Zum Inhalt

The differences in the anatomy of the thoracolumbar and sacral autonomic outflow are quantitative

  • Open Access
  • 25.02.2024
  • Review Article
Erschienen in:
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Purpose

We have re-evaluated the anatomical arguments that underlie the division of the spinal visceral outflow into sympathetic and parasympathetic divisions.

Methodology

Using a systematic literature search, we mapped the location of catecholaminergic neurons throughout the mammalian peripheral nervous system. Subsequently, a narrative method was employed to characterize segment-dependent differences in the location of preganglionic cell bodies and the composition of white and gray rami communicantes.

Results and Conclusion

One hundred seventy studies were included in the systematic review, providing information on 389 anatomical structures. Catecholaminergic nerve fibers are present in most spinal and all cranial nerves and ganglia, including those that are known for their parasympathetic function. Along the entire spinal autonomic outflow pathways, proximal and distal catecholaminergic cell bodies are common in the head, thoracic, and abdominal and pelvic region, which invalidates the “short-versus-long preganglionic neuron” argument.
Contrary to the classically confined outflow levels T1-L2 and S2-S4, preganglionic neurons have been found in the resulting lumbar gap. Preganglionic cell bodies that are located in the intermediolateral zone of the thoracolumbar spinal cord gradually nest more ventrally within the ventral motor nuclei at the lumbar and sacral levels, and their fibers bypass the white ramus communicans and sympathetic trunk to emerge directly from the spinal roots. Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral outflow. We conclude that the autonomic outflow displays a conserved architecture along the entire spinal axis, and that the perceived differences in the anatomy of the autonomic thoracolumbar and sacral outflow are quantitative.

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10286-024-01023-6.
Important note
Nerves and ganglia are not homogeneous collections of neurons. Nerves and ganglia themselves therefore are not exclusively sympathetic, parasympathetic, or somatic. For example, the white and gray rami communicantes are not dedicated “sympathetic nerves,” just as the vagus nerves are not exclusively “parasympathetic,” or the spinal ganglia “somatic.”
Neuron
Nerve cell
Cell body (soma, perikaryon)
Part of neuron containing the cell nucleus
Nucleus
Collection of cell bodies in the central nervous system
Nerve fiber
Extension of the neuron that propagates the electrochemical stimulus from (axon) or to (dendrite) the cell body
Preganglionic neuron (visceral efferent neuron)
Autonomic neuron with its cell body in the central nervous system
Postganglionic neuron
Autonomic neuron with its cell body in the peripheral nervous system
Autonomic outflow (visceral outflow)
The group of preganglionic neurons leaving the central nervous system at a certain level
Ganglion
Collection of cell bodies in the peripheral nervous system
Nerve
The nerve fibers and cell bodies that are embedded in connective tissue called epineurium
Nerve branch
Branched extension of a nerve
Sympathetic trunk, also known as paravertebral ganglionic chain
Collection of nerves and ganglia located on either side of the vertebral column
Preaortic (prevertebral) ganglia
Collection of nerves and ganglia located ventral to the abdominal aorta
Pelvic ganglion (inferior hypogastric plexus)
Collection of nerves and ganglia located in the pelvic wall

Introduction

The universally accepted model of the sympathetic and parasympathetic efferent limbs of the autonomic nervous system was formulated at the turn of the nineteenth to the twentieth century [1]. In addition to physiological and pharmacological criteria, anatomical arguments have been invoked to define the sympathetic-parasympathetic model [24]. These anatomical arguments have three main components. The first argument relates to the bimodal distribution of peripheral cell bodies, with the sympathetic cell bodies located in ganglia close to the central nervous system, and the parasympathetic cell bodies in a distal position, within or close to the wall of target organs. A second argument involves the absence of white rami communicantes at the sacral level. In contrast to the thoracolumbar sympathetic outflow, preganglionic neurons at the sacral level bypass the sympathetic trunk. Pelvic splanchnic nerves arise, therefore, directly from the sacral plexus. The third argument concerns the gap in the autonomic outflow at the lumbar level. As the autonomic outflow is concentrated around the T1-L2 and S2-S4 levels, the cell bodies of the preganglionic neurons do not appear as a continuous cell column. A parallel is therefore often drawn between the parasympathetic cranial and sacral outflows [2].
In this review, we re-evaluate the anatomical arguments that divide the spinal visceral outflow in sympathetic and parasympathetic partitions. A systematic literature search permitted us to map the location of catecholaminergic neurons throughout the entire mammalian peripheral nervous system. Subsequently, a narrative method was employed to characterize segment-dependent differences in the location of preganglionic cell bodies and the composition of white and gray rami communicantes. In total, it becomes apparent that the differences between the thoracolumbar and sacral outflow are not binary. The anatomy of the autonomic outflow displays a conserved architecture along the entire spinal axis, albeit with a quantitative gradient in characteristic features. This finding is compatible with recent data indicating that the molecular signature of preganglionic cells in the thoracolumbar and sacral region is highly similar [5].

Methods

This study meets the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (see Supplemental Word document and Supplemental interactive Tables 1 and 2). Literature was searched for studies dealing with the anatomical arguments that are used to divide the spinal visceral outflow into sympathetic and parasympathetic divisions. Using a systematic literature search, we first mapped the location of catecholaminergic neurons throughout the entire mammalian peripheral nervous system. The outcome of the systematic literature prompted us to look more closely into the location of the preganglionic neurons and the white and gray rami communicantes along the spinal cord. This search followed a narrative strategy and included studies from the nineteenth and twentieth centuries. We ensured that only findings that comply with current scientific understanding are included in this review. Languages were restricted to English, German and French.
Table 1
List of nerves containing catecholaminergic neurons
Nerve
First author, year, and reference
Species
Extra signal
Oculomotor
Oikawa, 2004 [198]
Human
 
 
Maklad, 2001 [15]
Mouse
 
 
Ruskell,1983 [199]
Monkey
 
Trochlear
Hosaka, 2014 [76]
Human
 
 
Oikawa, 2004 [198]
Human
 
 
Maklad, 2001 [15]
Mouse
 
Trigeminal, ciliary, submandibular, pterygopalatine, otic, trigeminal ganglion
Teshima, 2019 [78]
Mouse, human
#, *(Hand2+)
 
Hosaka, 2016 [200]
Human
 
 
Matsubayashi, 2016 [201]
Human
 
 
Yamauchi, 2016 [77]
Human
#
 
Hosaka, 2014 [76]
Human
#
 
Szczurkowski,2013[72]
Chinchilla
#
 
Kiyokawa, 2012 [69]
Human fetus
#
 
Rusu, 2010 [206]
Human
 
 
Thakker, 2008 [68]
Human
#
 
Kaleczyc, 2005 [67]
Pig
#, *(DBH+)
 
Reynolds, 2005 [24]
Rat
#, *(DBH+)
 
Maklad, 2001 [15]
Mouse
 
 
Grimes, 1998 [66]
Rhesus monkey
#, *(DBH+)
 
Kirch, 1995 [64]
Human
#
 
Ng, 1995 [75]
Rat, monkey
#
 
Tan, 1995 [65]
Cat, monkey
#
 
Simons, 1994 [71]
Rat
#, *(DBH+)
 
Marfurt, 1993 [23]
Rat, guinea pig
#
 
Tyrrell, 1992 [63]
Rat
#
 
Shida, 1991 [74]
Rat
#
 
Soinila, 1991 [73]
Rat
#
 
Yau, 1991 [213]
Cat
 
 
ten Tusscher, 1989 [214]
Rat
 
 
Kuwayama, 1988 [70]
Rat
#
 
Landis,1987 [61]
Rat
#, *(DBH+)
 
Uemura,1987 [62]
Japanese monkey, cat, dog
#
 
Jonakait, 1984 [49]
Rat (embryo)
#
 
Lackovic, 1981 [166]
Human
*(NA+)
Abducens
Oikawa, 2004 [198]
Human
 
 
Maklad, 2001 [15]
Mouse
 
 
Lyon,1992 [202]
Cynomolgus monkey
 
 
Johnston, 1974 [203]
Human
 
Facial, geniculate ganglion
Tereshenko, 2023 [204]
Human
 
 
Tang, 2022 [25]
Mouse
#
 
Ohman-Gault, 2017 [205]
Mouse
 
 
Matsubayash, 2016 [201]
Human
 
 
Yamauchi, 2016 [77]
Human
 
 
Hosaka, 2014 [76]
Human
 
 
Reuss, 2009 [207]
Rat
 
 
Maklad, 2001 [15]
Mouse
 
 
Johansson, 1998 [208]
Rat
 
 
Shibamori, 1994 [14]
Rat
 
 
Takeuchi, 1993 [209]
Cynomolgus monkey
 
 
Fukui, 1992 [210]
Cat
 
 
Anniko, 1987 [167]
Mouse
*(NA+)
 
Matthews, 1986 [13]
Cat
 
 
Wilson, 1985 [12]
Cynomolgus, rhesus monkeys
 
 
Thomander, 1984 [211]
Cat
 
 
Schimozawa, 1978 [212]
Mouse
 
Vestibulocochlear, vestibular ganglion
Yamauchi, 2016 [77]
Human
 
 
Shibamori, 1994 [14]
Rat
 
 
Hozawa, 1993 [155]
Guinea pig
*(DBH+)
 
Yamashita, 1992 [215]
Guinea pig
 
 
Hozawa, 1990 [154]
Cynomolgus monkey
*(DBH+)
 
Anniko, 1987 [167]
Mouse
*(NA+)
 
Paradiesgarten, 1976 [216]
Cat
 
 
Densert, 1975 [168]
Rabbit and cat
*(NA+)
Glossopharyngeal, petrosal ganglion
Oda, 2013 [79]
Human
#
 
Ichikawa, 2007 [37]
Rat
#
 
Matsumoto, 2003 [217]
Rat
 
 
Wang, 2002 [36]
Rat
#
 
Satoda, 1996 [220]
Cynomolgus monkey
 
 
Ichikawa, 1995 [34]
Rat
#
 
Ichikawa, 1993 [33]
Rat
#
 
Helke, 1991 [32]
Rat
#
 
Helke, 1990 [29]
Rat
#
 
Katz, 1990 [30]
Rat
#
 
Kummer, 1990 [31]
Guinea pig
#
 
Katz, 1987 [28]
Rat
#
 
Katz, 1986 [27]
Rat
#
 
Jonakait, 1984 [49]
Rat (embryo)
#, *(DBH+)
 
Katz, 1983 [26]
Rat
#
Vagus, superior and inferior (nodose) ganglion
Bookout, 2021 [47]
Mouse
*(DBH+, Hand2+)
 
Verlinden, 2016 [80]
Human
#, *(DBH+)
 
Hosaka, 2014 (75)
Human
 
 
Seki, 2014 [218]
Human
 
 
Onkka, 2013 [219]
Dog
 
 
Ibanez, 2010 [82]
Human
#
 
Kawagishi, 2008 [38]
Human
#
 
Ichikawa, 2007 [37]
Rat
#
 
Matsumoto, 2003 [217]
Rat
 
 
Nozdrachev, 2003 [221]
Cat
 
 
Forgie, 2000 [222]
Mouse
 
 
Yang, 1999 [150]
Rat
#, *(DBH+)
 
Gorbunova, 1998 [45]
Rabbit
 
 
Ichikawa, 1998 [35]
Rat
#
 
Sang, 1998 [46]
Mouse
#
 
Ichikawa, 1996 [43]
Rat
#
 
Uno, 1996 [44]
Dog
#
 
Fateev, 1995 [223]
Cat
 
 
Ichikawa, 1995 [34]
Rat
#
 
Zhuo, 1995 [42]
Rat
#
 
Zhuo, 1994 [41]
Rat
#
 
Yoshida, 1993 [40]
Cat
#
 
Ruggiero, 1993 [228]
Rat
 
 
Dahlqvist, 1992 [81]
Rat
#, *(DBH+)
 
Helke, 1991 [32]
Rat
#
 
Helke, 1990 [29]
Rat
#
 
Kummer, 1990 [31]
Guinea pig
#
 
Ling, 1990 [230]
Hamster
 
 
Baluk, 1989 [232]
Guinea pig
 
 
Katz, 1987 [28]
Rat
#
 
Dahlqvist, 1986 [171]
Rat
*(NA+)
 
