCs were seeded in 96-well plates one day in advance to allow cell attachment. MM cells were added and incubated for 2 h. Subsequently, drugs were added at the indicated concentrations. After 3 days, cells were collected and analyzed by flow cytometry, using 7-AAD (Thermo Fisher Scientific, Landsmeer, The Netherlands) to exclude dead cells. In the transwell assay, BMSCs were seeded in the lower compartment and MM cells in the transwell insert (Costar, 0.4 µm; Corning, USA). After culturing the cells for 3 days in the presence or absence of bortezomib, the cell viability was analyzed by flow cytometry.

Cell surface protein staining

Staining for HS was performed as described before [30]. Heparitinase used for digestion of cell surface HS was purchased from Amsbio (Abingdon, UK). For CXCL12γ cell surface staining, cells were detached by 2 µM EDTA and stained with isotype-specific antibody 6E9. Primary antibody binding was detected with rabbit anti-mouse IgG1-APC (Southern Biotech, Birmingham, USA). To assess binding of recombinant CXCL12γ, the HMCL XG1 was incubated with 1 µg/ml recombinant CXCL12γ at 4 °C for 90 min. After washing three times, cells were stained with mAb 6E9 and binding was detected with rabbit anti-mouse IgG1-APC (Southern Biotech), and the cells were analyzed by flow cytometry.

Immunohistochemistry

Paraffin-embedded MM patients and normal BM biopsies for immunohistochemical studies were obtained from the Department of Pathology, Amsterdam University Medical Centers, Loc. AMC (previous name: Academic Medical Center) Amsterdam, the Netherlands. Four-micrometer tissue sections were treated with Tris–EDTA at pH 9 for 20 min at 121 °C for antigen retrieval. Sections were incubated overnight at 4 °C with the CXCL12γ isoform-specific mAb 6E9. Subsequently, the tissues were washed with PBS and incubated with rabbit anti-mouse antibody (Southern Biotech) for 30 min at room temperature followed by poly-HRP anti-rabbit IgG (DPVR110HRP, Immunologic, Duiven, The Netherlands) and Ultra DAB (Immunologic).

Results

CXCL12γ is expressed by human BM reticular stromal cells

CXCL12 produced by specialized, CAR-like, BMSCs cells has been shown to mediate the homing of both HSCs, plasmablasts, and MM cells to the BM [9, 12]. However, to date, the expression of specific CXCL12 isoforms in the human BM microenvironment, and their possibly distinctive roles in the interaction with MM cells, has remained unexplored. To study CXCL12γ expression in human BM in situ, we employed immunohistochemistry, using mAb 6E9 specific for this isoform [15]. Interestingly, the CXCL12γ-positive cells identified were reticular stromal cells with long cytoplasmic processes, which were scattered among hematopoietic cells, around adipocytes and capillaries (Fig. 1a), areas with putative niche functions [3338]. In BM samples infiltrated by MM cells, ample expression of CXCL12γ on stromal cells was also observed (Fig. 1a).
To define the expression of CXCL12γ by distinct BM-derived stromal cell types, we studied primary human BMSCs, the BMSC lines HS5 and HS27a, and the human BM endothelial cell (HBMEC) lines 4L-HBMEC and HBMEC60. Furthermore, we assessed CXCL12γ expression in various HMCLs, including XG1, MM1.S and L363. As shown in Fig. 1b, primary BMSCs as well as BMSC lines were found to express both CXCL12γ and CXCL12α mRNA. By contrast, expression of both these CXCL12 isoforms was either low or undetectable in the HBMEC lines and in the HMCLs.

