Skip to main content
Erschienen in: Investigational New Drugs 1/2009

01.02.2009 | PRECLINICAL STUDIES

The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib

verfasst von: Roos L. Oostendorp, Tessa Buckle, Jos H. Beijnen, Olaf van Tellingen, Jan H. M. Schellens

Erschienen in: Investigational New Drugs | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Summary

Imatinib is transported by P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), however, the exact impact of these transporters on absorption, distribution, metabolism and excretion (ADME) of imatinib is not fully understood due to incomplete data. We have performed a comprehensive ADME study of imatinib given as single agent or in combination with the well known BCRP/P-gp inhibitors, elacridar and pantoprazole, in wild-type and P-gp and/or BCRP knockout mice. The absence of P-gp and BCRP together resulted in a significantly higher area under the plasma concentration–time curve (AUC) after i.v. administration, whereas the AUC after oral dosing was unaltered. Both elacridar and pantoprazole significantly increased the AUC of orally administered imatinib in wild-type but also in P-gp/BCRP knockout mice. This lower clearance was not due to a (further) reduction in biliary excretion. Fecal excretion was significantly reduced in P-gp and P-gp/BCRP knockout but not in BCRP knockout mice, whereas the brain penetration was significantly higher in P-gp/BCRP knockout mice compared to single P-gp or BCRP knockout or wild-type mice. In conclusion, P-gp and BCRP have only a modest effect on the ADME of imatinib in comparison to metabolic elimination. P-gp is the most prevalent factor for systemic clearance and limiting the brain penetration. The considerable drug-drug interaction observed with elacridar or pantoprazole is only partly mediated by inhibition of P-gp and BCRP and far more by the inhibition of other elimination pathways.
Literatur
1.
Zurück zum Zitat Capdeville R, Buchdunger E, Zimmermann J et al (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502PubMedCrossRef Capdeville R, Buchdunger E, Zimmermann J et al (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502PubMedCrossRef
2.
Zurück zum Zitat Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. N Engl J Med 344:1031–1037PubMedCrossRef Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. N Engl J Med 344:1031–1037PubMedCrossRef
3.
Zurück zum Zitat Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480PubMedCrossRef Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480PubMedCrossRef
4.
Zurück zum Zitat Johnson BE, Fischer T, Fischer B et al (2003) Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res 9:5880–5887PubMed Johnson BE, Fischer T, Fischer B et al (2003) Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res 9:5880–5887PubMed
5.
Zurück zum Zitat Rao K, Goodin S, Levitt MJ et al (2005) A phase II trial of imatinib mesylate in patients with prostate specific antigen progression after local therapy for prostate cancer. Prostate 62:115–122PubMedCrossRef Rao K, Goodin S, Levitt MJ et al (2005) A phase II trial of imatinib mesylate in patients with prostate specific antigen progression after local therapy for prostate cancer. Prostate 62:115–122PubMedCrossRef
6.
Zurück zum Zitat Reardon DA, Egorin MJ, Quinn JA et al (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368PubMedCrossRef Reardon DA, Egorin MJ, Quinn JA et al (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368PubMedCrossRef
7.
Zurück zum Zitat Dresemann G (2005) Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 16:1702–1708PubMedCrossRef Dresemann G (2005) Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 16:1702–1708PubMedCrossRef
8.
Zurück zum Zitat Shannon KM (2002) Resistance in the land of molecular cancer therapeutics. Cancer Cell 2:99–102PubMedCrossRef Shannon KM (2002) Resistance in the land of molecular cancer therapeutics. Cancer Cell 2:99–102PubMedCrossRef
10.
Zurück zum Zitat Heinrich MC, Corless CL, Blanke CD et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24:4764–4774PubMedCrossRef Heinrich MC, Corless CL, Blanke CD et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24:4764–4774PubMedCrossRef
11.
Zurück zum Zitat Sleijfer S, Wiemer E, Seynaeve C et al (2007) Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: a basis for novel approaches and individualization of treatment. Oncologist 12:719–726PubMedCrossRef Sleijfer S, Wiemer E, Seynaeve C et al (2007) Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: a basis for novel approaches and individualization of treatment. Oncologist 12:719–726PubMedCrossRef
12.