Lucier, 1986 [235]
Cat
 
 
Matthews, 1986 [13]
Cat
 
 
Smith, 1986 [237]
Guinea pig
 
 
Blessing, 1985 [238]
Rat
 
 
Smith, 1985 [240]
Guinea pig
 
 
Jonakait, 1984 [49]
Rat (embryo)
#, *(DBH+)
 
Katz, 1983 [26]
Rat
#
 
Hisa, 1982 [241]
Dog
 
 
Lackovic, 1981 [166]
Human
*(NA+)
 
Ungváry, 1976 [243]
Cat
 
 
Nielsen, 1969 [169]
Cat
*(NA+)
 
Kummer, 1993 [39]
Rat
#
 
Lundberg, 1978 [242]
Cat, Guinea pig
 
Accessory
Hosaka, 2014 [76]
Human
 
Hypoglossal
Hosaka, 2014 [76]
Human
 
 
Tubbs, 2009 [83]
Human
#
 
Tseng, 2005 [224]
Hamster
 
 
Tseng, 2001 [225]
Hamster
 
 
Hino, 1993 [226]
Dog
 
 
Fukui, 1992 [210]
Cat
 
 
O’Reilly, 1990 [227]
Rat
 
Greater auricular
Matsubayashi, 2016 [201]
Human
 
Phrenic
Verlinden, 2018 [120]
Human
*(DBH+)
 
Lackovic, 1981 [166]
Human
*(NA+)
Suprascapular
Hosaka, 2014 [76]
Human
 
Mammary
Eriksson, 1996 [229]
Human, rat
 
Lateral antebrachial cutaneous nerve of forearm (musculocutaneous)
Marx, 2011 [231]
Human
 
 
Marx, 2010 [233]
Human
 
Radial
Marx, 2010 [234]
Human
 
Superficial branch of radial
Marx, 2010 [234]
Human
 
 
Marx, 2011 [231]
Human
 
Palmar branch of ulnar
Balogh, 1999 [236]
Human
 
Medial antebrachial cutaneous nerve of forearm
Marx, 2011 [231]
Human
 
 
Marx, 2010 [239]
Human
 
Intercostal
Lackovic, 1981 [166]
Human
*(NA+)
Genitofemoral
Lackovic, 1981 [166]
Human
*(NA+)
Ilioinguinal
Lackovic, 1981 [166]
Human
*(NA+)
Sciatic
Creze, 2017 [149]
Human fetus
 
 
Hosaka, 2014 [76]
Human
 
 
Loesch, 2010 [147]
Rat
 
 
Castro, 2008 [146]
Rat
 
 
Wang, 2002 [244]
Mouse
 
 
Li, 1999 [245]
Rat
 
 
Li, 1996 [247]
Rat
 
 
Li,1995 [248]
Rat
 
 
Li, 1994 [250]
Rat
 
 
Koistinaho, 1991 [249]
Human fetus
 
 
D’Hooge, 1990 [174]
Dog
*(NA+)
 
Studelska, 1989 [254]
Rat
 
 
Dahlström, 1987 [173]
Rat
*(NA+)
 
Dahlström, 1986 [172]
Rat
*(NA+)
 
Larsson, 1986 [165]
Rat
*(DBH+, NA+)
 
Schmidt, 1984 [164]
Rat
*(DBH+)
 
Larsson, 1984 [163]
Rat
*(DBH+, NA+)
 
Evers-Von Bültzingslöwen, 1983 [162]
Rabbit
*(DBH+)
 
Dahlström, 1982 [170]
Rat
*(NA+)
 
Jakobsen, 1981 [161]
Rat
*(DBH+)
 
Häggendal, 1980 [160]
Rat
*(DBH+)
 
Reid, 1975 [159]
Rat
*(DBH+)
 
Keen, 1974 [157]
Rat
*(DBH+, NA+)
 
Nagatsu, 1974 [158]
Rat
*(DBH+)
 
Dairman, 1973 [156]
Rat
*(DBH+)
 
Thoenen, 1970 [266]
Rat
 
Fibular
Tompkins, 1985 [148]
Human
 
 
Jänig, 1984 [246]
Cat
 
 
Ben-Jonathan, 1978 [175]
Cat
*(NA+)
Tibial
Koistinaho, 1991 [249]
Human fetus
 
Sural
Fang, 2017 [251]
Rabbit
 
Pudendal
Nyangoh Timoh, 2017 [252]
Human fetus
 
 
Bertrand, 2016 [253]
Human fetus
 
 
Hinata, 2015 [255]
Human
 
 
Hieda, 2013 [256]
Human
 
 
Alsaid, 2011 [257]
Human fetus
 
 
Alsaid, 2009 [258]
Human fetus
 
 
Roppolo, 1985 [259]
Monkey
 
Perineal
Moszkowicz, 2011 [260]
Human fetus
 
 
Colombel, 1999 [261]
Human
 
Nerve to levator ani
Hinata, 2014 [262]
Human
 
 
Hinata, 2014 [263]
Human
 
Pelvic splanchnic
Jang, 2015 [18]
Human
#
 
Imai, 2006 [17]
Human
#
 
Takenaka, 2005 [16]
  
Spinal root, dorsal root ganglia
Massrey, 2020 [99]
Human
#
 
Morellini, 2019 [269]
Rat
*(DBH+, NAT+)
 
Oroszova, 2017 [59]
Rat
#
 
McCarthy, 2016 [58]
Mouse
#
 
Brumovsky, 2012 [57]
Mouse
#
 
Li, 2011 [56]
Mouse
#
 
Dina, 2008 [55]
Rat
#, *(DBH+, NAT+)
 
Brumovsky, 2006 [54]
Mouse
#
 
Ichikawa, 2005 [53]
Mouse
#
 
Holmberg, 2001 [52]
Mouse
#
 
Deng, 2000 [264]
Rat
 
 
Jones, 1999 [265]
Rat
 
 
Ma, 1999 [267]
Rat
 
 
Shinder, 1999 [268]
Rat
 
 
Thompson, 1998 [270]
Rat
 
 
Karlsson, 1994 [271]
Rat
 
 
Vega, 1991 [51]
Rat
#
 
Kummer, 1990 [31]
Guinea pig
#
 
Katz, 1987 [28]
Rat
#
 
Price, 1985 [50]
Rat
#
 
Jonakait, 1984 [49]
Rat (embryo)
#, *(DBH+)
 
Price, 1983 [48]
Rat
#
 
Lackovic, 1981 [166]
Human
*(NA+)
For each nerve, studies confirming tyrosine hydroxylase-positive nerve fibers are listed with first author, year of publication and species investigated. Studies that demonstrate catecholaminergic (CA) cell bodies are indicated by #. Studies that demonstrate additional “sympathetic” phenotypic properties are indicated by *. DBH: dopamine β-hydroxylase, NA: noradrenaline, NAT: noradrenaline transporter. A more extensive interactive Microsoft Excel-based Table, provided with filter tools for study characteristics and findings, is provided in supplemental interactive Table 1

Data source and study selection for the systematic literature search

Abstracts, titles, and Medical Subject Headings (MeSH) entry terms in PubMed were searched to identify original studies that either established the existence of catecholaminergic neurons histologically by demonstrating the presence of the enzymes tyrosine hydroxylase or dopamine β-hydroxylase, or confirmed communication between nerves and sympathetic structures using validated techniques such as neural tract tracing, experimental neural degeneration, crushing or denervation, and neural recording. Studies relying on macroscopic dissections alone were not included. Search terms included every nervous structure listed in Terminologia Anatomica [Anatomical Terminology] [6] under the headings “cranial nerves,” “spinal nerves” and “parasympathetic part of autonomic part of peripheral nervous system.” The last search was performed on July 11, 2023. The reference lists of retrieved articles were also reviewed for additional studies that fulfilled the search criteria.

Search strategy for the systematic literature search

The search for each structure consisted of two separate approaches. The first approach looked for the histologically confirmed presence of catecholaminergic neurons, and was executed by combining the entry terms of tyrosine hydroxylase or dopamine β-hydroxylase with (query term: AND) the nervous structure of interest. The second approach searched for communication between nerves and sympathetic structures, using the entry terms of sympathetic structures listed in Terminologia Anatomica [6] AND the nervous structures from search 1, AND neuroanatomical tract-tracing techniques (MeSH) OR horseradish peroxidase (MeSH) OR communication OR communicating OR communications OR anastomosis OR anastomosing OR connecting OR connection.

Findings and Discussion

For the systematic approach, a total of 43 queries for the cranial and 101 for the spinal nerves were performed, which provided information on 389 anatomical structures in 996 and 243 identified studies, respectively. All abstracts were screened for the inclusion criteria with respect to applied techniques, language, and species, resulting in 170 eligible studies (Table 1 and supplemental interactive Table 1 [extended Microsoft Excel-based Table]).
The narrative approach produced 60 relevant references from the nineteenth and twentieth centuries. Supplemental interactive Table 2 provides an overview of the findings extracted from these studies. Although the scientific views put forward in these studies often no longer meet current models, they do frequently present research findings that were made with still accepted techniques. The recent molecular studies of the development of cranial ganglia from Schwann cell precursors and their source [79], for instance, were preceded by specific histological observations in the early twentieth century [10, 11]. These classical observations have the advantage of including human embryos.

The distribution of catecholaminergic neurons

Nerve fibers

Throughout the mammalian body, catecholaminergic nerve fibers have been demonstrated in many spinal and all cranial nerves and ganglia (Table 1). Catecholaminergic nerve fibers are also present in established parasympathetic nerves [4, 6], such as the greater petrosal nerve in mice, rats, cats, and monkeys [1215] and the pelvic splanchnic nerves in humans [1618]. We found no species-specific differences. Although we focused on mammals, we also encountered similar observations in birds [19, 20] and amphibia [21, 22], suggesting evolutionary conservation of the observed features.

Cell bodies

Catecholaminergic cell bodies have a more widespread distribution than generally acknowledged [2, 4, 6]. They are found in the trigeminal [23, 24], geniculate [25], inferior glossopharyngeal [2637], superior [31, 38], and inferior [26, 28, 29, 31, 32, 34, 35, 3747] vagal ganglia, and in dorsal root ganglia at all spinal levels [28, 31, 4859]. Moreover, the generally accepted parasympathetic ganglia of the head [2], which include the ciliary [6069], the otic [69], the pterygopalatine [6972] and the submandibular ganglia [69, 7378], all contain catecholaminergic cell bodies. Catecholaminergic cell bodies are found not only in ganglia, but also in the cranial nerves themselves, such as the (lingual branch of the) glossopharyngeal nerve [27, 79], the cervical [80] and laryngeal branches of the vagus nerve [81, 82], and the cranial root of the hypoglossal nerve [83]. In addition, catecholaminergic cell bodies are found in both the ventral and dorsal spinal nerve roots [8499], and in the hypogastric and the (“parasympathetic”) pelvic splanchnic nerves [16, 17].

Argument 1: The short versus long preganglionic neuron

A commonly held concept in the classic subdivision of the autonomic outflow is the bimodal distribution of cell bodies, with the sympathetic cell bodies located in ganglia close to the central nervous system, and the parasympathetic cell bodies in a distal position, within or close to the wall of target organs. Our systematic review, in contrast, demonstrates that both proximal and distal catecholaminergic cell bodies are common throughout the entire spinal outflow (Fig. 1). The distribution of the cell bodies, therefore, cannot be used to subdivide the autonomic outflow.
Fig. 1
Definitive catecholaminergic cell positions. References are plotted showing the position of cell bodies along the cranio-caudal (Y) and proximo-distal (X) body axes. Altogether, the data show that both proximal and distal ganglia are common in the entire thoracolumbar and sacral autonomic outflow pathways. Other references indicate the levels at which preganglionic neurons bypass the sympathetic trunk (curved arrows), or more frequently use the gray rami communicantes (brown stars)
Bild vergrößern

Proximal locations

Catecholaminergic neurons are descendants of neural crest cells [100102]. Trunk neural crest cells consist of several migrating groups. The core of the developing ganglia is established by an early cohort of neural crest cells that migrate ventrally to the mesenchyme dorsolateral to the dorsal aorta [102105]. Many of these proximal cell bodies subsequently nest in the sympathetic trunk. Other proximal locations, however, include the spinal nerve roots [8499], dorsal root ganglia [28, 31, 4859, 95], and white and gray rami communicantes [8591, 9598, 106111]. In the pelvic area, usually characterized as parasympathetic, these proximal locations of ganglionic cells also exist, both in sacral nerve roots [84, 93, 99] and in the proximal part of the pelvic splanchnic nerves [16, 17, 93, 112114].