CXCL12γ is immobilized on the cell surface of BMSCs by HSPGs

The C-terminal domain of CXCL12γ contains three positively charged HSPG-binding motives [15, 20]. Exogenous overexpression of CXCL12γ in HEK293T cells has shown that this domain interacts with cell surface expressed HSPGs, leading to immobilization on the cell membrane of the HEK293T cells [15]. We hypothesized that CXCL12γ expressed by BM reticular stromal cells might similarly be retained by HSPGs on the cell surface and thereby function as a membrane-bound chemokine. Indeed, by employing the CXCL12γ-isoform-specific mAb 6E9, we observed that CXCL12γ is constitutively present on the cell membrane of both primary BMSCs and the BMSC line HS5. No membrane-bound CXCL12γ was detected on the HMCL XG1, which does not express CXCL12γ mRNA (Fig. 1c).
Both primary BMSCs and the BMSC line HS5 express high levels of cell surface HSPGs, as detected by the HS-specific mAb 10E4 (Fig. 2a). To study whether HS moieties indeed are responsible for the membrane-retention of CXCL12γ, we deleted EXT1, encoding the HS co-polymerase EXT1, which is critically required for the synthesis of HS chains [30]. EXT1 deletion in HS5 cells by CRISPR-Cas9 resulted in a complete loss of cell surface HS expression, which was paralleled by loss of membrane-bound CXCL12γ (Fig. 2b). Similarly, enzymatic removal of HS (Fig. 2c, upper panel) from primary BMSCs by heparitinase resulted in a strong reduction of membrane-bound CXCL12γ (Fig. 2c, lower panel). The HMCL XG1 expresses the HSPG syndecan-1 [30] but does not express endogenous CXCL12γ (Fig. 1b, c). Incubation of XG1 cells with recombinant CXCL12γ resulted in strong membrane binding, which was attenuated by EXT1 deletion, corroborating the importance of HSPGs for CXCL12γ binding (Fig. 2d).
To assess whether membrane retention indeed is a unique feature of CXCL12γ, not shared with the ‘canonical’ CXCL12α isoform, we expressed either C9-tagged CXCL12γ or CXCL12α in HS5 wild-type (WT) or HS5-EXT1KO cells. Intracellular expression of both isoforms was readily detected in both HS5-WT and HS5-EXT1KO cells (Fig. 2e). However, membrane-bound CXCL12γ was detected only on the HS5-WT, but not on HS5-EXT1KO cells (Fig. 2e-left), demonstrating that CXCL12γ requires HS for membrane retention. CXCL12α, by contrast, was not retained on the surface of either HS5-WT and HS5-EXT1KO cells (Fig. 2e-right). These data demonstrate that CXCL12γ, unlike CXCL12α, is retained on the cell membrane of BMSCs by HSPGs.

Recombinant CXCL12γ mediates MM cell adhesion to VCAM-1

It is well established that CXCL12α is able to induce VLA4-mediated adhesion of MM cells to VCAM-1 [32, 39]. To assess whether the γ-isoform of CXCL12 can similarly induce MM cell adhesion, the HMCLs XG1, MM1.S, and L363 were exposed to various concentrations of either recombinant CXCL12α or CXCL12γ. As shown in Fig. 3a, both CXCL12α and CXCL12γ induced adhesion of these HMCLs to VCAM-1. The CXCL12α-induced adhesion showed a concentration-dependent bell-shaped curve, typical for chemokine/CXCL12α-induced responses, with an optimum at 6.25 nmol. Remarkably, for CXCL12γ-induced adhesion this bell-shaped dose–response pattern was largely absent. At higher ligand concentrations, the CXCL12γ-induced adhesion was sustained and much stronger than the adhesion induced by CXCL12α. Notably, induction of MM cell adhesion required coating of CXCL12α and CXCL12γ to the adherence surface. In solution, both ligands were ineffective, indicating that CXCL12 immobilization is crucial for adhesion induction (Fig. 3b).

CXCL12γ expressed and membrane-retained by HSPGs on reticular stromal cells mediates adhesion of MM cells

Given our finding that CXCL12γ is expressed and membrane-retained by stromal niche cells, we hypothesized that this isoform might play a specific role in controlling MM adhesion to and retention in the BM niche. To specifically study the biological function of CXCL12γ, we employed two CRISPR sgRNAs designed to target the CXCL12 gene upstream and downstream of the fourth exon encoding the unique C-terminal tail of CXCL12γ (Fig. 4a). Deletion in HS5 cells yielded a PCR product with a predicted size of approximately 500 bp (Fig. 4a) and was verified by Sanger sequencing (Fig. 4b). Moreover, deletion was confirmed by loss of cell surface CXCL12γ protein expression (Fig. 4c). Importantly, as anticipated, the expression of CXCL12α was not affected by deletion of exon 4 of the CXCL12 gene (Additional file 1: Figure S1). Furthermore, deletion of CXCL12γ had no effect on BMSC growth (Additional file 1: Figure S2).
As shown in Fig. 5a, the HMCLs XG1 and MM1.S displayed strong adhesion to HS5 and HS27 BMSCs, but did not adhere to BMECs. Interestingly, the capacity of HS5-CXCL12γKO cells to support adhesion of these MM cells was significantly reduced (Fig. 5b and Additional file 1: Figure S3A). Likewise, the HS5-EXT1KO cells, which no longer express the HS moieties required for membrane retention of CXCL12γ, also displayed a reduced capacity to support adhesion of these MM cells (Fig. 5c and Additional file 1: Figure S3B). Similar to the adhesion of HMCLs, primary MM cells also showed a reduced adhesion to HS5 BMSCs lacking either CXCL12γ or EXT1 (Fig. 5d). Importantly, exogenous reconstitution of CXCL12γ completely restored the adhesion defect in the HS5-CXCL12γKO BMSCs, confirming the role of CXCL12γ. By contrast, exogenous overexpression of CXCL12γ in HS5-EXT1KO BMSCs could not rescue the defective adhesion of MM cells to these cells (Fig. 5e), confirming the critical role of HSPG-mediated CXCL12γ cell surface retention. Taken together, these data indicate that CXCL12γ expressed by BMSCs and immobilized by cell surface HSPGs plays an important role in mediating MM cell adhesion to BMSCs.