Zurück zum Zitat Gambacorti-Passerini C, Zucchetti M, Russo D et al (2003) Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 9:625–632PubMed Gambacorti-Passerini C, Zucchetti M, Russo D et al (2003) Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 9:625–632PubMed
13.
Zurück zum Zitat Cohen MH, Williams G, Johnson JR et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukaemia. Clin Cancer Res 8:935–942PubMed Cohen MH, Williams G, Johnson JR et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukaemia. Clin Cancer Res 8:935–942PubMed
14.
Zurück zum Zitat Peng B, Dutreix C, Mehring G et al (2004) Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J Clin Pharmacol 44:158–162PubMedCrossRef Peng B, Dutreix C, Mehring G et al (2004) Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J Clin Pharmacol 44:158–162PubMedCrossRef
15.
Zurück zum Zitat Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55:379–386PubMedCrossRef Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55:379–386PubMedCrossRef
16.
Zurück zum Zitat Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942PubMedCrossRef Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942PubMedCrossRef
17.
Zurück zum Zitat Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894PubMedCrossRef Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894PubMedCrossRef
18.
Zurück zum Zitat Rochat B (2005) Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 44:349–366PubMedCrossRef Rochat B (2005) Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 44:349–366PubMedCrossRef
19.
Zurück zum Zitat Gschwind HP, Pfaar U, Waldmeier F et al (2005) Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 33:1503–1512PubMedCrossRef Gschwind HP, Pfaar U, Waldmeier F et al (2005) Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 33:1503–1512PubMedCrossRef
20.
Zurück zum Zitat Marull M, Rochat B (2006) Fragmentation study of imatinib and characterization of new imatinib metabolites by liquid chromatography-triple-quadrupole and linear ion trap mass spectrometers. J Mass Spectrom 41:390–404PubMedCrossRef Marull M, Rochat B (2006) Fragmentation study of imatinib and characterization of new imatinib metabolites by liquid chromatography-triple-quadrupole and linear ion trap mass spectrometers. J Mass Spectrom 41:390–404PubMedCrossRef
21.
Zurück zum Zitat Hamada A, Miyano H, Watanabe H et al (2003) Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 307:824–828PubMedCrossRef Hamada A, Miyano H, Watanabe H et al (2003) Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 307:824–828PubMedCrossRef
22.
Zurück zum Zitat Burger H, van Tol H, Boersma AW et al (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942PubMedCrossRef Burger H, van Tol H, Boersma AW et al (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942PubMedCrossRef
23.
Zurück zum Zitat Houghton PJ, Germain GS, Harwood FC et al (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337PubMedCrossRef Houghton PJ, Germain GS, Harwood FC et al (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337PubMedCrossRef
24.
Zurück zum Zitat Breedveld P, Pluim D, Cipriani G et al (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582PubMedCrossRef Breedveld P, Pluim D, Cipriani G et al (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582PubMedCrossRef
25.
Zurück zum Zitat Dai H, Marbach P, Lemaire M et al (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092PubMedCrossRef Dai H, Marbach P, Lemaire M et al (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092PubMedCrossRef
26.
Zurück zum Zitat Bihorel S, Camenisch G, Lemaire M et al (2007) Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec®) across the mouse blood–brain barrier. J Neurochem 102:1749–1757PubMedCrossRef Bihorel S, Camenisch G, Lemaire M et al (2007) Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec®) across the mouse blood–brain barrier. J Neurochem 102:1749–1757PubMedCrossRef
27.
Zurück zum Zitat Mahon FX, Belloc F, Lagarde V et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101:2368–2373PubMedCrossRef Mahon FX, Belloc F, Lagarde V et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101:2368–2373PubMedCrossRef
28.
Zurück zum Zitat Nakanishi T, Shiozawa K, Hassel BA et al (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108:678–684PubMedCrossRef Nakanishi T, Shiozawa K, Hassel BA et al (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108:678–684PubMedCrossRef
29.
Zurück zum Zitat Bihorel S, Camenisch G, Lemaire M et al (2007) Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 24:1720–1728PubMedCrossRef Bihorel S, Camenisch G, Lemaire M et al (2007) Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 24:1720–1728PubMedCrossRef
