Skip to main content
Erschienen in:

27.01.2022 | Assisted Reproduction Technologies

The (decision) tree of fertility: an innovative decision-making algorithm in assisted reproduction technique

verfasst von: Maria Teresa Villani, Daria Morini, Giorgia Spaggiari, Chiara Furini, Beatrice Melli, Alessia Nicoli, Francesca Iannotti, Giovanni Battista La Sala, Manuela Simoni, Lorenzo Aguzzoli, Daniele Santi

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Several mathematical models have been developed to estimate individualized chances of assisted reproduction techniques (ART) success, although with limited clinical application. Our study aimed to develop a decisional algorithm able to predict pregnancy and live birth rates after controlled ovarian stimulation (COS) phase, helping the physician to decide whether to perform oocytes pick-up continuing the ongoing ART path.

Methods

A single-center retrospective analysis of real-world data was carried out including all fresh ART cycles performed in 1998–2020. Baseline characteristics, ART parameters and biochemical/clinical pregnancies and live birth rates were collected. A seven-steps systematic approach for model development, combining linear regression analyses and decision trees (DT), was applied for biochemical, clinical pregnancy, and live birth rates.

Results

Of fresh ART cycles, 12,275 were included. Linear regression analyses highlighted a relationship between number of ovarian follicles > 17 mm detected at ultrasound before pick-up (OF17), embryos number and fertilization rate, and biochemical and clinical pregnancy rates (p < 0.001), but not live birth rate. DT were created for biochemical pregnancy (statistical power–SP:80.8%), clinical pregnancy (SP:85.4%), and live birth (SP:87.2%). Thresholds for OF17 entered in all DT, while sperm motility entered the biochemical pregnancy’s model, and female age entered the clinical pregnancy and live birth DT. In case of OF17 < 3, the chance of conceiving was < 6% for all DT.