CXCL12γ membrane-retained by HSPGs on BMSCs mediates resistance of MM cells to proteasome inhibitors

Interaction of MM cells with BMSCs plays a central role in the homing, retention, growth, and survival of MM cells as well as in drug resistance [1, 2, 40, 41]. Inhibition of the CXCL12/CXCR4 axis, disrupting interaction of MM cells with BMSCs, has been reported to alleviate the protective effect of BMSCs, enhancing the sensitivity of MM cells to various drugs [1, 8]. Given our observation that BMSC-derived CXCL12γ plays an important role in the adhesion of MM cells to BMSCs, we addressed the possible involvement of CXCL12γ in the protective effect of BMSCs against drug-induced MM cell death.
To measure MM cell death and the protective effect of BMSCs, the HMCLs XG1, MM1.S, and L363 or primary MM (pMM) cells were co-cultured with HS5 BMSCs expressing green fluorescent protein (GFP), to allow easy discrimination of both cell types (Additional file 1: Figure S4A). We focused on bortezomib since it represents a mainstay of current MM therapies. Moreover, unlike MM cells, which are highly sensitive, BMSCs are bortezomib insensitive in vitro (Additional file 1: Figure S4B), allowing reliable quantification of MM-specific cell death. As shown in Fig. 6a–c, co-culture with HS5-WT BMSCs protected both HMCLs and pMMs from bortezomib-induced cell death. Interestingly, this protective effect was significantly reduced in MM cells co-cultured with HS5-CXCL12γKO cells, indicating involvement of CXCL12γ in mediating bortezomib resistance (Fig. 6a, c).
Since deletion of EXT1 results in loss of CXCL12γ membrane retention (Fig. 2b), we examined whether EXT1KO would also reduce the protective effect of BMSCs. Indeed, similar to HS5-CXCL12γKO cells, HS5-EXT1KO cells showed a significantly reduced capacity to protect both HMCLs and pMMs against bortezomib-induced cell death (Fig. 6b, c). Similarly, the HS5-CXCL12γKO cells and HS5-EXT1KO cells also showed a reduced capacity to protect XG1 against cell death induced by carfilzomib, another commonly used proteasome inhibitor (Additional file 1: Figure S5). Recombinant CXCL12γ (or CXCL12α), in the absence of BMSCs, but co-coated with VCAM-1 did not affect the bortezomib sensitivity of HMCLs (Additional file 1: Figure S6a, b). These findings indicate that the BMSC-mediated resistance to proteasome inhibitors involves CXCL12γ retained on the cell membrane of BMSCs by HSPGs.

BMSC-derived CXCL12γ and HSPGs mediate CAM-DR

Drug resistance mediated by the MM BM microenvironment can be caused either by soluble factors or by direct physical cell–cell interactions mediated by cell adhesion molecules, termed soluble factor-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR), respectively [1, 42, 43]. To directly investigate the cell–cell contact dependency of the BMSC-mediated resistance to bortezomib and establish if soluble factors released by BMSCs were (also) involved, we employed transwell co-cultures to physically separate MM cells from BMSCs. As shown in Fig. 7a, in the transwell setting, HS5 BMSCs weakly, but significantly, protected the HMCL XG1, but not MM1.S, from bortezomib-induced cell death. This protective effect was not influenced by deletion of either CXCL12γ or EXT1. However, in a direct-contact setting, in which MM cells in suspension were removed before determining cell viability, BMSCs conferred a much stronger drug resistance to both XG1 and MM1.S. Importantly, this protective effect was largely abrogated by deletion of CXCL12γ or EXT1 and, hence, was CXCL12γ and HSPG dependent (Fig. 7b). Thus, CXCL12γ and HSPG on the cell surface of BMSCs promote MM cell adhesion to these BMSCs and thereby play an important role in CAM-DR.