30.
Zurück zum Zitat Oostendorp RL, Beijnen JH, Schellens JH et al (2007) Determination of imatinib mesylate and its main metabolite (CGP74588) in human plasma and murine specimens by ion-pairing reversed-phase high-performance liquid chromatography. Biomed Chromatogr 21:747–754PubMedCrossRef Oostendorp RL, Beijnen JH, Schellens JH et al (2007) Determination of imatinib mesylate and its main metabolite (CGP74588) in human plasma and murine specimens by ion-pairing reversed-phase high-performance liquid chromatography. Biomed Chromatogr 21:747–754PubMedCrossRef
31.
Zurück zum Zitat Jonker JW, Freeman J, Bolscher E et al (2005) Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23:1059–1065PubMedCrossRef Jonker JW, Freeman J, Bolscher E et al (2005) Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23:1059–1065PubMedCrossRef
32.
Zurück zum Zitat de Vries NA, Zhao J, Kroon E et al (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449PubMedCrossRef de Vries NA, Zhao J, Kroon E et al (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449PubMedCrossRef
33.
Zurück zum Zitat Lam JL, Benet LZ (2004) Hepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug-drug interactions: studies of digoxin metabolism in primary rat hepatocytes versus microsomes. Drug Metab Dispos 32:1311–1316PubMed Lam JL, Benet LZ (2004) Hepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug-drug interactions: studies of digoxin metabolism in primary rat hepatocytes versus microsomes. Drug Metab Dispos 32:1311–1316PubMed
34.
Zurück zum Zitat Lee YJ, Kusuhara H, Jonker JW et al (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood–brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312:44–52PubMedCrossRef Lee YJ, Kusuhara H, Jonker JW et al (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood–brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312:44–52PubMedCrossRef
35.
Zurück zum Zitat Ozvegy-Laczka C, Hegedus T, Varady G et al (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495PubMedCrossRef Ozvegy-Laczka C, Hegedus T, Varady G et al (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495PubMedCrossRef
36.
Zurück zum Zitat Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374PubMedCrossRef Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374PubMedCrossRef
37.
Zurück zum Zitat Endres CJ, Hsiao P, Chung FS et al (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27:501–517PubMedCrossRef Endres CJ, Hsiao P, Chung FS et al (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27:501–517PubMedCrossRef
38.
Zurück zum Zitat Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592PubMedCrossRef Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592PubMedCrossRef
39.
Zurück zum Zitat Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27:425–446PubMedCrossRef Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27:425–446PubMedCrossRef
40.
Zurück zum Zitat White DL, Saunders VA, Dang P et al (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704PubMedCrossRef White DL, Saunders VA, Dang P et al (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704PubMedCrossRef
41.
Zurück zum Zitat Jiang X, Zhao Y, Smith C et al (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21:926–935PubMed Jiang X, Zhao Y, Smith C et al (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21:926–935PubMed
42.
Zurück zum Zitat Thomas J, Wang L, Clark RE et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745PubMedCrossRef Thomas J, Wang L, Clark RE et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745PubMedCrossRef
43.
Zurück zum Zitat Crossman LC, Druker BJ, Deininger MW et al (2005) hOCT 1 and resistance to imatinib. Blood 106:1133–1134PubMedCrossRef Crossman LC, Druker BJ, Deininger MW et al (2005) hOCT 1 and resistance to imatinib. Blood 106:1133–1134PubMedCrossRef
44.
Zurück zum Zitat Wang L, Giannoudis A, Lane S et al (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to Imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264PubMedCrossRef Wang L, Giannoudis A, Lane S et al (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to Imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264PubMedCrossRef
Metadaten
Titel
The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib
verfasst von
Roos L. Oostendorp
Tessa Buckle
Jos H. Beijnen
Olaf van Tellingen
Jan H. M. Schellens
Publikationsdatum
01.02.2009
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 1/2009
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-008-9138-z

Weitere Artikel der Ausgabe 1/2009

Investigational New Drugs 1/2009 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.