Distal locations

Neural crest cells can run aground anywhere along their proximo-distal migration pathways. Cell bodies of trunk neural crest cell origin are found up to the walls of the target organs, as the vascular system keeps instructing these cells to migrate [115, 116]. In the abdomen, cell bodies are found in large numbers in all splanchnic nerves [90, 98, 111, 117, 118], the preaortic ganglia [113, 114], all their periarterial extensions [119, 120], and within the walls of organs of both the urogenital and gastrointestinal tracts [114, 121130]. In the thorax, the situation is similar. Catecholaminergic cell bodies are found on the cardiopulmonary nerves [131134], in small mediastinal ganglia [131134] and the ganglion cardiacum [135, 136], and within the wall of the heart [131, 134]. Finally, the distal position of cell bodies that are of trunk neural crest cell origin extends to the head. Several thousands of cell bodies exist, for example, along the intracranial course of human internal carotid arteries [110, 137139].

(Catecholaminergic) cell bodies within the autonomic ganglia of the head are of mixed origin

The cell bodies within the cranial autonomic ganglia develop from neural crest cells and the related Schwann cell precursors [102, 140, 141], with the majority coming from Schwann cell precursors. Schwann cell precursors that are associated with the oculomotor nerve [8, 11, 141], chorda tympani [7, 10, 11], greater superficial petrosal nerve and geniculate ganglion [7, 10, 11], and tympanic nerve and petrosal ganglion [911] populate the ciliary, submandibular, pterygopalatine, and otic ganglia, respectively. Small ganglia are also present along these nerve paths [911]. In some species, including humans, at least part of these autonomic ganglia originate directly from cranial neural crest cells. These migrate along the ophthalmic [10, 11, 141143], maxillary [11, 142], and mandibular nerves [11, 142], and also populate the ciliary, submandibular and pterygopalatine, and otic ganglia, respectively. Similarly, these trigeminal nerve branches also harbor small ganglia that represent grounded cell bodies [144, 145]. In addition, cells from the superior cervical ganglion were shown to populate the otic ganglion [10].
The partly catecholaminergic phenotype of the autonomic ganglia of the head may arise from cranial neural crest cells and Schwann cell precursors, as catecholaminergic cell bodies are present in both trigeminal [23, 24], and petrosal [2637] and geniculate ganglia [25], respectively. Thus far, catecholaminergic cell bodies have not been reported to exist in the human geniculate ganglion, but here we demonstrate a few (Fig. 2). Of relevance, TH-positive neurons were also present in the proximal course of the greater superficial petrosal nerve. The notion that the partly catecholaminergic phenotype of the submandibular ganglion may arise from cranial neural crest cells is supported by the finding that catecholaminergic cell bodies in this ganglion are already present prior to the arrival of postganglionic neurons from the superior cervical ganglion [78].
Fig. 2
Catecholaminergic neurons in the human geniculate ganglion and the greater superficial petrosal nerve. Example of a TH-positive cell body (A) and nerve fiber (B) in the geniculate ganglion and proximal course of the superficial petrosal nerve, respectively. Nerve tissue was harvested from a formalin-fixed cadaver (97 years of age) from the body donation program of the Department of Anatomy and Embryology, Maastricht University. The body was preserved by intra-arterial infusion with 10 L fixative (composition (v/v): 21% ethanol, 21% glycerin, 2% formaldehyde, 56% water, and 16 mmol/L thymol), followed by 4 weeks of fixation in 20% ethanol, 2% formaldehyde, and 78% water. Antibody: Abcam ab209487, 1:10,000. Antigen retrieval Tris–EDTA pH 9.0, 30 min. Secondary antibody GAR-bio, 1:10,000. Chromogen: Vector NovaRED peroxidase substrate kit, SK-4805
Bild vergrößern

Caveats of using the catecholaminergic phenotype

In aggregate, our inventory convincingly shows that catecholaminergic fibers and cell bodies are present in the entire tracts of peripheral nerves and ganglia throughout the body. The reported prevalence of cell bodies per location varies greatly (supplemental interactive Table 1) [16, 18, 25, 27, 3035, 37, 39, 41, 42, 44, 46, 51, 53, 54, 6267, 71, 72, 74, 80, 122, 124, 126, 146150]. We hypothesize that the reasons for this variation are both biological and technical. Most studies were not quantitative in design, because such studies would require random sampling of a sufficient number of histological sections across the entire structure of interest and, to deal with biological variation, a sufficient number of independent samples. In addition, the fraction of catecholaminergic cells that stain is influenced by such factors as the quality of the antibodies, the concentration of the neurotransmitter or enzyme, and the time between death and fixation. Even though it remains to be established what functions these cells have, their distribution pattern is too uncommon to dismiss as coincidental.

The catecholaminergic phenotype is not always associated with efferent (sympathetic) neurons, nor is it always permanent

Nerve cells with catecholaminergic phenotypic properties arise from the neural crest or the related Schwann cell precursor population. From these progenitors, different functional subtypes develop [151]. The catecholamines dopamine, noradrenaline, and adrenaline are derivates of phenylethylamine [152]. Tyrosine hydroxylase (TH) is the first enzyme in the biosynthetic pathway of (nor)adrenaline. This enzyme has received the most attention in biomedical research [153], and is often, incorrectly, associated with (nor-)adrenergic neurotransmission. Co-localization of TH with dopamine β-hydroxylase (DBH), which catalyzes the β-hydroxylation of dopamine to noradrenaline, provides stronger evidence for such neurotransmission. DBH-positive neurons have been reported in the ciliary [61, 66, 67], pterygopalatine [71], trigeminal [24, 49], petrosal [49], nodose [47, 49, 150], and dorsal root ganglia [49], and the vestibulocochlear [154, 155], vagus [80, 150], recurrent laryngeal [81], phrenic [120], and sciatic [55, 156165] nerves. Other studies measured concentrations of noradrenaline directly in the trigeminal [166] and nodose [45] ganglia, and in the facial [167], vestibulocochlear [167, 168], vagus [166], phrenic [166], ilioinguinal [166], genitofemoral [166], sciatic [157, 163, 165, 169174], and fibular [175] nerves and spinal nerve roots [166]. TH-positive, but DBH-negative cell bodies have been observed in ciliary [62, 64, 67], petrosal [31], jugular [31], nodose [31, 39] and dorsal root ganglia [31, 48, 51]. Furthermore, TH-positive, but noradrenaline transporter type-1- [57] and phenylethanolamine-N-methyl-transferase-negative cell bodies [31] were reported in dorsal root ganglia. Nerves in which solely TH but none of the downstream enzymes are present probably utilize dopamine as a neurotransmitter.
Tyrosine hydroxylase-positive staining has been observed in cell bodies that exhibit morphological features typical of primary sensory neurons in petrosal [26, 34], nodose [26, 34], geniculate [25], and dorsal root ganglia [56, 57, 59]. Some TH-positive cell bodies in the nodose ganglion are also labeled following the injection of tracer material into the nucleus of the solitary tract [39, 44].
Within the developing ciliary and pterygopalatine ganglia, neurons are observed that express catecholamines transiently [176178]. In the mouse, the nerve fibers of the vagus nerve arrive in the wall of the gastrointestinal tract only after the TH-positive cells of the vagal neural crest cells have settled there [179, 180]. The TH-positive cells have largely disappeared from the vagus nerve by embryonic day 16 in the mouse, which corresponds to ~9.5 weeks of development in human embryos. Our observations suggest that a subset of these transiently TH-positive cells might remain present.

Arguments 2 and 3: The absence of white rami communicantes at the sacral level and the “lumbar gap”

Two other anatomical arguments that have been used to define the sympathetic-parasympathetic model are the absence of white rami communicantes at the sacral level, and the gap in the autonomic outflow at the lumbar level.

The rami communicantes are part of a peripheral connection matrix

Macroscopic studies of the distribution pattern of the rami communicantes and sympathetic trunk have shown that the rami communicantes form a true mesh, with up to seven rami communicantes connecting the sympathetic trunk with the spinal nerves from corresponding and adjacent levels [2, 94, 98, 181184]. Interconnecting bundles of nerve fibers between the left and right sympathetic trunk are present at all levels [98, 185]. In addition, the white and gray rami communicantes can share an epineurium, and then present as a single ramus communicans [91].

Mixed content of white rami communicantes

The rami communicantes are defined by their macroscopic appearance [186, 187] which, in turn, depends on the proportion of myelinated nerve fibers present. Macroscopically identifiable white rami communicantes are present between vertebral levels T1 and L2 in humans. Accordingly, the absence of white rami communicantes at the sacral level has been one of the anatomical arguments for separating the sacral from the thoracolumbar autonomic outflow [1]. However, the nerve fibers in the rami communicantes represent not only preganglionic neurons, but also somatic neurons [87, 108, 188]. In addition, the white rami communicantes contain a great number of medium-sized and large myelinated afferent fibers, particularly in the lower thoracic region [189]. The number and size of these afferent fibers together far exceed the small myelinated efferent components, so that the white rami communicantes represent the thoracolumbar inflow as much as the outflow [189].

Mixed content of gray rami communicantes

Myelinated preganglionic neurons are also common in the gray ramus communicans [91, 95, 110, 190]. At the upper and lower margins of the thoracolumbar outflow, where the white rami communicantes gradually disappear, the number of myelinated nerve fibers in the gray rami communicantes actually increases tenfold [91, 108]. Sporadically, sacral gray rami communicantes are so heavily myelinated that they have been described as a “sacral white ramus communicans” [93].

Preganglionic neurons can bypass the rami communicantes at the thoracolumbar outflow margins

At the margins of the thoracolumbar outflow, a fraction of the preganglionic neurons bypass the rami communicantes and the sympathetic trunk [8690, 92, 96, 97, 110] (Fig. 3). Lumbar splanchnic nerves can arise directly from the lumbar plexus [90, 191], such as pelvic splanchnic nerves arise from the sacral plexus. Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral outflow.
Fig. 3
Cranio-caudal change in the position of the cell bodies and the course of the preganglionic neurons. Simplified representation. Left: Preganglionic outflow at the levels T1-L2 and S2-S4. The “lumbar gap” is indicated by an asterisk. Dashed outflow: preganglionic neurons within the “lumbar gap.” Right: From the lower margin of the thoracolumbar outflow downward (panel 1), a gradually increasing number (represented by arrow thickness) of preganglionic neurons originate from cell bodies within or near the ventral motor nuclei and bypass the sympathetic trunk (panels 2 and 3, neuron Y). Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral outflow. Lumbar splanchnic nerves can arise directly from the lumbar plexus (Panel 2, f), such as pelvic splanchnic nerves arise from the sacral plexus (Panel 3, f′). Panels 1 and 2, neuron X: Classic representation of a preganglionic neuron with its cell body in the intermediolateral nucleus. Labels are identical in all panels; a: sympathetic trunk ganglion, b: spinal nerve, c: spinal ganglion, d: rami communicantes, e: splanchnic nerves
Bild vergrößern

The lumbar gap

The spinal preganglionic outflow levels vary among species [1, 84, 92, 112, 186, 192]. In humans, the spinal preganglionic outflow has classically been confined to the segments T1-L2 and S2-S4 based on the absence of white rami communicantes caudal to segment L2, and on the perceived discontinuity of the spinal autonomic outflow cell column. The presence of this “lumbar gap” is often quoted when describing the parallel between the parasympathetic cranial and sacral outflows. Preganglionic neurons have been described, however, at the lower lumbar level [95, 137, 190], which is in the middle of the “lumbar gap.” These preganglionic neurons follow, as described in the previous paragraph, the spinal nerves and gray rami communicantes.
From the thoracolumbar outflow margin downwards, preganglionic cell bodies increasingly nest between the ventral motor nuclei [193, 194] (Fig. 3). At the sacral level, the intermediolateral nucleus no longer forms a distinct lateral horn of gray matter [194], whereas the ventral motor nucleus becomes highly mixed with preganglionic neurons [195]. Apparently, preganglionic neurons with their cell bodies in, or near, the ventral motor horn prefer to follow the path of the motor neurons and branch away towards their targets only distal to the white rami communicantes. At the sacral level, this phenomenon is structural, and the white ramus communicans is absent.