Discussion

The CXCL12/CXCR4 axis plays a key role in the homing of normal plasma cell precursors and MM cells to the BM [9, 10], but the expression and specific role of CXCL12γ, a recently characterized CXCL12 isoform, which binds HSPGs with an extremely high affinity, have not been addressed. Here, we show that CXCL12γ is expressed in situ by reticular stromal cells in the human bone marrow niche as well as by BMSC lines and primary BMSC isolates. Unlike CXCL12α, CXCL12γ is immobilized on the cell surface of BMSCs by HSPGs, upon secretion. Functionally, this membrane-bound CXCL12γ promotes adhesion of MM cells to the stromal niche cells, thereby protecting MM cells from drug-induced cell death.
Our study of the in situ expression of CXCL12γ shows that it is expressed by CAR-like reticular stromal cells in the BM. In normal BM, distinct CXCL12γ expression was present on stromal cells with long cytoplasmic processes, scattered among hematopoietic cells, as well as around adipocytes and capillaries, and in the endosteal zone (Fig. 1a), areas with putative niche functions [3338]. In BM sections of MM patients, CXCL12γ was also observed on stromal cells in areas infiltrated by MM cells. Notably, employing an antibody against an epitope shared by all CXCL12 isoforms, Abe-Suzuki et al. [37] recently reported a similar expression pattern, which also resembles the distribution of CAR cells in mouse bone marrow [9]. Study of isolated primary BMSCs and BMSC lines corroborates these findings, demonstrating that CXCL12γ is specifically expressed by isolated primary BMSCs and BMSC lines (Fig. 1b).
CXCL12γ possesses an extraordinarily high affinity for HSPGs due to its unique C-terminal domain [15, 20]. Interestingly, we observed that both primary BMCSs and HS5 cells constitutively express CXCL12γ on their cell surface, suggesting that this chemokine is retained by HSPGs upon secretion (Fig. 1c). Indeed, we observed that KO of the HS-chain co-polymerase EXT1 in HS5 BMSCs results in a complete loss of membrane-bound CXCL12γ. Importantly, immobilization by cell surface HS was a specific feature of the CXCL12γ isoform, since overexpression of CXCL12α in HS5 did not result in detectable membrane retention, notwithstanding substantial intracellular expression (Fig. 2).
We observed that specific deletion of CXCL12γ strongly reduces the capacity of HS5 BMSCs to mediate adhesion of MM cells to their cell surface. This result extends the previous observation that a total (i.e., non-isoform specific) knockdown of CXCL12 reduces the capacity of BMSCs to mediate adhesion of MM cells [8], pinpointing this effect to the CXCL12γ isoform. Similar to CXCL12γ deletion, EXT1 deletion also attenuated MM cell adhesion to the BMSCs. Importantly, whereas the defective adhesion to HS5-CXCL12γKO cells could be overcome by exogenous expression of CXCL12γ, this could not correct the adhesion defect in HS5-EXT1KO cells, indicating that CXCL12γ immobilization by HSPGs is critically required (Fig. 5). In line with this notion, in experiments employing recombinant CXCL12 to induce MM cell adhesion to VCAM-1 plastic, we observed that only immobilized (i.e. coated) CXCL12 effectively induced adhesion (Fig. 3b).