Conclusion

A systematic approach allows to identify OF17, female age, and sperm motility as pre-retrieval predictors of ART outcome, possibly reducing the socio-economic burden of ART failure, allowing the clinician to perform or not the oocytes pick-up.
Literatur
1.
Zurück zum Zitat Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.PubMed Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.PubMed
2.
Zurück zum Zitat Saadati N, Nikbakht R, Sattari A, Amininezhad FS. Spontaneous pregnancies and determinant factors in infertility: a cross-sectional study. Int J Reprod Biomed. 2020;18(10):905–10.PubMedPubMedCentral Saadati N, Nikbakht R, Sattari A, Amininezhad FS. Spontaneous pregnancies and determinant factors in infertility: a cross-sectional study. Int J Reprod Biomed. 2020;18(10):905–10.PubMedPubMedCentral
3.
Zurück zum Zitat De Geyter C. More than 8 million babies born from IVF since the world’s first in 1978: European IVF pregnancy rates now steady at around 36 percent, according to ESHRE monitoring. European Society of Human Reproduction and Embryology; 2018. De Geyter C. More than 8 million babies born from IVF since the world’s first in 1978: European IVF pregnancy rates now steady at around 36 percent, according to ESHRE monitoring. European Society of Human Reproduction and Embryology; 2018.
4.
Zurück zum Zitat Domar AD. Impact of psychological factors on dropout rates in insured infertility patients. Fertil Steril. 2004;81(2):271–3.PubMed Domar AD. Impact of psychological factors on dropout rates in insured infertility patients. Fertil Steril. 2004;81(2):271–3.PubMed
5.
Zurück zum Zitat Moragianni VA, Penzias AS. Cumulative live-birth rates after assisted reproductive technology. Curr Opin Obstet Gynecol. 2010;22(3):189–92.PubMed Moragianni VA, Penzias AS. Cumulative live-birth rates after assisted reproductive technology. Curr Opin Obstet Gynecol. 2010;22(3):189–92.PubMed
6.
Zurück zum Zitat Yang J, Zhang X, Ding X, Wang Y, Huang G, Ye H. Cumulative live birth rates between GnRH-agonist long and GnRH-antagonist protocol in one ART cycle when all embryos transferred: real-word data of 18,853 women from China. Reprod Biol Endocrinol. 2021;19(1):124.PubMedPubMedCentral Yang J, Zhang X, Ding X, Wang Y, Huang G, Ye H. Cumulative live birth rates between GnRH-agonist long and GnRH-antagonist protocol in one ART cycle when all embryos transferred: real-word data of 18,853 women from China. Reprod Biol Endocrinol. 2021;19(1):124.PubMedPubMedCentral
7.
Zurück zum Zitat Banker M, Dyer S, Chambers GM, Ishihara O, Kupka M, de Mouzon J, Zegers-Hochschild F, Adamson GD. International Committee for Monitoring Assisted Reproductive Technologies (ICMART): world report on assisted reproductive technologies, 2013. Fertil Steril. 2021;116(3):741–56.PubMed Banker M, Dyer S, Chambers GM, Ishihara O, Kupka M, de Mouzon J, Zegers-Hochschild F, Adamson GD. International Committee for Monitoring Assisted Reproductive Technologies (ICMART): world report on assisted reproductive technologies, 2013. Fertil Steril. 2021;116(3):741–56.PubMed
8.
Zurück zum Zitat van der Steeg JW, Steures P, Eijkemans MJ, Habbema JD, Bossuyt PM, Hompes PG, van der Veen F, Mol BW. Do clinical prediction models improve concordance of treatment decisions in reproductive medicine? BJOG. 2006;113(7):825–31.PubMed van der Steeg JW, Steures P, Eijkemans MJ, Habbema JD, Bossuyt PM, Hompes PG, van der Veen F, Mol BW. Do clinical prediction models improve concordance of treatment decisions in reproductive medicine? BJOG. 2006;113(7):825–31.PubMed
9.
Zurück zum Zitat Khader A, Lloyd SM, McConnachie A, Fleming R, Grisendi V, La Marca A, Nelson SM. External validation of anti-Müllerian hormone based prediction of live birth in assisted conception. J Ovarian Res. 2013;6(1):3.PubMedPubMedCentral Khader A, Lloyd SM, McConnachie A, Fleming R, Grisendi V, La Marca A, Nelson SM. External validation of anti-Müllerian hormone based prediction of live birth in assisted conception. J Ovarian Res. 2013;6(1):3.PubMedPubMedCentral
10.