Conclusion

We conclude that the anatomy of the autonomic outflow displays a conserved architecture along the entire spinal axis, albeit with a gradient in characteristic features. Langley appears to have understood the limitations of the anatomical arguments that support his model, because he acknowledged the nonbinary distribution of postganglionic cell bodies [112, 196], the failure of the white-gray appearance of the rami communicantes to convey their anatomical identity, and the presence of preganglionic fibers in the gray rami communicantes and within the lumbar gap [190]. Although Langley created an appealing concept, his binary model was hallowed by constant repetition in the literature. As a result, the textbook presentation of the division of the spinal visceral outflow in sympathetic and parasympathetic divisions became primarily based on the generalization of this concept.
The conserved architecture of the spinal visceral outflow that is presented in this review seems to be compatible with the finding that the molecular signature of cells in the thoracolumbar and sacral region of the autonomic nervous system is qualitatively highly similar [5, 197].

Perspective

The development of the peripheral nervous system is intricate and diverse. Examples include the reciprocal interaction between neural crest cell migration and nerve formation. It is likely that neural crest cells with catecholaminergic fates emigrate from the CSN along pre-existing nerves to differentiate on their way and/or at their final target site. This might result in the entwined anatomy that we observed. Nerves and ganglia are therefore not homogeneous collections of neurons (Fig. 4). Upon migrating to a distal location, an appreciable number of these catecholaminergic cells apparently strand along the route. Such stranded cells could be very useful as left-behind markers of the migratory routes that were used. It is obvious that the mechanism underlying these cell decisions is of key importance and should be explored experimentally. The involvement of chemotaxis is probably a safe guess. Another intriguing question is whether the features now described for catecholaminergic cells also apply to other populations of nerve cells. If so, the CNS would prove an important source of the migratory nerve cells and the target site or cells an important attractant. It would make the wiring diagram complex and subject worthy of separate study, after identifying the source and target of the neural signals.
Fig. 4
Scheme of neurons using two or more nerves to reach their target organ. Neuronal function is not strictly coupled to specific nerves: neurons change course (purple) from nerve A to nerve B and C via communicating nerve branches (asterisks). This behavior could fit a still hypothetical peripheral connectome
Bild vergrößern

Declarations

Conflict of interest

The authors have no financial or non-financial conflicts of interest to declare.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

download
DOWNLOAD
print
DRUCKEN
Titel
The differences in the anatomy of the thoracolumbar and sacral autonomic outflow are quantitative
Verfasst von
Thomas J. M. Verlinden
Wouter H. Lamers
Andreas Herrler
S. Eleonore Köhler
Publikationsdatum
25.02.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Autonomic Research / Ausgabe 1/2024
Print ISSN: 0959-9851
Elektronische ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-024-01023-6