Interaction of MM cells with BMSCs plays a central role in MM cell homing/retention and can also confer drug resistance [1, 7]. We observed that co-culture with HS5 BMSCs of the HMCLs XG1 and MM1.S and of primary MM cells did hardly or not affect tumor cell viability per se, but significantly reduced their sensitivity to the proteasome inhibitors bortezomib and carfilzomib. Interestingly, this resistance was largely annulled by specific deletion of CXCL12γ in BMSCs, identifying CXCL12γ as a major factor in the BMSC-mediated drug resistance. HS5 BMSCs cells with a deletion of EXT-1 showed a similarly reduced capacity to protect MM cells, showing the essential role of membrane retention of CXCL12γ by HSPGs (Fig. 6).
Drug resistance mediated by BMSCs can be caused either by soluble factors or by interactions via cell adhesion molecules [1, 42, 43]. We observed that the protective effect of BMSCs to MM cells was largely abolished by physical separation of the MM and BMSCs, implying that this protection requires direct cell–cell contact (Fig. 7a, b). This suggests that BMSCs might convey MM drug resistance via direct integrin-mediated signals, rather than by soluble growth and survival factors, although such factors are abundantly expressed by BMSCs [30, 41, 44]. However, recombinant CXCL12γ (or CXCL12α)-induced adhesion to VCAM-1-coated plastic did not protect MM cells against bortezomib-induced cell death (Additional file 1: Figure S6), indicating that integrin-mediated cell adhesion per se is not sufficient to instigate bortezomib resistance. Conceivably, CXCL12γ-controlled adhesion serves to retain MM cells in close physical contact with the BMSCs, providing MM cells with growth and survival signals through integrin receptors as well as with access to short-range growth and survival factors, such as Wnts and vascular endothelial growth factor [45, 46], which may act in concert to mediate drug resistance.
Our data suggest targeting CXCL12γ and/or its interaction with HSPGs, as a potential therapeutic strategy. Notably, MM cells express high levels of the HSPG syndecan-1, which is crucial for MM cell survival [47, 48] and promotes Wnt-mediated cell proliferation [30] as well as hepatocyte growth factor (HGF), FGF, epidermal growth factor (EGF), and a proliferation-inducing ligand (APRIL)-mediated signaling [4951]. Hence, targeting HSPGs or the HS biosynthesis machinery may disconnect the interaction of MM cells with the BM microenvironment at various levels [52]. Our studies corroborate previous studies, showing that disruption of the interaction between MM cells and BMSCs by the CXCR4 inhibitor AMD3100 enhances MM sensitivity to multiple therapeutic agents such as bortezomib, dexamethasone, and melphalan [1, 7, 41]. Furthermore, targeting pan-CXCL12 by olaptesed pegol (ola-PEG), which neutralizes CXCL12 irrespective of the isoform, prevented MM progression in a murine model [8], while a recent phase IIa clinical trial showed that patients with relapsed/refractory MM respond favorably to a combination of bortezomib or dexamethasone with ola-PEG [53]. Apart from CXCR4, MM cells also express CXCR7, an alternative receptor of CXCL12, which may also be involved in CAM-DR in MM [7] as well as in MM progression [54]. Targeting the ligand CXCL12(γ) will simultaneously inhibit signaling through both chemokine receptors. It will also be of interest to explore whether CXCL12γ plays similar roles in the interaction of other hematological malignancies with the BM microenvironment, including acute myeloid leukemia (AML) and non-Hodgkin lymphomas.