Zurück zum Zitat Wyns C, Bergh C, Calhaz-Jorge C, De Geyter C, Kupka MS, Motrenko T, Rugescu I, Smeenk J, Tandler-Schneider A, Vidakovic S, et al. ART in Europe, 2016: results generated from European registries by ESHRE. Hum Reprod Open. 2020;2020(3):hoaa032.PubMedPubMedCentral Wyns C, Bergh C, Calhaz-Jorge C, De Geyter C, Kupka MS, Motrenko T, Rugescu I, Smeenk J, Tandler-Schneider A, Vidakovic S, et al. ART in Europe, 2016: results generated from European registries by ESHRE. Hum Reprod Open. 2020;2020(3):hoaa032.PubMedPubMedCentral
11.
Zurück zum Zitat Yakin K, Oktem O, Balaban B, Urman B. Bologna criteria are predictive for ovarian response and live birth in subsequent ovarian stimulation cycles. Arch Gynecol Obstet. 2019;299(2):571–7.PubMed Yakin K, Oktem O, Balaban B, Urman B. Bologna criteria are predictive for ovarian response and live birth in subsequent ovarian stimulation cycles. Arch Gynecol Obstet. 2019;299(2):571–7.PubMed
12.
Zurück zum Zitat Gianaroli L, Racowsky C, Geraedts J, Cedars M, Makrigiannakis A, Lobo R. Best practices of ASRM and ESHRE: a journey through reproductive medicine. Human Reprod (Oxford, England). 2012;27(12):3365–79. Gianaroli L, Racowsky C, Geraedts J, Cedars M, Makrigiannakis A, Lobo R. Best practices of ASRM and ESHRE: a journey through reproductive medicine. Human Reprod (Oxford, England). 2012;27(12):3365–79.
13.
Zurück zum Zitat Glujovsky D, Pesce R, Miguens M, Sueldo CE, Lattes K, Ciapponi A. How effective are the non-conventional ovarian stimulation protocols in ART? A systematic review and meta-analysis. J Assist Reprod Genet. 2020;37(12):2913–28.PubMedPubMedCentral Glujovsky D, Pesce R, Miguens M, Sueldo CE, Lattes K, Ciapponi A. How effective are the non-conventional ovarian stimulation protocols in ART? A systematic review and meta-analysis. J Assist Reprod Genet. 2020;37(12):2913–28.PubMedPubMedCentral
14.
Zurück zum Zitat Fischer S, Ehrig R, Schäfer S, Tronci E, Mancini T, Egli M, Ille F, Krüger THC, Leeners B, Röblitz S. Mathematical modeling and simulation provides evidence for new strategies of ovarian stimulation. Front Endocrinol. 2021;12:613048. Fischer S, Ehrig R, Schäfer S, Tronci E, Mancini T, Egli M, Ille F, Krüger THC, Leeners B, Röblitz S. Mathematical modeling and simulation provides evidence for new strategies of ovarian stimulation. Front Endocrinol. 2021;12:613048.
15.
Zurück zum Zitat Steyerberg EW, Bleeker SE, Moll HA, Grobbee DE, Moons KG. Internal and external validation of predictive models: a simulation study of bias and precision in small samples. J Clin Epidemiol. 2003;56(5):441–7.PubMed Steyerberg EW, Bleeker SE, Moll HA, Grobbee DE, Moons KG. Internal and external validation of predictive models: a simulation study of bias and precision in small samples. J Clin Epidemiol. 2003;56(5):441–7.PubMed
16.
Zurück zum Zitat Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing prognostic models in cancer: a review. BMC Med. 2010;8:20.PubMedPubMedCentral Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing prognostic models in cancer: a review. BMC Med. 2010;8:20.PubMedPubMedCentral
17.
Zurück zum Zitat Bouwmeester W, Zuithoff NP, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, Altman DG, Moons KG. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1–12.PubMed Bouwmeester W, Zuithoff NP, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, Altman DG, Moons KG. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1–12.PubMed
18.
Zurück zum Zitat McLernon DJ, Steyerberg EW, Te Velde ER, Lee AJ, Bhattacharya S. Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113 873 women. BMJ (Clinical research ed). 2016;355:i5735. McLernon DJ, Steyerberg EW, Te Velde ER, Lee AJ, Bhattacharya S. Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113 873 women. BMJ (Clinical research ed). 2016;355:i5735.
19.
Zurück zum Zitat Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, Rienzi L, Sunde A, Schmidt L, Cooke ID, et al. The International Glossary on Infertility and Fertility Care, 2017. Human Reprod (Oxford, England). 2017;32(9):1786–801. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, Rienzi L, Sunde A, Schmidt L, Cooke ID, et al. The International Glossary on Infertility and Fertility Care, 2017. Human Reprod (Oxford, England). 2017;32(9):1786–801.
20.
Zurück zum Zitat Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.PubMedPubMedCentral Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.PubMedPubMedCentral