Supplementary Information

1.
Zurück zum Zitat Langley JN (1921) The autonomic nervous system, Part I. W. HEFFER & SONS LTD., Cambridge
2.
Zurück zum Zitat Standring S Gray’s Anatomy, The Anatomical Basis of Clinical Practice. 41st Revised ed. 2016: Elsevier Health Sciences.
3.
Zurück zum Zitat W.F., B. and B. E.L., Medical Physiology. 3 ed. 2016: Elsevier Health Science Division.
4.
Zurück zum Zitat F.I.P.A.T., Terminologia Neuroanatomica 2017.
5.
Zurück zum Zitat Espinosa-Medina I et al (2016) The sacral autonomic outflow is sympathetic. Science 354(6314):893–897PubMedPubMedCentralCrossRefADS
6.
Zurück zum Zitat F.C.o.A.T., Terminologia anatomica: International anatomical terminology. 2011, Stuttgart: Thieme Publishing Group.
7.
Zurück zum Zitat Coppola E et al (2010) Epibranchial ganglia orchestrate the development of the cranial neurogenic crest. Proc Natl Acad Sci USA 107(5):2066–2071PubMedPubMedCentralCrossRefADS
8.
Zurück zum Zitat Dyachuk, V., et al., Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014. 345(6192): p. 82–7.
9.
Zurück zum Zitat Espinosa-Medina, I., et al., Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science, 2014. 345(6192): p. 87–90.
10.
Zurück zum Zitat Stewart FW (1919) The development of the cranial sympathetic ganglia in the rat. J Comp Neurol 31(3):163–217CrossRef
11.
Zurück zum Zitat Kuntz A (1920) The development of the sympathetic nervous system in man. J Comp Neurol 32(2):173–229CrossRef
12.
Zurück zum Zitat Wilson JE (1985) Sympathetic pathways through the petrosal nerves in monkeys. Acta Anat (Basel) 121(2):75–80MathSciNetPubMedCrossRef
13.
Zurück zum Zitat Matthews B, Robinson PP (1986) The course of postganglionic sympathetic fibres distributed with the facial nerve in the cat. Brain Res 382(1):55–60PubMedCrossRef
14.
Zurück zum Zitat Shibamori Y et al (1994) The trajectory of the sympathetic nerve fibers to the rat cochlea as revealed by anterograde and retrograde WGA-HRP tracing. Brain Res 646(2):223–229PubMedCrossRef
15.
Zurück zum Zitat Maklad A, Quinn T, Fritzsch B (2001) Intracranial distribution of the sympathetic system in mice: DiI tracing and immunocytochemical labeling. Anat Rec 263(1):99–111PubMedCrossRef
16.
Zurück zum Zitat Takenaka A et al. (2005) Interindividual variation in distribution of extramural ganglion cells in the male pelvis: a semi-quantitative and immunohistochemical study concerning nerve-sparing pelvic surgery. Eur Urol 48(1): p. 46–52; discussion 52.
17.
Zurück zum Zitat Imai K et al (2006) Human pelvic extramural ganglion cells: a semiquantitative and immunohistochemical study. Surg Radiol Anat 28(6):596–605PubMedCrossRef
18.
Zurück zum Zitat Jang HS et al (2015) Composite nerve fibers in the hypogastric and pelvic splanchnic nerves: an immunohistochemical study using elderly cadavers. Anat Cell Biol 48(2):114–123PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Verberne ME et al (1999) Contribution of the cervical sympathetic ganglia to the innervation of the pharyngeal arch arteries and the heart in the chick embryo. Anat Rec 255(4):407–419PubMedCrossRef
20.
Zurück zum Zitat Schrodl F et al (2001) Intrinsic neurons in the duck choroid are contacted by CGRP-immunoreactive nerve fibres: evidence for a local pre-central reflex arc in the eye. Exp Eye Res 72(2):137–146PubMedCrossRefADS
21.
Zurück zum Zitat Nagatsu I et al (1979) Immunofluorescent and biochemical studies on tyrosine hydroxylase and dopamine-beta-hydroxylase of the bullfrog sciatic nerves. Histochemistry 61(2):103–109PubMedCrossRef
22.
Zurück zum Zitat Rigon F et al (2013) Effects of sciatic nerve transection on ultrastructure, NADPH-diaphorase reaction and serotonin-, tyrosine hydroxylase-, c-Fos-, glucose transporter 1- and 3-like immunoreactivities in frog dorsal root ganglion. Braz J Med Biol Res 46(6):513–520PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Marfurt CF, Ellis LC (1993) Immunohistochemical localization of tyrosine hydroxylase in corneal nerves. J Comp Neurol 336(4):517–531PubMedCrossRef
24.
Zurück zum Zitat Reynolds AJ, Kaasinen SK, Hendry IA (2005) Retrograde axonal transport of dopamine beta hydroxylase antibodies by neurons in the trigeminal ganglion. Neurochem Res 30(6–7):703–712PubMedCrossRef
25.
Zurück zum Zitat Tang, T. and B.A. Pierchala, Oral Sensory Neurons of the Geniculate Ganglion That Express Tyrosine Hydroxylase Comprise a Subpopulation That Contacts Type II and Type III Taste Bud Cells. eNeuro, 2022. 9(5).
26.
Zurück zum Zitat Katz DM et al (1983) Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proc Natl Acad Sci USA 80(11):3526–3530PubMedPubMedCentralCrossRefADS
27.
Zurück zum Zitat Katz DM, Black IB (1986) Expression and regulation of catecholaminergic traits in primary sensory neurons: relationship to target innervation in vivo. J Neurosci 6(4):983–989PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Katz DM, Adler JE, Black IB (1987) Catecholaminergic primary sensory neurons: autonomic targets and mechanisms of transmitter regulation. Fed Proc 46(1):24–29PubMed
29.
Zurück zum Zitat Helke CJ, Niederer AJ (1990) Studies on the coexistence of substance P with other putative transmitters in the nodose and petrosal ganglia. Synapse 5(2):144–151PubMedCrossRef
30.
Zurück zum Zitat Katz DM, Erb MJ (1990) Developmental regulation of tyrosine hydroxylase expression in primary sensory neurons of the rat. Dev Biol 137(2):233–242PubMedCrossRef
31.
Zurück zum Zitat Kummer W et al (1990) Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 261(3):595–606PubMedCrossRef
32.
Zurück zum Zitat Helke CJ, Rabchevsky A (1991) Axotomy alters putative neurotransmitters in visceral sensory neurons of the nodose and petrosal ganglia. Brain Res 551(1–2):44–51PubMedCrossRef
33.
Zurück zum Zitat Ichikawa H, Rabchevsky A, Helke CJ (1993) Presence and coexistence of putative neurotransmitters in carotid sinus baro- and chemoreceptor afferent neurons. Brain Res 611(1):67–74PubMedCrossRef
34.
Zurück zum Zitat Ichikawa H, Helke CJ (1995) Parvalbumin and calbindin D-28k in vagal and glossopharyngeal sensory neurons of the rat. Brain Res 675(1–2):337–341PubMedCrossRef
35.
Zurück zum Zitat Ichikawa H, Helke CJ (1998) Coexistence of s100beta and putative transmitter agents in vagal and glossopharyngeal sensory neurons of the rat. Brain Res 800(2):312–318PubMedCrossRef
36.
Zurück zum Zitat Wang ZY et al (2002) Expression of 5-HT3 receptors in primary sensory neurons of the petrosal ganglion of adult rats. Auton Neurosci 95(1–2):121–124PubMedCrossRef
37.
Zurück zum Zitat Ichikawa H et al (2007) Brain-derived neurotrophic factor-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia; co-expression with other neurochemical substances. Brain Res 1155:93–99PubMedCrossRef
38.
Zurück zum Zitat Kawagishi K et al (2008) Tyrosine hydroxylase-immunoreactive fibers in the human vagus nerve. J Clin Neurosci 15(9):1023–1026PubMedCrossRef
39.
Zurück zum Zitat Kummer W et al (1993) Tyrosine-hydroxylase-containing vagal afferent neurons in the rat nodose ganglion are independent from neuropeptide-Y-containing populations and project to esophagus and stomach. Cell Tissue Res 271(1):135–144PubMedCrossRef
40.
Zurück zum Zitat Yoshida Y et al (1993) Ganglions and ganglionic neurons in the cat’s larynx. Acta Otolaryngol 113(3):415–420PubMedCrossRef
41.
Zurück zum Zitat Zhuo H, Sinclair C, Helke CJ (1994) Plasticity of tyrosine hydroxylase and vasoactive intestinal peptide messenger RNAs in visceral afferent neurons of the nodose ganglion upon axotomy-induced deafferentation. Neuroscience 63(2):617–626PubMedCrossRef
42.
Zurück zum Zitat Zhuo H et al (1995) Inhibition of axoplasmic transport in the rat vagus nerve alters the numbers of neuropeptide and tyrosine hydroxylase messenger RNA-containing and immunoreactive visceral afferent neurons of the nodose ganglion. Neuroscience 66(1):175–187PubMedCrossRef
43.
Zurück zum Zitat Ichikawa H, Helke CJ (1996) Coexistence of calbindin D-28k and NADPH-diaphorase in vagal and glossopharyngeal sensory neurons of the rat. Brain Res 735(2):325–329PubMedCrossRef
44.
Zurück zum Zitat Uno T et al (1996) Tyrosine hydroxylase-immunoreactive cells in the nodose ganglion for the canine larynx. NeuroReport 7(8):1373–1376PubMedCrossRef
45.
Zurück zum Zitat Gorbunova AV (1998) Catecholamines in rabbit nodose ganglion following exposure to an acute emotional stressor. Stress 2(3):231–236PubMedCrossRef
46.
Zurück zum Zitat Sang Q, Young HM (1998) The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Res 809(2):253–268PubMedCrossRef
47.
Zurück zum Zitat Bookout AL, Gautron L (2021) Characterization of a cell bridge variant connecting the nodose and superior cervical ganglia in the mouse: Prevalence, anatomical features, and practical implications. J Comp Neurol 529(1):111–128PubMedCrossRef
48.
Zurück zum Zitat Price J, Mudge AW (1983) A subpopulation of rat dorsal root ganglion neurones is catecholaminergic. Nature 301(5897):241–243PubMedCrossRefADS
49.
Zurück zum Zitat Jonakait GM et al (1984) Transient expression of selected catecholaminergic traits in cranial sensory and dorsal root ganglia of the embryonic rat. Dev Biol 101(1):51–60PubMedCrossRef
50.
Zurück zum Zitat Price J (1985) An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. J Neurosci 5(8):2051–2059PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Vega JA et al (1991) Presence of catecholamine-related enzymes in a subpopulation of primary sensory neurons in dorsal root ganglia of the rat. Cell Mol Biol 37(5):519–530PubMed
52.
Zurück zum Zitat Holmberg K et al (2001) Effect of peripheral nerve lesion and lumbar sympathectomy on peptide regulation in dorsal root ganglia in the NGF-overexpressing mouse. Exp Neurol 167(2):290–303PubMedCrossRef
53.
Zurück zum Zitat Ichikawa H et al (2005) Brn-3a deficiency increases tyrosine hydroxylase-immunoreactive neurons in the dorsal root ganglion. Brain Res 1036(1–2):192–195PubMedCrossRef
54.
Zurück zum Zitat Brumovsky P, Villar MJ, Hokfelt T (2006) Tyrosine hydroxylase is expressed in a subpopulation of small dorsal root ganglion neurons in the adult mouse. Exp Neurol 200(1):153–165PubMedCrossRef
55.
Zurück zum Zitat Dina OA et al (2008) Neurotoxic catecholamine metabolite in nociceptors contributes to painful peripheral neuropathy. Eur J Neurosci 28(6):1180–1190PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Li L et al (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Brumovsky PR et al (2012) Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase. Neuroscience 223:77–91PubMedCrossRef
58.
Zurück zum Zitat McCarthy CJ et al (2016) Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 221(4):1985–2004PubMedCrossRef
59.
Zurück zum Zitat Oroszova Z et al (2017) The Characterization of AT1 Expression in the Dorsal Root Ganglia After Chronic Constriction Injury. Cell Mol Neurobiol 37(3):545–554PubMedCrossRef
60.
Zurück zum Zitat Iacovitti L et al (1985) Partial expression of catecholaminergic traits in cholinergic chick ciliary ganglia: studies in vivo and in vitro. Dev Biol 110(2):402–412PubMedCrossRef
61.
Zurück zum Zitat Landis SC et al (1987) Catecholaminergic properties of cholinergic neurons and synapses in adult rat ciliary ganglion. J Neurosci 7(11):3574–3587PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Uemura Y et al (1987) Tyrosine hydroxylase-like immunoreactivity and catecholamine fluorescence in ciliary ganglion neurons. Brain Res 416(1):200–203PubMedCrossRef
63.
Zurück zum Zitat Tyrrell S, Siegel RE, Landis SC (1992) Tyrosine hydroxylase and neuropeptide Y are increased in ciliary ganglia of sympathectomized rats. Neuroscience 47(4):985–998PubMedCrossRef
64.
Zurück zum Zitat Kirch W, Neuhuber W, Tamm ER (1995) Immunohistochemical localization of neuropeptides in the human ciliary ganglion. Brain Res 681(1–2):229–234PubMedCrossRef
65.
Zurück zum Zitat Tan CK, Zhang YL, Wong WC (1995) A light- and electron microscopic study of tyrosine hydroxylase-like immunoreactivity in the ciliary ganglia of monkey (Macaca fascicularis) and cat. Histol Histopathol 10(1):27–34PubMed
66.
Zurück zum Zitat Grimes PA et al (1998) Neuropeptide Y-like immunoreactivity localizes to preganglionic axon terminals in the rhesus monkey ciliary ganglion. Invest Ophthalmol Vis Sci 39(2):227–232PubMed
67.
Zurück zum Zitat Kaleczyc J et al (2005) Immunohistochemical characterization of neurons in the porcine ciliary ganglion. Pol J Vet Sci 8(1):65–72PubMed
68.
Zurück zum Zitat Thakker MM et al (2008) Human orbital sympathetic nerve pathways. Ophthalmic Plast Reconstr Surg 24(5):360–366PubMedCrossRef
69.
Zurück zum Zitat Kiyokawa H et al (2012) Reconsideration of the autonomic cranial ganglia: an immunohistochemical study of mid-term human fetuses. Anat Rec (Hoboken) 295(1):141–149PubMedCrossRef
70.
Zurück zum Zitat Kuwayama Y, Emson PC, Stone RA (1988) Pterygopalatine ganglion cells contain neuropeptide Y. Brain Res 446(2):219–224PubMedCrossRef
71.
Zurück zum Zitat Simons E, Smith PG (1994) Sensory and autonomic innervation of the rat eyelid: neuronal origins and peptide phenotypes. J Chem Neuroanat 7(1–2):35–47PubMedCrossRef
72.
Zurück zum Zitat Szczurkowski A et al (2013) Morphology and immunohistochemical characteristics of the pterygopalatine ganglion in the chinchilla (Chinchilla laniger, Molina). Pol J Vet Sci 16(2):359–368PubMedCrossRef
73.
Zurück zum Zitat Soinila J et al (1991) Met5-enkephalin-Arg6-Gly7-Leu8-immunoreactive nerve fibers in the major salivary glands of the rat: evidence for both sympathetic and parasympathetic origin. Cell Tissue Res 264(1):15–22PubMedCrossRef
74.
Zurück zum Zitat Shida T et al (1991) Enkephalinergic sympathetic and parasympathetic innervation of the rat submandibular and sublingual glands. Brain Res 555(2):288–294PubMedCrossRef
75.
Zurück zum Zitat Ng YK, Wong WC, Ling EA (1995) A study of the structure and functions of the submandibular ganglion. Ann Acad Med Singapore 24(6):793–801PubMed
76.
Zurück zum Zitat Hosaka F et al (2014) Site-dependent differences in density of sympathetic nerve fibers in muscle-innervating nerves of the human head and neck. Anat Sci Int 89(2):101–111PubMedCrossRef
77.
Zurück zum Zitat Yamauchi M et al (2016) Sympathetic and parasympathetic neurons are likely to be absent in the human vestibular and geniculate ganglia: an immunohistochemical study using elderly cadaveric specimens. Okajimas Folia Anat Jpn 93(1):1–4MathSciNetPubMedCrossRef
78.
Zurück zum Zitat Teshima THN, Tucker AS, Lourenco SV (2019) Dual sympathetic input into developing salivary glands. J Dent Res 98(10):1122–1130PubMedCrossRef
79.
Zurück zum Zitat Oda K et al (2013) A ganglion cell cluster along the glossopharyngeal nerve near the human palatine tonsil. Acta Otolaryngol 133(5):509–512PubMedCrossRef
80.
Zurück zum Zitat Verlinden TJM et al (2016) Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Acta Neurol Scand 133(3):173–182PubMedCrossRef
81.
Zurück zum Zitat Dahlqvist A, Forsgren S (1992) Expression of catecholamine-synthesizing enzymes in paraganglionic and ganglionic cells in the laryngeal nerves of the rat. J Neurocytol 21(1):1–6PubMedCrossRef
82.
Zurück zum Zitat Ibanez M et al (2010) Human laryngeal ganglia contain both sympathetic and parasympathetic cell types. Clin Anat 23(6):673–682PubMedCrossRef
83.
Zurück zum Zitat Tubbs RS et al (2009) The existence of hypoglossal root ganglion cells in adult humans: potential clinical implications. Surg Radiol Anat 31(3):173–176PubMedCrossRef
84.
Zurück zum Zitat Harman NB (1899) The pelvic splanchnic nerves: an examination into their range and character. J Anat Physiol 33(3):386–412MathSciNetPubMedPubMedCentral
85.
Zurück zum Zitat Marinesco G (1908) Über die mikro-sympathischen hypospinalen Ganglien. Neurol Zbl 27:146–150
86.
Zurück zum Zitat Skoog T (1947) Ganglia in the communicating rami of the cervical sympathetic trunk. Lancet 2(6474):457–460PubMedCrossRef
87.
Zurück zum Zitat Alexander WF et al (1949) Sympathetic conduction pathways independent of sympathetic trunks; their surgical implications. J Int Coll Surg 12(2):111–119PubMed
88.
Zurück zum Zitat Alexander WF et al (1949) Sympathetic ganglion cells in ventral nerve roots. Their Relation to sympathectomy Science 109(2837):484PubMed
89.
Zurück zum Zitat Kuntz, A. and A. W.F., Surgical implicantions of lower thoracic and lumbar independent sympathetic pathways. AMA Arch Surg, 1950. 61(6): p. 1007–18.
90.
Zurück zum Zitat Webber RH (1955) An analysis of the sympathetic trunk, communicating rami, sympathetic roots and visceral rami in the lumbar region in man. Ann Surg 141(3):398–413PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Kuntz, A., H. H.H., and J. M.W., Nerve fiber components of communicating rami and sympathetic roots in man. Anat Rec, 1956. 126(1): p. 29–41.