Conclusions

Taken together, our data suggest a scenario in which CXCL12γ functions as a ‘niche chemokine’ that, in conjunction with HSPGs, plays a key role in controlling adhesion, BM retention, and CAM-DR of MM cells (Fig. 7c). These findings identify this unique membrane-bound chemokine, and associated HSPGs, as potential therapeutic targets in MM.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-021-01031-3.

Acknowledgements

We thank members of our team for critical discussion and suggestions. We also thank patients participated in our study.
Primary MM cells and BMSCs were derived from MM patients diagnosed at the Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands. This study was conducted and approved by the AMC Medical Committee on Human Experimentation. Informed consent was obtained in accordance with the Declaration of Helsinki.
Consent for publication is not applicable for this article.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51.PubMedPubMedCentralCrossRef Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7(8):585–98.PubMedCrossRef Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7(8):585–98.PubMedCrossRef
3.
Zurück zum Zitat Pagnucco G, Cardinale G, Gervasi F. Targeting multiple myeloma cells and their bone marrow microenvironment. Ann N Y Acad Sci. 2004;1028:390–9.PubMedCrossRef Pagnucco G, Cardinale G, Gervasi F. Targeting multiple myeloma cells and their bone marrow microenvironment. Ann N Y Acad Sci. 2004;1028:390–9.PubMedCrossRef
4.
Zurück zum Zitat Gay F, Magarotto V, Crippa C, Pescosta N, Guglielmelli T, Cavallo F, et al. Bortezomib induction, reduced-intensity transplantation, and lenalidomide consolidation-maintenance for myeloma: updated results. Blood. 2013;122(8):1376–83.PubMedCrossRef Gay F, Magarotto V, Crippa C, Pescosta N, Guglielmelli T, Cavallo F, et al. Bortezomib induction, reduced-intensity transplantation, and lenalidomide consolidation-maintenance for myeloma: updated results. Blood. 2013;122(8):1376–83.PubMedCrossRef
5.
Zurück zum Zitat Engelhardt M, Terpos E, Kleber M, Gay F, Wasch R, Morgan G, et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014;99(2):232–42.PubMedPubMedCentralCrossRef Engelhardt M, Terpos E, Kleber M, Gay F, Wasch R, Morgan G, et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014;99(2):232–42.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat van de Donk NW, Moreau P, Plesner T, Palumbo A, Gay F, Laubach JP, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood. 2016;127(6):681–95.PubMedCrossRef van de Donk NW, Moreau P, Plesner T, Palumbo A, Gay F, Laubach JP, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood. 2016;127(6):681–95.PubMedCrossRef
7.
Zurück zum Zitat Waldschmidt JM, Simon A, Wider D, Muller SJ, Follo M, Ihorst G, et al. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma. Br J Haematol. 2017;179(1):36–49.PubMedCrossRef Waldschmidt JM, Simon A, Wider D, Muller SJ, Follo M, Ihorst G, et al. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma. Br J Haematol. 2017;179(1):36–49.PubMedCrossRef
8.
Zurück zum Zitat Roccaro AM, Sacco A, Purschke WG, Moschetta M, Buchner K, Maasch C, et al. SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep. 2014;9(1):118–28.PubMedPubMedCentralCrossRef Roccaro AM, Sacco A, Purschke WG, Moschetta M, Buchner K, Maasch C, et al. SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep. 2014;9(1):118–28.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.PubMedCrossRef Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.PubMedCrossRef
10.
Zurück zum Zitat Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, NY). 1999;283(5403):845–8.CrossRef Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, NY). 1999;283(5403):845–8.CrossRef
11.
Zurück zum Zitat Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood. 2001;97(2):346–51.PubMedCrossRef Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood. 2001;97(2):346–51.PubMedCrossRef
12.
Zurück zum Zitat Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17.PubMedPubMedCentralCrossRef Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, et al. The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica. 2006;91(5):605–12.PubMed Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, et al. The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica. 2006;91(5):605–12.PubMed
14.
Zurück zum Zitat Yu L, Cecil J, Peng SB, Schrementi J, Kovacevic S, Paul D, et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene. 2006;374:174–9.PubMedCrossRef Yu L, Cecil J, Peng SB, Schrementi J, Kovacevic S, Paul D, et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene. 2006;374:174–9.PubMedCrossRef
15.
Zurück zum Zitat Rueda P, Balabanian K, Lagane B, Staropoli I, Chow K, Levoye A, et al. The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins. PLoS ONE. 2008;3(7):e2543.PubMedPubMedCentralCrossRef Rueda P, Balabanian K, Lagane B, Staropoli I, Chow K, Levoye A, et al. The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins. PLoS ONE. 2008;3(7):e2543.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393(6685):595–9.PubMedCrossRef Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393(6685):595–9.PubMedCrossRef
17.
Zurück zum Zitat Zhu W, Liang G, Huang Z, Doty SB, Boskey AL. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem. 2011;286(30):26794–805.PubMedPubMedCentralCrossRef Zhu W, Liang G, Huang Z, Doty SB, Boskey AL. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem. 2011;286(30):26794–805.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382(6592):635–8.PubMedCrossRef Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382(6592):635–8.PubMedCrossRef