21.
Zurück zum Zitat Goodman LA. The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds. Biometrics. 1983;39(1):149–60.PubMed Goodman LA. The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds. Biometrics. 1983;39(1):149–60.PubMed
22.
Zurück zum Zitat Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.PubMed Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.PubMed
23.
Zurück zum Zitat Ratna MB, Bhattacharya S, Abdulrahim B, McLernon DJ. A systematic review of the quality of clinical prediction models in in vitro fertilisation. Human Reprod (Oxford, England). 2020;35(1):100–16. Ratna MB, Bhattacharya S, Abdulrahim B, McLernon DJ. A systematic review of the quality of clinical prediction models in in vitro fertilisation. Human Reprod (Oxford, England). 2020;35(1):100–16.
24.
Zurück zum Zitat WHO WHO. WHO laboratory manual for the examination and processing of human semen. 5th ed 2010. WHO WHO. WHO laboratory manual for the examination and processing of human semen. 5th ed 2010.
26.
Zurück zum Zitat Stolwijk AM, Wetzels AM, Braat DD. Cumulative probability of achieving an ongoing pregnancy after in-vitro fertilization and intracytoplasmic sperm injection according to a woman’s age, subfertility diagnosis and primary or secondary subfertility. Human Reprod (Oxford, England). 2000;15(1):203–9. Stolwijk AM, Wetzels AM, Braat DD. Cumulative probability of achieving an ongoing pregnancy after in-vitro fertilization and intracytoplasmic sperm injection according to a woman’s age, subfertility diagnosis and primary or secondary subfertility. Human Reprod (Oxford, England). 2000;15(1):203–9.
27.
Zurück zum Zitat Lintsen AM, Eijkemans MJ, Hunault CC, Bouwmans CA, Hakkaart L, Habbema JD, Braat DD. Predicting ongoing pregnancy chances after IVF and ICSI: a national prospective study. Human Reprod (Oxford, England). 2007;22(9):2455–62. Lintsen AM, Eijkemans MJ, Hunault CC, Bouwmans CA, Hakkaart L, Habbema JD, Braat DD. Predicting ongoing pregnancy chances after IVF and ICSI: a national prospective study. Human Reprod (Oxford, England). 2007;22(9):2455–62.
28.
Zurück zum Zitat Nelson SM, Lawlor DA. Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med. 2011;8(1):e1000386.PubMedPubMedCentral Nelson SM, Lawlor DA. Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med. 2011;8(1):e1000386.PubMedPubMedCentral
29.
Zurück zum Zitat Luke B, Brown MB, Wantman E, Stern JE, Baker VL, Widra E, Coddington CC 3rd, Gibbons WE, Ball GD. A prediction model for live birth and multiple births within the first three cycles of assisted reproductive technology. Fertil Steril. 2014;102(3):744–52.PubMedPubMedCentral Luke B, Brown MB, Wantman E, Stern JE, Baker VL, Widra E, Coddington CC 3rd, Gibbons WE, Ball GD. A prediction model for live birth and multiple births within the first three cycles of assisted reproductive technology. Fertil Steril. 2014;102(3):744–52.PubMedPubMedCentral
30.
Zurück zum Zitat Smith AD, Tilling K, Lawlor DA, Nelson SM. External validation and calibration of IVFpredict: a national prospective cohort study of 130,960 in vitro fertilisation cycles. PloS one. 2015;10(4):e0121357.PubMedPubMedCentral Smith AD, Tilling K, Lawlor DA, Nelson SM. External validation and calibration of IVFpredict: a national prospective cohort study of 130,960 in vitro fertilisation cycles. PloS one. 2015;10(4):e0121357.PubMedPubMedCentral
31.
Zurück zum Zitat Hemingway H, Riley RD, Altman DG. Ten steps towards improving prognosis research. BMJ (Clinical research ed). 2009;339:b4184. Hemingway H, Riley RD, Altman DG. Ten steps towards improving prognosis research. BMJ (Clinical research ed). 2009;339:b4184.
32.
Zurück zum Zitat Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.
33.
Zurück zum Zitat Santi D, Casarini L, Alviggi C, Simoni M. Efficacy of follicle-stimulating hormone (FSH) alone, FSH + luteinizing hormone, human menopausal gonadotropin or FSH + human chorionic gonadotropin on assisted reproductive technology outcomes in the “Personalized” medicine era: a meta-analysis. Front Endocrinol. 2017;8:114. Santi D, Casarini L, Alviggi C, Simoni M. Efficacy of follicle-stimulating hormone (FSH) alone, FSH + luteinizing hormone, human menopausal gonadotropin or FSH + human chorionic gonadotropin on assisted reproductive technology outcomes in the Personalized medicine era: a meta-analysis. Front Endocrinol. 2017;8:114.