92.
Zurück zum Zitat Pick J (1957) The identification of sympathetic segments. Ann Surg 145(3):355–364PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Kimmel DL, McCrea LE (1958) The development of the pelvic plexuses and the distribution of the pelvic splanchnic nerves in the human embryo and fetus. J Comp Neurol 110(2):271–297PubMedCrossRef
94.
Zurück zum Zitat Wrete M (1959) The anatomy of the sympathetic trunks in man. J Anat 93:448–459PubMedPubMedCentral
95.
Zurück zum Zitat Webber RH et al (1962) Myelinated nerve fibers in communicating rami attached to caudal lumbar nerves. J Comp Neurol 119:11–20PubMedCrossRef
96.
Zurück zum Zitat Webber, R.H. and W. A., Distribution of fibers from nerve cell bodies in ventral roots of spinal nerves. Acta Anat 1966. 65(4): p. 579–83.
97.
Zurück zum Zitat Webber RH (1967) Accessory ganglia related to sympathetic nerves in the lumbar region. Acta Anat 66(1):59–66PubMedCrossRef
98.
Zurück zum Zitat Baljet B, Boekelaar AB, Groen GJ (1985) Retroperitoneal paraganglia and the peripheral autonomic nervous system in the human fetus. Acta Morphol Neerl Scand 23(2):137–149PubMed
99.
Zurück zum Zitat Massrey C et al (2020) Ectopic sympathetic ganglia cells of the ventral root of the spinal cord: an anatomical study. Anat Cell Biol 53(1):15–20PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Jessen KR, Mirsky R (1991) Schwann cell precursors and their development. Glia 4(2):185–194PubMedCrossRef
101.
Zurück zum Zitat Serbedzija GN, McMahon AP (1997) Analysis of neural crest cell migration in Splotch mice using a neural crest-specific LacZ reporter. Dev Biol 185(2):139–147PubMedCrossRef
102.
Zurück zum Zitat Lefcort F (2020) Development of the Autonomic Nervous System: Clinical Implications. Semin Neurol 40(5):473–484PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Kasemeier-Kulesa JC et al (2010) CXCR4 controls ventral migration of sympathetic precursor cells. J Neurosci 30(39):13078–13088PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Kruepunga N et al (2020) Development of extrinsic innervation in the abdominal intestines of human embryos. J Anat 237(4):655–671PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Kasemeier-Kulesa JC, Kulesa PM, Lefcort F (2005) Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 132(2):235–245PubMedCrossRef
106.
Zurück zum Zitat Marinesco GMJ (1908) Über die mikro-sympathischen hypospinalen Ganglien. Neurol Zbl 27: 146–150.
107.
Zurück zum Zitat Gruss W (1932) Über Ganglien im Ramus communicans. Z Anat Entwickl Gesch 97:464–471CrossRef
108.
Zurück zum Zitat Pick J, Sheehan D (1946) Sympathetic rami in man. J Anat. 80(Pt 1): 12–20 3.
109.
Zurück zum Zitat Wrete M (1951) Ganglia of rami communicantes in man and mammals particularly monkey. Acta Anat (Basel) 13(3):329–336PubMedCrossRef
110.
Zurück zum Zitat Hoffman HH (1957) An analysis of the sympathetic trunk and rami in the cervical and upper thoracic regions in man. Ann Surg 145(1):94–103PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Webber RH (1958) A contribution on the sympathetic nerves in the lumbar region. Anat Rec 130(3):581–604PubMedCrossRef
112.
Zurück zum Zitat Langley JN, AHK (1896) The innervation of the pelvic and adjoining viscera. Part VII Anatomical observations. J Physiol 20(4–5): p. 372–406.
113.
Zurück zum Zitat Dail WG, Evan AP, Eason HR (1975) The major ganglion in the pelvic plexus of the male rat: a histochemical and ultrastructural study. Cell Tissue Res 159(1):49–62PubMedCrossRef
114.
Zurück zum Zitat Kuntz A, Moseley RL (1935) An experimental analysis of the pelvic autonomic ganglia in the cat. J Comp Neurol 64(1):63–75CrossRef
115.
Zurück zum Zitat Makita T et al (2008) Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452(7188):759–763PubMedPubMedCentralCrossRefADS
116.
Zurück zum Zitat Takahashi Y, Sipp D, Enomoto H (2013) Tissue interactions in neural crest cell development and disease. Science 341(6148):860–863PubMedCrossRefADS
117.
Zurück zum Zitat Kuntz A (1956) Components of splanchnic and intermesenteric nerves. J Comp Neurol 105(2):251–268MathSciNetPubMedCrossRef
118.
Zurück zum Zitat Kuntz A, Hoffman HH, Schaeffer EM (1957) Fiber components of the splanchnic nerves. Anat Rec 128(1):139–146PubMedCrossRef
119.
Zurück zum Zitat Kuntz A, Jacobs MW (1955) Components of periarterial extensions of celiac and mesenteric plexuses. Anat Rec 123(4):509–520PubMedCrossRef
120.
Zurück zum Zitat Verlinden TJM et al (2018) The human phrenic nerve serves as a morphological conduit for autonomic nerves and innervates the caval body of the diaphragm. Sci Rep 8(1):11697PubMedPubMedCentralCrossRefADS
121.
Zurück zum Zitat El-Badawi A, Schenk EA (1968) The peripheral adrenergic innervation apparatus. Z Zellforsch 87:218–225PubMedCrossRef
122.
Zurück zum Zitat Morris JL, Gibbins IL (1987) Neuronal colocalization of peptides, catecholamines, and catecholamine-synthesizing enzymes in guinea pig paracervical ganglia. J Neurosci 7(10):3117–3130PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat James S, Burnstock G (1988) Neuropeptide Y-like immunoreactivity in intramural ganglia of the newborn guinea pig urinary bladder. Regul Pept 23(2):237–245PubMedCrossRef
124.
Zurück zum Zitat Houdeau E et al (1995) Distribution of noradrenergic neurons in the female rat pelvic plexus and involvement in the genital tract innervation. J Auton Nerv Syst 54(2):113–125PubMedCrossRef
125.
Zurück zum Zitat Smet PJ et al (1996) Neuropeptides and neurotransmitter-synthesizing enzymes in intrinsic neurons of the human urinary bladder. J Neurocytol 25(2):112–124PubMedCrossRef
126.
Zurück zum Zitat Dixon JS, Jen PY, Gosling JA (1997) A double-label immunohistochemical study of intramural ganglia from the human male urinary bladder neck. J Anat 190(Pt 1):125–134PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Werkstrom V et al (1998) Inhibitory innervation of the guinea-pig urethra; roles of CO, NO and VIP. J Auton Nerv Syst 74(1):33–42PubMedCrossRef
128.
Zurück zum Zitat Dixon JS, Jen PY, Gosling JA (1999) Tyrosine hydroxylase and vesicular acetylcholine transporter are coexpressed in a high proportion of intramural neurons of the human neonatal and child urinary bladder. Neurosci Lett 277(3):157–160PubMedCrossRef
129.
Zurück zum Zitat Muraoka K et al (2018) Site-dependent differences in the composite fibers of male pelvic plexus branches: an immunohistochemical analysis of donated elderly cadavers. BMC Urol 18(1):47PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Arellano J et al (2019) Neural interrelationships of autonomic ganglia from the pelvic region of male rats. Auton Neurosci 217:26–34PubMedCrossRef
131.
Zurück zum Zitat Armour JA, Hopkins DA (1981) Localization of sympathetic postganglionic neurons of physiologically identified cardiac nerves in the dog. J Comp Neurol 202(2):169–184PubMedCrossRef
132.
Zurück zum Zitat Armour JA (1984) Physiological studies of small mediastinal ganglia in the cardiopulmonary nerves of dogs. Can J Physiol Pharmacol 62(9):1244–1248PubMedCrossRef
133.
Zurück zum Zitat Hopkins DA, Armour JA (1984) Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J Comp Neurol 229(2):186–198PubMedCrossRef
134.
Zurück zum Zitat Janes RD et al (1986) Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol 57(4):299–309PubMedCrossRef
135.
Zurück zum Zitat Hoard JL et al (2008) Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neuroscience 156(1):129–142PubMedCrossRef
136.
Zurück zum Zitat Kim JH et al (2018) Ganglion cardiacum or juxtaductal body of human fetuses. Anat Cell Biol 51(4):266–273PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Mitchell GAG (1953) The cranial extremities of the sympathetic trunks. Acta Anat 18:195–201PubMedCrossRef
138.
Zurück zum Zitat Kuntz A, Hoffman HH, Napolitano LM (1957) Cephalic sympathetic nerves. Arch Surg 75:108–115
139.
Zurück zum Zitat Tubbs RS et al (2006) Does the ganglion of Ribes exist? Folia Neuropathol 44(3):197–201PubMed
140.
Zurück zum Zitat Schaper A (1897) The earliest differentiation in the central nervous system of vertebrates. Science 5(115):430–431
141.
Zurück zum Zitat Carpenter FW (1906) The development of the oculomotor nerve, the ciliary ganglion and the abducent nerve in the chick. Bull Mus Comp Zool Harvard College 48:141–228
142.
Zurück zum Zitat Streeter, G.L., Manual of Human Embryology The development of the nervous system. Vol. 2. 1912: Keibel and Mall.
143.
Zurück zum Zitat Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: a comparative view. Auton Neurosci 165(1):10–27PubMedCrossRef
144.
Zurück zum Zitat Andres KH, Kautzky R (1955) Die Frühentwicklung der vegetativen Hals- und Kopfganglien des Menschen. Z Anat Entwicklungsgesch 119:55–84PubMedCrossRef
145.
Zurück zum Zitat Andres KH, Kautzky R (1956) Kleine vegetative Ganglien im Bereich der Schädelbasis des Menschen. Deutsche Zeitschrift f Nervenheilkunde 174:272–282CrossRef
146.
Zurück zum Zitat Castro J, Negredo P, Avendano C (2008) Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 1190:65–77PubMedCrossRef
147.
Zurück zum Zitat Loesch A et al (2010) Sciatic nerve of diabetic rat treated with epoetin delta: effects on C-fibers and blood vessels including pericytes. Angiology 61(7):651–668PubMedCrossRef
148.
Zurück zum Zitat Tompkins, R.P., et al., Arrangement of sympathetic fibers within the human common peroneal nerve: implications for microneurography. J Appl Physiol (1985), 2013. 115(10): p. 1553–61.
149.
Zurück zum Zitat Creze M et al (2017) Functional and structural microanatomy of the fetal sciatic nerve. Muscle Nerve 56(4):787–796PubMedCrossRef
150.
Zurück zum Zitat Yang M, Zhao X, Miselis RR (1999) The origin of catecholaminergic nerve fibers in the subdiaphragmatic vagus nerve of rat. J Auton Nerv Syst 76(2–3):108–117PubMedCrossRef
151.
Zurück zum Zitat Kastriti ME et al (2022) Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 41(17):e108780PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Molinoff PB, Axelrod J (1971) Biochemistry of catecholamines. Annu Rev Biochem 40:465–500PubMedCrossRef
153.
Zurück zum Zitat Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12PubMedCrossRef
154.
Zurück zum Zitat Hozawa K, Kimura RS (1990) Cholinergic and noradrenergic nervous systems in the cynomolgus monkey cochlea. Acta Otolaryngol 110(1–2):46–55PubMedCrossRef
155.
Zurück zum Zitat Hozawa K, Takasaka T (1993) Catecholaminergic innervation in the vestibular labyrinth and vestibular nucleus of guinea pigs. Acta Otolaryngol Suppl 503:111–113PubMedCrossRef
156.
Zurück zum Zitat Dairman W, Geffen L, Marchelle M (1973) Axoplasmic transport of aromatic L-amino acid decarboxylase (EC 4.1.1.26) and dopamine beta-hydroxylase (EC 1.14.2.1) in rat sciatic nerve. J Neurochem 20(6): 1617–23.
157.
Zurück zum Zitat Keen P, McLean WG (1974) The effect of nerve stimulation on the axonal transport of noradrenaline and dopamine-beta-hydroxylase. Br J Pharmacol 52(4):527–531PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Nagatsu I, Hartman BK, Udenfriend S (1974) The anatomical characteristics of dopamine-beta-hydroxylase accumulation in ligated sciatic nerve. J Histochem Cytochem 22(11):1010–1018PubMedCrossRef
159.
Zurück zum Zitat Reid JL, Kopin IJ (1975) The effects of ganglionic blockade, reserpine and vinblastine on plasma catecholamines and dopamine-beta-hydroxylase in the rat. J Pharmacol Exp Ther 193(3):748–756PubMed
160.
Zurück zum Zitat Haggendal J (1980) Axonal transport of dopamine-beta-hydroxylase to rat salivary glands: studies on enzymatic activity. J Neural Transm 47(3):163–174PubMedCrossRef
161.
Zurück zum Zitat Jakobsen J, Brimijoin S (1981) Axonal transport of enzymes and labeled proteins in experimental axonopathy induced by p-bromophenylacetylurea. Brain Res 229(1):103–122PubMedCrossRef
162.
Zurück zum Zitat Evers-Von Bultzingslowen I, Haggendal J (1983) Disappearance of noradrenaline from different parts of the rabbit external ear following superior cervical ganglionectomy. J Neural Transm 56(2–3): 117–26.
163.
Zurück zum Zitat Larsson PA, Goldstein M, Dahlstrom A (1984) A new methodological approach for studying axonal transport: cytofluorometric scanning of nerves. J Histochem Cytochem 32(1):7–16PubMedCrossRef
164.
Zurück zum Zitat Schmidt RE, Modert CW (1984) Orthograde, retrograde, and turnaround axonal transport of dopamine-beta-hydroxylase: response to axonal injury. J Neurochem 43(3):865–870PubMedCrossRef
165.
Zurück zum Zitat Larsson PA et al (1986) Reserpine-induced effects in the adrenergic neuron as studied with cytofluorimetric scanning. Brain Res Bull 16(1):63–74PubMedCrossRef
166.
Zurück zum Zitat Lackovic Z et al (1981) Dopamine and its metabolites in human peripheral nerves: is there a widely distributed system of peripheral dopaminergic nerves? Life Sci 29(9):917–922PubMedCrossRef
167.
Zurück zum Zitat Anniko M, Pequignot JM (1987) Catecholamine content of cochlear and facial nerves. High-performance liquid chromatography analyses in normal and mutant mice. Arch Otorhinolaryngol 244(5): 262–4.
168.
Zurück zum Zitat Densert O (1975) A fluorescence and electron microscopic study of the adrenergic innervation in the vestibular ganglion and sensory areas. Acta Otolaryngol 79(1–2):96–107PubMedCrossRef
169.
Zurück zum Zitat Nielsen KC, Owman C, Santini M (1969) Anastomosing adrenergic nerves from the sympathetic trunk to the vagus at the cervical level in the cat. Brain Res 12(1):1–9PubMedCrossRef
170.
Zurück zum Zitat Dahlstrom A et al (1982) Cytofluorimetric scanning: a tool for studying axonal transport in monoaminergic neurons. Brain Res Bull 9(1–6):61–68PubMedCrossRef
171.
Zurück zum Zitat Dahlqvist A et al (1986) Catecholamines of endoneurial laryngeal paraganglia in the rat. Acta Physiol Scand 127(2):257–261PubMedCrossRef
172.
Zurück zum Zitat Dahlstrom A et al (1986) Immunocytochemical studies on axonal transport in adrenergic and cholinergic nerves using cytofluorimetric scanning. Med Biol 64(2–3):49–56PubMed
173.
Zurück zum Zitat Dahlstrom A et al (1987) The synthesis of NPY and DBH is independently regulated in adrenergic nerves after reserpine. Neurochem Res 12(3):221–225PubMedCrossRef
174.
Zurück zum Zitat D’Hooge R et al (1990) Storage and fast transport of noradrenaline, dopamine beta-hydroxylase and neuropeptide Y in dog sciatic nerve axons. Life Sci 47(20):1851–1859PubMedCrossRef
175.
Zurück zum Zitat Ben-Jonathan N, Maxson RE, Ochs S (1978) Fast axoplasmic transport of noradrenaline and dopamine in mammalian peripheral nerve. J Physiol 281:315–324PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Leblanc GG, Landis SC (1989) Differentiation of noradrenergic traits in the principal neurons and small intensely fluorescent cells of the parasympathetic sphenopalatine ganglion of the rat. Dev Biol 131(1):44–59PubMedCrossRef
177.
Zurück zum Zitat Muller F, Rohrer H (2002) Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 129(24):5707–5717PubMedCrossRef
178.
Zurück zum Zitat Stanzel S et al (2016) Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 76(10):1111–1124PubMedCrossRef
179.
Zurück zum Zitat Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132(1):189–211PubMedCrossRef
180.
Zurück zum Zitat Young HM et al (1999) Expression of Ret-, p75(NTR)-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev Dyn 216(2):137–152PubMedCrossRef
181.
Zurück zum Zitat Kuntz A (1927) Distribution of the sympathetic rami to the brachial plexus: Its relation to sympathectomy affecting the upper extremity. Arch Surg 15(6):871–877CrossRef
182.
Zurück zum Zitat Cho HM, Lee DY, Sung SW (2005) Anatomical variations of rami communicantes in the upper thoracic sympathetic trunk. Eur J Cardiothorac Surg 27(2):320–324PubMedCrossRef
183.
Zurück zum Zitat Won HJ et al (2018) Topographical study of the connections of the rami communicantes from the first to the fifth thoracic sympathetic ganglia. Clin Anat 31(8):1151–1157PubMedCrossRef
184.
Zurück zum Zitat Cowley R (1949) Anatomic observations on the lumbar sympathetic nervous system. Surgery 25(6):880–890PubMed
185.
Zurück zum Zitat Webber RH (1957) An analysis of the cross communications between the sympathetic trunks in the lumbar region in man. Ann Surg 145(3):365–370PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Volkmann B et al (1844) Anatomy and physiology of the nervous system. Brit For Med Rev 17:379–403
187.
Zurück zum Zitat Snow Beck T (1845) On the nerves of the uterus. Philos Trans R Soc 136:213–235ADS
188.