19.
Zurück zum Zitat Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, Koni PA, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol. 2009;20(8):1714–23.PubMedPubMedCentralCrossRef Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, Koni PA, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol. 2009;20(8):1714–23.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F, et al. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS ONE. 2007;2(10):e1110.PubMedPubMedCentralCrossRef Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F, et al. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS ONE. 2007;2(10):e1110.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Connell BJ, Sadir R, Baleux F, Laguri C, Kleman JP, Luo L, et al. Heparan sulfate differentially controls CXCL12alpha- and CXCL12gamma-mediated cell migration through differential presentation to their receptor CXCR4. Science Signal. 2016;9(452):ra107.CrossRef Connell BJ, Sadir R, Baleux F, Laguri C, Kleman JP, Luo L, et al. Heparan sulfate differentially controls CXCL12alpha- and CXCL12gamma-mediated cell migration through differential presentation to their receptor CXCR4. Science Signal. 2016;9(452):ra107.CrossRef
22.
Zurück zum Zitat Rueda P, Richart A, Recalde A, Gasse P, Vilar J, Guerin C, et al. Homeostatic and tissue reparation defaults in mice carrying selective genetic invalidation of CXCL12/proteoglycan interactions. Circulation. 2012;126(15):1882–95.PubMedPubMedCentralCrossRef Rueda P, Richart A, Recalde A, Gasse P, Vilar J, Guerin C, et al. Homeostatic and tissue reparation defaults in mice carrying selective genetic invalidation of CXCL12/proteoglycan interactions. Circulation. 2012;126(15):1882–95.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.PubMedCrossRef Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.PubMedCrossRef
24.
Zurück zum Zitat Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6(7):530–41.PubMedCrossRef Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6(7):530–41.PubMedCrossRef
26.
Zurück zum Zitat Reijmers RM, Spaargaren M, Pals ST. Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma. FEBS J. 2013;280(10):2180–93.PubMedCrossRef Reijmers RM, Spaargaren M, Pals ST. Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma. FEBS J. 2013;280(10):2180–93.PubMedCrossRef
27.
Zurück zum Zitat Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JL, et al. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J. 2013;280(10):2294–306.PubMedPubMedCentralCrossRef Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JL, et al. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J. 2013;280(10):2294–306.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Guo Z, Wang Z. The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development (Cambridge, England). 2009;136(21):3627–35.CrossRef Guo Z, Wang Z. The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development (Cambridge, England). 2009;136(21):3627–35.CrossRef
29.
Zurück zum Zitat Pennetier D, Oyallon J, Morin-Poulard I, Dejean S, Vincent A, Crozatier M. Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. Proc Natl Acad Sci USA. 2012;109(9):3389–94.PubMedCrossRef Pennetier D, Oyallon J, Morin-Poulard I, Dejean S, Vincent A, Crozatier M. Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. Proc Natl Acad Sci USA. 2012;109(9):3389–94.PubMedCrossRef
30.
Zurück zum Zitat Ren Z, van Andel H, de Lau W, Hartholt RB, Maurice MM, Clevers H, et al. Syndecan-1 promotes Wnt/beta-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood. 2018;131(9):982–94.PubMedCrossRef Ren Z, van Andel H, de Lau W, Hartholt RB, Maurice MM, Clevers H, et al. Syndecan-1 promotes Wnt/beta-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood. 2018;131(9):982–94.PubMedCrossRef
31.
Zurück zum Zitat Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32(9):941–6.PubMedPubMedCentralCrossRef Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32(9):941–6.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4.PubMedCrossRef de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4.PubMedCrossRef
33.
Zurück zum Zitat Bonomo A, Monteiro AC, Goncalves-Silva T, Cordeiro-Spinetti E, Galvani RG, Balduino A. A T cell view of the bone marrow. Front Immunol. 2016;7:184.PubMedPubMedCentralCrossRef Bonomo A, Monteiro AC, Goncalves-Silva T, Cordeiro-Spinetti E, Galvani RG, Balduino A. A T cell view of the bone marrow. Front Immunol. 2016;7:184.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ribatti D, Basile A, Ruggieri S, Vacca A. Bone marrow vascular niche and the control of angiogenesis in multiple myeloma. Front Biosci (Landmark Ed). 2014;19:304–11.CrossRef Ribatti D, Basile A, Ruggieri S, Vacca A. Bone marrow vascular niche and the control of angiogenesis in multiple myeloma. Front Biosci (Landmark Ed). 2014;19:304–11.CrossRef
36.
Zurück zum Zitat Ribatti D, Nico B, Vacca A. Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. Int Rev Cell Mol Biol. 2015;314:259–82.PubMedCrossRef Ribatti D, Nico B, Vacca A. Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. Int Rev Cell Mol Biol. 2015;314:259–82.PubMedCrossRef
37.