34.
Zurück zum Zitat Paterlini M, Andrei F, Neri E, Trombini E, Santi S, Villani MT, Aguzzoli L, Agostini F. Maternal and paternal representations in assisted reproductive technology and spontaneous conceiving parents: a longitudinal study. Front Psychol. 2021;12:635630.PubMedPubMedCentral Paterlini M, Andrei F, Neri E, Trombini E, Santi S, Villani MT, Aguzzoli L, Agostini F. Maternal and paternal representations in assisted reproductive technology and spontaneous conceiving parents: a longitudinal study. Front Psychol. 2021;12:635630.PubMedPubMedCentral
35.
Zurück zum Zitat Scaravelli G, Zacà C, Levi Setti PE, Livi C, Ubaldi FM, Villani MT, Greco E, Coccia ME, Revelli A, Ricci G, Fusi F, Vigiliano V, De Luca R, Bolli S, Borini A. Fertilization rate as a novel indicator for cumulative live birth rate: a multicenter retrospective cohort study of 9,394 complete in vitro fertilization cycles. Fertil Steril. 2021;116(3):766–73. https://doi.org/10.1016/j.fertnstert.2021.04.006.CrossRefPubMed Scaravelli G, Zacà C, Levi Setti PE, Livi C, Ubaldi FM, Villani MT, Greco E, Coccia ME, Revelli A, Ricci G, Fusi F, Vigiliano V, De Luca R, Bolli S, Borini A. Fertilization rate as a novel indicator for cumulative live birth rate: a multicenter retrospective cohort study of 9,394 complete in vitro fertilization cycles. Fertil Steril. 2021;116(3):766–73. https://​doi.​org/​10.​1016/​j.​fertnstert.​2021.​04.​006.CrossRefPubMed
36.
Zurück zum Zitat Shang J, Wang M, Wen Q, Ma Y, Chen F, Xu Y, Liu CH, Bai L, Tang H. A novel prognostic model to predict outcome of artificial liver support system treatment. Sci Rep. 2021;11(1):7510.PubMedPubMedCentral Shang J, Wang M, Wen Q, Ma Y, Chen F, Xu Y, Liu CH, Bai L, Tang H. A novel prognostic model to predict outcome of artificial liver support system treatment. Sci Rep. 2021;11(1):7510.PubMedPubMedCentral
37.
Zurück zum Zitat Imai K, Takai K, Miwa T, Maeda T, Hanai T, Shiraki M, Suetsugu A, Shimizu M. Increased visceral adipose tissue and hyperinsulinemia raise the risk for recurrence of non-B non-C hepatocellular carcinoma after curative treatment. Cancers (Basel). 2021;13(7):1542. Imai K, Takai K, Miwa T, Maeda T, Hanai T, Shiraki M, Suetsugu A, Shimizu M. Increased visceral adipose tissue and hyperinsulinemia raise the risk for recurrence of non-B non-C hepatocellular carcinoma after curative treatment. Cancers (Basel). 2021;13(7):1542.
38.
Zurück zum Zitat Park EY, Yi M, Kim HS, Kim H. A decision tree model for breast reconstruction of women with breast cancer: a mixed method approach. Int J Environ Res Public Health. 2021;18(7):3579.PubMedPubMedCentral Park EY, Yi M, Kim HS, Kim H. A decision tree model for breast reconstruction of women with breast cancer: a mixed method approach. Int J Environ Res Public Health. 2021;18(7):3579.PubMedPubMedCentral
39.
Zurück zum Zitat Radhachandran A, Garikipati A, Zelin NS, Pellegrini E, Ghandian S, Calvert J, Hoffman J, Mao Q, Das R. Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Min. 2021;14(1):23.PubMedPubMedCentral Radhachandran A, Garikipati A, Zelin NS, Pellegrini E, Ghandian S, Calvert J, Hoffman J, Mao Q, Das R. Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Min. 2021;14(1):23.PubMedPubMedCentral
41.
Zurück zum Zitat Alves MA, Castro GZ, Oliveira BAS, Ferreira LA, Ramírez JA, Silva R, Guimarães FG. Explaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs. Comput Biol Med. 2021;132:104335.PubMedPubMedCentral Alves MA, Castro GZ, Oliveira BAS, Ferreira LA, Ramírez JA, Silva R, Guimarães FG. Explaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs. Comput Biol Med. 2021;132:104335.PubMedPubMedCentral
43.