Zurück zum Zitat Downman CBB, Hazarika NH (1962) Somatic nerve pathways through some thoracic rami communicantes. J Physiol 163:340–346PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Sheehan DPJ (1943.) The rami communicantes in the rhesus monkey. J Anat 77(2): 125–39.
190.
Zurück zum Zitat Langley JN (1896) Observations on the medullated fibres of the sympathetic system and chiefly on those of the grey rami communicantes. J Physiol 20(1):55–76PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Zuckerman S (1938) Observations on the autonomic nervous system and on vertebral and neural segmentation in Monkeys. Trans Zool Soc Lond 23(6):315–378CrossRef
192.
Zurück zum Zitat Mehler WR (1952) The anatomy and variations of the lumbosacral sympathetic trunk in the dog. Anat Rec 113(4):421–435PubMedCrossRef
193.
Zurück zum Zitat Romanes GJ (1951) The motor cell columns of the lumbo-sacral spinal cord of the cat. J Comp Neurol 94(2):313–363PubMedCrossRef
194.
Zurück zum Zitat Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146:189–218PubMedCrossRef
195.
Zurück zum Zitat Schellino R, Boido M, Vercelli A (2020) The dual nature of Onuf’s nucleus: neuroanatomical features and peculiarities, in health and disease. Front Neuroanat 14:572013PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Langley JN (1903) Das sympathische und verwandte nervöse Systeme der Wirbeltiere (autonomes nervöses System). Ergeb Physiol Biol Chem Exp Pharmakol 2:818–872CrossRef
197.
Zurück zum Zitat Sivori MDB, Brunet J-B (2023) The pelvic organs receive no parasympathetic innervation
198.
Zurück zum Zitat Oikawa S et al (2004) Immunohistochemical determination of the sympathetic pathway in the orbit via the cranial nerves in humans. J Neurosurg 101(6):1037–1044PubMedCrossRef
199.
Zurück zum Zitat Ruskell GL (1983) Fibre analysis of the nerve to the inferior oblique muscle in monkeys. J Anat 137(Pt 3):445–455PubMedPubMedCentral
200.
Zurück zum Zitat Hosaka F et al (2016) Human nasociliary nerve with special reference to its unique parasympathetic cutaneous innervation. Anat Cell Biol 49(2):132–137PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Matsubayashi T et al (2016) Significant differences in sympathetic nerve fiber density among the facial skin nerves: a histologic study using human cadaveric specimens. Anat Rec (Hoboken) 299(8):1054–1059PubMedCrossRef
202.
Zurück zum Zitat Lyon DB et al (1992) Sympathetic nerve anatomy in the cavernous sinus and retrobulbar orbit of the cynomolgus monkey. Ophthalmic Plast Reconstr Surg 8(1):1–12PubMedCrossRef
203.
Zurück zum Zitat Johnston JA, Parkinson D (1974) Intracranial sympathetic pathways associated with the sixth cranial nerve. J Neurosurg 40(2):236–243PubMedCrossRef
204.
Zurück zum Zitat Tereshenko V et al (2023) Newly identified axon types of the facial nerve unveil supplemental neural pathways in the innervation of the face. J Adv Res 44:135–147PubMedCrossRef
205.
Zurück zum Zitat Ohman-Gault L, Huang T, Krimm R (2017) The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. J Comp Neurol 525(18):3935–3950PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Rusu MC, Pop F (2010) The anatomy of the sympathetic pathway through the pterygopalatine fossa in humans. Ann Anat 192(1):17–22PubMedCrossRef
207.
Zurück zum Zitat Reuss S et al (2009) Neurochemistry of identified motoneurons of the tensor tympani muscle in rat middle ear. Hear Res 248(1–2):69–79PubMedCrossRef
208.
Zurück zum Zitat Johansson K, Arvidsson J, Thomander L (1988) Sympathetic nerve fibers in peripheral sensory and motor nerves in the face of the rat. J Auton Nerv Syst 23(1):83–86PubMedCrossRef
209.
Zurück zum Zitat Takeuchi Y et al (1993) Superior cervical ganglionic origin of sympathetic fibers in the facial nerve, and their preganglionic spinal inputs: a WGA-HRP study in Macaca fuscata. Brain Res Bull 32(6):661–665PubMedCrossRef
210.
Zurück zum Zitat Fukui Y et al (1992) The superior cervical ganglion: origin of sympathetic fibers in the facial and hypoglossal nerves in the cat. Brain Res Bull 28(5):811–815PubMedCrossRef
211.
Zurück zum Zitat Thomander L, Aldskogius H, Arvidsson J (1984) Evidence for a sympathetic component in motor branches of the facial nerve: a horseradish peroxidase study in the cat. Brain Res 301(2):380–383PubMedCrossRef
212.
Zurück zum Zitat Shimozawa A (1978) Electron-microscopic analysis of the mouse facial nerve near the geniculate ganglion. Acta Anat (Basel) 100(2):185–192PubMedCrossRef
213.
Zurück zum Zitat Yau JI, Wu JJ, Liu JC (1991) Origins of the afferent fibers to the cat superior cervical ganglion. Proc Natl Sci Counc Repub China B 15(1):1–7PubMed
214.
Zurück zum Zitat ten Tusscher MP et al (1989) The allocation of nerve fibres to the anterior eye segment and peripheral ganglia of rats. II The sympathetic innervation Brain Res 494(1):105–113PubMed
215.
Zurück zum Zitat Yamashita H, Bagger-Sjoback D, Sekitani T (1992) Distribution of tyrosine hydroxylase-like immunofluorescence in guinea pig vestibular ganglia and sensory areas. Auris Nasus Larynx 19(2):63–68PubMedCrossRef
216.
Zurück zum Zitat Paradiesgarten A, Spoendlin H (1976) The unmyelinated nerve fibres of the cochlea. Acta Otolaryngol 82(3–4):157–164PubMedCrossRef
217.
Zurück zum Zitat Matsumoto I et al (2003) DNA microarray cluster analysis reveals tissue similarity and potential neuron-specific genes expressed in cranial sensory ganglia. J Neurosci Res 74(6):818–828PubMedCrossRef
218.
Zurück zum Zitat Seki A et al (2014) Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Heart Rhythm 11(8):1411–1417PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Onkka P et al (2013) Sympathetic nerve fibers and ganglia in canine cervical vagus nerves: localization and quantitation. Heart Rhythm 10(4):585–591PubMedCrossRef
220.
Zurück zum Zitat Satoda T et al (1996) The sites of origin and termination of afferent and efferent components in the lingual and pharyngeal branches of the glossopharyngeal nerve in the Japanese monkey (Macaca fuscata). Neurosci Res 24(4):385–392PubMedCrossRef
221.
Zurück zum Zitat Nozdrachev AD et al (2003) Circuits and projections of cat stellate ganglion. Arch Med Res 34(2):106–115PubMedCrossRef
222.
Zurück zum Zitat Forgie A et al (2000) In vivo survival requirement of a subset of nodose ganglion neurons for nerve growth factor. Eur J Neurosci 12(2):670–676PubMedCrossRef
223.
Zurück zum Zitat Fateev MM, Nozdrachev AD (1995) Projections of stellate ganglion sympathetic neutrons in cats. J Auton Nerv Syst 51(2):129–134PubMedCrossRef
224.
Zurück zum Zitat Tseng CY et al (2005) Ultrastructural identification of a sympathetic component in the hypoglossal nerve of hamsters using experimental degeneration and horseradish peroxidase methods. Cells Tissues Organs 180(2):117–125PubMedCrossRef
225.
Zurück zum Zitat Tseng CY et al (2001) Evidence of neuroanatomical connection between the superior cervical ganglion and hypoglossal nerve in the hamster as revealed by tract-tracing and degeneration methods. J Anat 198(Pt 4):407–421PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Hino N, Masuko S, Katsuki T (1993) An immunohistochemical study of sensory and autonomic innervation of the dog tongue with special reference to substance P- and calcitonin gene-related peptide-containing fibers in blood vessels and the intralingual ganglia. Arch Histol Cytol 56(5):505–516PubMedCrossRef
227.
Zurück zum Zitat O’Reilly PM, FitzGerald MJ (1990) Fibre composition of the hypoglossal nerve in the rat. J Anat 172:227–243PubMedPubMedCentral
228.
Zurück zum Zitat Ruggiero DA et al (1993) Effect of cervical vagotomy on catecholaminergic neurons in the cranial division of the parasympathetic nervous system. Brain Res 617(1):17–27MathSciNetPubMedCrossRef
229.
Zurück zum Zitat Eriksson M et al (1996) Distribution and origin of peptide-containing nerve fibres in the rat and human mammary gland. Neuroscience 70(1):227–245PubMedCrossRef
230.
Zurück zum Zitat Ling EA et al (1990) Degenerative changes of neurons in the superior cervical ganglion following an injection of Ricinus communis agglutinin-60 into the vagus nerve in hamsters. J Neurocytol 19(1):1–9PubMedCrossRef
231.
Zurück zum Zitat Chakravarthy Marx S et al (2011) Distribution of sympathetic fiber areas in the sensory nerves of forearm: an immunohistochemical study in cadavers. Rom J Morphol Embryol 52(2):605–611PubMed
232.
Zurück zum Zitat Baluk P, Gabella G (1989) Innervation of the guinea pig trachea: a quantitative morphological study of intrinsic neurons and extrinsic nerves. J Comp Neurol 285(1):117–132PubMedCrossRef
233.
Zurück zum Zitat Marx SC et al (2010) Microanatomical and immunohistochemical study of the human lateral antebrachial cutaneous nerve of forearm at the antecubital fossa and its clinical implications. Clin Anat 23(6):693–701MathSciNetPubMedCrossRef
234.
Zurück zum Zitat Marx SC et al (2010) Distribution of sympathetic fiber areas of radial nerve in the forearm: an immunohistochemical study in cadavers. Surg Radiol Anat 32(9):865–871PubMedCrossRef
235.
Zurück zum Zitat Lucier GE, Egizii R, Dostrovsky JO (1986) Projections of the internal branch of the superior laryngeal nerve of the cat. Brain Res Bull 16(5):713–721PubMedCrossRef
236.
Zurück zum Zitat Balogh B et al (1999) The nerve of Henle: an anatomic and immunohistochemical study. J Hand Surg Am 24(5):1103–1108PubMedCrossRef
237.
Zurück zum Zitat Smith RV, Satchell DG (1986) Determination of extrinsic pathways of adrenergic nerves to the guinea-pig trachealis muscle using surgical denervation and organ-bath pharmacology. Agents Actions 19(1–2):48–54PubMedCrossRef
238.
Zurück zum Zitat Blessing WW, Willoughby JO, Joh TH (1985) Evidence that catecholamine-synthesizing perikarya in rat medulla oblongata do not contribute axons to the vagus nerve. Brain Res 348(2):397–400PubMedCrossRef
239.
Zurück zum Zitat Chakravarthy Marx S et al (2010) Microanatomical and immunohistochemical study of the human anterior branch of the medial antebrachial cutaneous nerve of forearm at the antecubital fossa and its clinical implications. Rom J Morphol Embryol 51(2):337–346PubMed
240.
Zurück zum Zitat Smith RV, Satchell DG (1985) Extrinsic pathways of the adrenergic innervation of the guinea-pig trachealis muscle. J Auton Nerv Syst 14(1):61–73PubMedCrossRef
241.
Zurück zum Zitat Hisa Y (1982) Fluorescence histochemical studies on the noradrenergic innervation of the canine larynx. Acta Anat (Basel) 113(1):15–25PubMedCrossRef
242.
Zurück zum Zitat Lundberg JM et al (1978) Efferent innervation of the small intestine by adrenergic neurons from the cervical sympathetic and stellate ganglia, studied by retrograde transport of peroxidase. Acta Physiol Scand 104(1):33–42MathSciNetPubMedCrossRef
243.
Zurück zum Zitat Ungvary G, Leranth C (1976) Termination in the stellate ganglion of axons arising from the hilar vegetative plexus of the lung. Peripheral reflex arcs Acta Anat (Basel) 95(4):589–597PubMedCrossRef
244.
Zurück zum Zitat Wang ZY et al (2002) Localization of zinc-enriched neurons in the mouse peripheral sympathetic system. Brain Res 928(1–2):165–174PubMedCrossRef
245.
Zurück zum Zitat Li JY et al (1999) Proteolytic processing, axonal transport and differential distribution of chromogranins A and B, and secretogranin II (secretoneurin) in rat sciatic nerve and spinal cord. Eur J Neurosci 11(2):528–544PubMedCrossRef
246.
Zurück zum Zitat Janig W, McLachlan E (1984) On the fate of sympathetic and sensory neurons projecting into a neuroma of the superficial peroneal nerve in the cat. J Comp Neurol 225(2):302–311PubMedCrossRef
247.
Zurück zum Zitat Li JY et al (1996) Distribution of Rab3a in rat nervous system: comparison with other synaptic vesicle proteins and neuropeptides. Brain Res 706(1):103–112PubMedCrossRef
248.
Zurück zum Zitat Li JY, Hou XE, Dahlstrom A (1995) GAP-43 and its relation to autonomic and sensory neurons in sciatic nerve and gastrocnemius muscle in the rat. J Auton Nerv Syst 50(3):299–309PubMedCrossRef
249.
Zurück zum Zitat Koistinaho J (1991) Adrenergic nerve fibers in the human fetal sciatic nerve. Acta Anat (Basel) 140(4):369–372PubMedCrossRef
250.
Zurück zum Zitat Li JY, Jahn R, Dahlstrom A (1994) Synaptotagmin I is present mainly in autonomic and sensory neurons of the rat peripheral nervous system. Neuroscience 63(3):837–850PubMedCrossRef
251.
Zurück zum Zitat Fang F et al (2017) Patterns of sural nerve innervation of the sural artery with implication for reconstructive surgery. J Surg Res 220:261–267PubMedCrossRef
252.
Zurück zum Zitat Nyangoh Timoh K et al (2017) Levator ani muscle innervation: Anatomical study in human fetus. Neurourol Urodyn 36(6):1464–1471PubMedCrossRef
253.
Zurück zum Zitat Bertrand MM et al. (2016) Anatomical basis of the coordination between smooth and striated urethral and anal sphincters: loops of regulation between inferior hypogastric plexus and pudendal nerve. Immuno-histological study with 3D reconstruction. Surg Radiol Anat 38(8): 963–72.
254.
Zurück zum Zitat Studelska DR, Brimijoin S (1989) Partial isolation of two classes of dopamine beta-hydroxylase-containing particles undergoing rapid axonal transport in rat sciatic nerve. J Neurochem 53(2):622–631PubMedCrossRef
255.
Zurück zum Zitat Hinata N et al (2015) Histological study of the cavernous nerve mesh outside the periprostatic region: anatomical basis for erectile function after nonnerve sparing radical prostatectomy. J Urol 193(3):1052–1059PubMedCrossRef
256.
Zurück zum Zitat Hieda K et al (2013) Nerves in the intersphincteric space of the human anal canal with special reference to their continuation to the enteric nerve plexus of the rectum. Clin Anat 26(7):843–854PubMedCrossRef
257.
Zurück zum Zitat Alsaid B et al (2011) Autonomic-somatic communications in the human pelvis: computer-assisted anatomic dissection in male and female fetuses. J Anat 219(5):565–573PubMedPubMedCentralCrossRef
258.
Zurück zum Zitat Alsaid B et al (2009) Coexistence of adrenergic and cholinergic nerves in the inferior hypogastric plexus: anatomical and immunohistochemical study with 3D reconstruction in human male fetus. J Anat 214(5):645–654PubMedPubMedCentralCrossRef
259.
Zurück zum Zitat Roppolo JR, Nadelhaft I, de Groat WC (1985) The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. J Comp Neurol 234(4):475–488PubMedCrossRef
260.
Zurück zum Zitat Moszkowicz D et al (2011) Neural supply to the clitoris: immunohistochemical study with three-dimensional reconstruction of cavernous nerve, spongious nerve, and dorsal clitoris nerve in human fetus. J Sex Med 8(4):1112–1122PubMedCrossRef
261.
Zurück zum Zitat Colombel M et al (1999) Caverno-pudendal nervous communicating branches in the penile hilum. Surg Radiol Anat 21(4):273–276PubMedCrossRef
262.
Zurück zum Zitat Hinata N et al (2014) Topohistology of sympathetic and parasympathetic nerve fibers in branches of the pelvic plexus: an immunohistochemical study using donated elderly cadavers. Anat Cell Biol 47(1):55–65PubMedPubMedCentralCrossRef
263.
Zurück zum Zitat Hinata N et al (2014) Nerves and fasciae in and around the paracolpium or paravaginal tissue: an immunohistochemical study using elderly donated cadavers. Anat Cell Biol 47(1):44–54PubMedPubMedCentralCrossRef
264.
Zurück zum Zitat Deng YS, Zhong JH, Zhou XF (2000) BDNF is involved in sympathetic sprouting in the dorsal root ganglia following peripheral nerve injury in rats. Neurotox Res 1(4):311–322PubMedCrossRef
265.
Zurück zum Zitat Jones MG, Munson JB, Thompson SW (1999) A role for nerve growth factor in sympathetic sprouting in rat dorsal root ganglia. Pain 79(1):21–29PubMedCrossRef
266.
Zurück zum Zitat Thoenen H, Mueller RA, Axelrod J (1970) Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurones. Proc Natl Acad Sci U S A 65(1):58–62PubMedPubMedCentralCrossRefADS
267.
Zurück zum Zitat Ma W, Bisby MA (1999) Partial sciatic nerve transection induced tyrosine hydroxidase immunoreactive axon sprouting around both injured and spared dorsal root ganglion neurons which project to the gracile nucleus in middle-aged rats. Neurosci Lett 275(2):117–120PubMedCrossRef
268.
Zurück zum Zitat Shinder V et al (1999) Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol 28(9):743–761PubMedCrossRef
269.
Zurück zum Zitat Morellini N et al (2019) Expression of the noradrenaline transporter in the peripheral nervous system. J Chem Neuroanat 104:101742PubMedCrossRef
270.
Zurück zum Zitat Thompson SW, Majithia AA (1998) Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo. J Physiol 506(Pt 3):809–816PubMedPubMedCentralCrossRef
271.
Zurück zum Zitat Karlsson M, Hildebrand C (1994) Invasion of the rat ventral root L5 by putative sympathetic C-fibers after neonatal sciatic nerve crush. Brain Res 667(1):39–46PubMedCrossRef