Zurück zum Zitat Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Investig J Tech Methods Pathol. 2014;94(11):1212–23.CrossRef Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Investig J Tech Methods Pathol. 2014;94(11):1212–23.CrossRef
38.
Zurück zum Zitat Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99.PubMedCrossRef Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99.PubMedCrossRef
39.
Zurück zum Zitat Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood. 2009;114(3):619–29.PubMedPubMedCentralCrossRef Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood. 2009;114(3):619–29.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Di Marzo L, Desantis V, Solimando AG, Ruggieri S, Annese T, Nico B, et al. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60698–711.PubMedPubMedCentralCrossRef Di Marzo L, Desantis V, Solimando AG, Ruggieri S, Annese T, Nico B, et al. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60698–711.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol. 2018;15(4):219–33.PubMedCrossRef Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol. 2018;15(4):219–33.PubMedCrossRef
42.
Zurück zum Zitat Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15(12):1950–61.PubMedCrossRef Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15(12):1950–61.PubMedCrossRef
43.
Zurück zum Zitat Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001;20(42):5991–6000.PubMedCrossRef Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001;20(42):5991–6000.PubMedCrossRef
44.
Zurück zum Zitat Rougier F, Cornu E, Praloran V, Denizot Y. IL-6 and IL-8 production by human bone marrow stromal cells. Cytokine. 1998;10(2):93–7.PubMedCrossRef Rougier F, Cornu E, Praloran V, Denizot Y. IL-6 and IL-8 production by human bone marrow stromal cells. Cytokine. 1998;10(2):93–7.PubMedCrossRef
45.
Zurück zum Zitat Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530(7590):340–3.PubMedCrossRef Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530(7590):340–3.PubMedCrossRef
46.
Zurück zum Zitat Barkefors I, Le Jan S, Jakobsson L, Hejll E, Carlson G, Johansson H, et al. Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J Biol Chem. 2008;283(20):13905–12.PubMedCrossRef Barkefors I, Le Jan S, Jakobsson L, Hejll E, Carlson G, Johansson H, et al. Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J Biol Chem. 2008;283(20):13905–12.PubMedCrossRef
47.
Zurück zum Zitat Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood. 2007;110(6):2041–8.PubMedPubMedCentralCrossRef Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood. 2007;110(6):2041–8.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Reijmers RM, Groen RW, Rozemuller H, Kuil A, de Haan-Kramer A, Csikos T, et al. Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood. 2010;115(3):601–4.PubMedCrossRef Reijmers RM, Groen RW, Rozemuller H, Kuil A, de Haan-Kramer A, Csikos T, et al. Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood. 2010;115(3):601–4.PubMedCrossRef
49.
Zurück zum Zitat Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood. 2002;99(4):1405–10.PubMedCrossRef Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood. 2002;99(4):1405–10.PubMedCrossRef
50.
Zurück zum Zitat Mahtouk K, Cremer FW, Reme T, Jourdan M, Baudard M, Moreaux J, et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene. 2006;25(54):7180–91.PubMedPubMedCentralCrossRef Mahtouk K, Cremer FW, Reme T, Jourdan M, Baudard M, Moreaux J, et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene. 2006;25(54):7180–91.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Reijmers RM, Groen RW, Kuil A, Weijer K, Kimberley FC, Medema JP, et al. Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood. 2011;117(23):6162–71.PubMedCrossRef Reijmers RM, Groen RW, Kuil A, Weijer K, Kimberley FC, Medema JP, et al. Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood. 2011;117(23):6162–71.PubMedCrossRef
52.
Zurück zum Zitat Sanderson RD, Yang Y. Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metas. 2008;25(2):149–59.CrossRef Sanderson RD, Yang Y. Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metas. 2008;25(2):149–59.CrossRef
53.
Zurück zum Zitat Ludwig H, Weisel K, Petrucci MT, Leleu X, Cafro AM, Garderet L, et al. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a Phase IIa Study. Leukemia. 2017;31(4):997–1000.PubMedPubMedCentralCrossRef Ludwig H, Weisel K, Petrucci MT, Leleu X, Cafro AM, Garderet L, et al. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a Phase IIa Study. Leukemia. 2017;31(4):997–1000.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Azab AK, Sahin I, Moschetta M, Mishima Y, Burwick N, Zimmermann J, et al. CXCR7-dependent angiogenic mononuclear cell trafficking regulates tumor progression in multiple myeloma. Blood. 2014;124(12):1905–14.PubMedPubMedCentralCrossRef Azab AK, Sahin I, Moschetta M, Mishima Y, Burwick N, Zimmermann J, et al. CXCR7-dependent angiogenic mononuclear cell trafficking regulates tumor progression in multiple myeloma. Blood. 2014;124(12):1905–14.PubMedPubMedCentralCrossRef
Metadaten
Titel
The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma
verfasst von
Zemin Ren
Hildo Lantermans
Annemieke Kuil
Willem Kraan
Fernando Arenzana-Seisdedos
Marie José Kersten
Marcel Spaargaren
Steven T. Pals
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2021
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01031-3

Weitere Artikel der Ausgabe 1/2021

Journal of Hematology & Oncology 1/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.