Zurück zum Zitat Lee M, Lofgren KT, Thomas A, Lanes A, Goldman R, Ginsburg ES, Hornstein MD. The costeffectiveness of preimplantation genetic testing for aneuploidy in the United States: an analysis of cost and birth outcomes from 158,665 in vitro fertilization cycles. Am J Obstet Gynecol. 2021;225(1):55.e1–55.e17. https://doi.org/10.1016/j.ajog.2021.01.021.CrossRef Lee M, Lofgren KT, Thomas A, Lanes A, Goldman R, Ginsburg ES, Hornstein MD. The costeffectiveness of preimplantation genetic testing for aneuploidy in the United States: an analysis of cost and birth outcomes from 158,665 in vitro fertilization cycles. Am J Obstet Gynecol. 2021;225(1):55.e1–55.e17. https://​doi.​org/​10.​1016/​j.​ajog.​2021.​01.​021.CrossRef
44.
Zurück zum Zitat Neumann K, Griesinger G. An economic analysis of aneuploidy screening of oocytes in assisted reproduction in Germany. Geburtshilfe Frauenheilkd. 2020;80(2):172–8.PubMedPubMedCentral Neumann K, Griesinger G. An economic analysis of aneuploidy screening of oocytes in assisted reproduction in Germany. Geburtshilfe Frauenheilkd. 2020;80(2):172–8.PubMedPubMedCentral
45.
Zurück zum Zitat Sadruddin S, Barnett B, Ku L, Havemann D, Mucowski S, Herrington R, Burggren W. Maternal serum concentration of anti-Müllerian hormone is a better predictor than basal follicle stimulating hormone of successful blastocysts development during IVF treatment. PloS one. 2020;15(10):e0239779.PubMedPubMedCentral Sadruddin S, Barnett B, Ku L, Havemann D, Mucowski S, Herrington R, Burggren W. Maternal serum concentration of anti-Müllerian hormone is a better predictor than basal follicle stimulating hormone of successful blastocysts development during IVF treatment. PloS one. 2020;15(10):e0239779.PubMedPubMedCentral
46.
Zurück zum Zitat van Eekelen R, Eijkemans MJ, Mochtar M, Mol F, Mol BW, Groen H, van Wely M. Cost-effectiveness of medically assisted reproduction or expectant management for unexplained subfertility: when to start treatment? Hum Reprod. 2020;35(9):2037–46.PubMedCentral van Eekelen R, Eijkemans MJ, Mochtar M, Mol F, Mol BW, Groen H, van Wely M. Cost-effectiveness of medically assisted reproduction or expectant management for unexplained subfertility: when to start treatment? Hum Reprod. 2020;35(9):2037–46.PubMedCentral
47.
Zurück zum Zitat Xu H, Feng G, Wang H, Han Y, Yang R, Song Y, Chen L, Shi L, Zhang MQ, Li R, et al. A novel mathematical model of true ovarian reserve assessment based on predicted probability of poor ovarian response: a retrospective cohort study. J Assist Reprod Genet. 2020;37(4):963–72.PubMedPubMedCentral Xu H, Feng G, Wang H, Han Y, Yang R, Song Y, Chen L, Shi L, Zhang MQ, Li R, et al. A novel mathematical model of true ovarian reserve assessment based on predicted probability of poor ovarian response: a retrospective cohort study. J Assist Reprod Genet. 2020;37(4):963–72.PubMedPubMedCentral
48.
Zurück zum Zitat Jing M, Lin C, Zhu W, Tu X, Chen Q, Wang X, Zheng Y, Zhang R. Cost-effectiveness analysis of GnRH-agonist long-protocol and GnRH-antagonist protocol for in vitro fertilization. Sci Rep. 2020;10(1):8732.PubMedPubMedCentral Jing M, Lin C, Zhu W, Tu X, Chen Q, Wang X, Zheng Y, Zhang R. Cost-effectiveness analysis of GnRH-agonist long-protocol and GnRH-antagonist protocol for in vitro fertilization. Sci Rep. 2020;10(1):8732.PubMedPubMedCentral
Metadaten
Titel
The (decision) tree of fertility: an innovative decision-making algorithm in assisted reproduction technique
verfasst von
Maria Teresa Villani
Daria Morini
Giorgia Spaggiari
Chiara Furini
Beatrice Melli
Alessia Nicoli
Francesca Iannotti
Giovanni Battista La Sala
Manuela Simoni
Lorenzo Aguzzoli
Daniele Santi
Publikationsdatum
27.01.2022
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 2/2022
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-021-02353-4

Neu im Fachgebiet Gynäkologie und Geburtshilfe

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Einer von sieben Frauen macht die Menopause sehr zu schaffen

Von mäßigen bis schweren vasomotorischen Beschwerden sind 14,7% der Frauen in der Postmenopause betroffen. Das haben kanadische Forscherinnen in einer Subgruppenanalyse der WARM-Studie herausgefunden.

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Keine eingeschränkten Kassenleistungen bei Schwangerschaft nach IVF

Nach privat bezahlter In-vitro-Fertilisation muss die gesetzliche Krankenkasse ein Arzneimittel zum Erhalt der Schwangerschaft bezahlen, so ein Urteil des Sozialgerichts in München.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.