Neu in den Fachgebieten Neurologie und Psychiatrie

Bundesverfassungsgericht: Triage-Regelung nicht mit Grundgesetz vereinbar

Das Bundesverfassungsgericht hat Regelungen zur Triage für nichtig erklärt. Es gab damit Verfassungsbeschwerden von Intensiv- und Notfallmedizinern statt. Der Eingriff in die Berufsfreiheit der Ärztinnen und Ärzte sei verfassungsrechtlich nicht gerechtfertigt, betont das Gericht.

Was lindert kindliche Kopfschmerzen?

Die Migräne-Inzidenz steigt auch bei Kindern und Jugendlichen. Medikamentös gibt es nur wenige Optionen, insbesondere für die Prophylaxe. Multimodale Ansätze sind gefragt. Hilft dabei auch ein strukturiertes Riechtraining? 

Polypharmazie bei Krebs – so gelingt die Delirprävention

Die medikamentöse Versorgung älterer Krebskranker ist oft komplex – viele nehmen bereits vor der Tumordiagnose mehrere Arzneimittel ein. Diese Polypharmazie birgt Risiken, insbesondere für die Entwicklung eines Delirs. Auf der DGHO-Jahrestagung gab Dr. Nina Rosa Neuendorff, Herne, Tipps zur Prävention bei Hochbetagten.

Migräne in der Schwangerschaft: Welche Therapie ist überhaupt möglich?

CGRP-Antikörper und Rimegepant werden in der Schwangerschaft nicht eingesetzt. Worauf können schwangere Migräne-Patientinnen also akut und prophylaktisch zurückgreifen? Diese Frage wurde auf dem Schmerzkongress in Mannheim beantwortet. 

Bildnachweise
Junge Ärztin vor einem Triage-Zelt/© Milos / Stock.adobe.com (Symbolbild mit Fotomodell), Kranker Junge mit erhöhter Temperatur/© Imgorthand / Getty Images / iStock (Symbolbild mit Fotomodell), Senior nimmt Medikament an/© Yuri Arcurs / Fotolia (Symbolbild mit Fotomodellen), Schwangere mit Medikament/© Stockbyte / Thinkstock (Symbolbild mit Fotomodell)