Skip to main content
Erschienen in: Lasers in Medical Science 3/2018

30.11.2017 | Original Article

The effect of polarized light on the organization of collagen secreted by fibroblasts

verfasst von: Dana Akilbekova, Anuraag Boddupalli, Kaitlin M. Bratlie

Erschienen in: Lasers in Medical Science | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Recent studies have demonstrated the beneficial effect of low-power lasers and polarized light on wound healing, inflammation, and the treatment of rheumatologic and neurologic disorders. The overall effect of laser irradiation treatment is still controversial due to the lack of studies on the biochemical mechanisms and the optimal parameters for the incident light that should be chosen for particular applications. Here, we study how NIH/3T3 fibroblasts respond to irradiation with linearly polarized light at different polarization angles. In particular, we examined vascular endothelial growth factor (VEGF) secretion, differentiation to myofibroblasts, and collagen organization in response to 800 nm polarized light at 0°, 45°, 90°, and 135° with a power density of 40 mW/cm2 for 6 min every day for 6 days. Additional experiments were conducted in which the polarization angle of the incident was changed every day to induce an isotropic distribution of collagen. The data presented here shows that polarized light can upregulate VEGF production, myofibroblast differentiation, and induce different collagen organization in response to different polarization angles of the incident beam. These results are encouraging and demonstrate possible methods for controlling cell response through the polarization angle of the laser light, which has potential for the treatment of wounds.
Literatur
2.
Zurück zum Zitat Cameron GJ, Alberts IL, Laing JH, Wess TJ (2002) Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study. J Struct Biol 137:15–22CrossRefPubMed Cameron GJ, Alberts IL, Laing JH, Wess TJ (2002) Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study. J Struct Biol 137:15–22CrossRefPubMed
3.
Zurück zum Zitat Yasui T, Tohno Y, Araki T (2004) Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry. J Biomed Opt 9:259–264CrossRefPubMed Yasui T, Tohno Y, Araki T (2004) Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry. J Biomed Opt 9:259–264CrossRefPubMed
4.
Zurück zum Zitat Beanes SR, Dang C, Soo C, Ting K (2003) Skin repair and scar formation: the central role of TGF-[beta]. Expert Rev Mol Med 5:1–22CrossRefPubMed Beanes SR, Dang C, Soo C, Ting K (2003) Skin repair and scar formation: the central role of TGF-[beta]. Expert Rev Mol Med 5:1–22CrossRefPubMed
5.
Zurück zum Zitat Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(80):75–81CrossRefPubMed Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(80):75–81CrossRefPubMed
6.
Zurück zum Zitat Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34SCrossRefPubMed Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34SCrossRefPubMed
7.
Zurück zum Zitat Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100CrossRefPubMed Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100CrossRefPubMed
8.
Zurück zum Zitat Anderson J, Biological M (2001) Responses to materials. Annu Rev Mater Res 31:81–110CrossRef Anderson J, Biological M (2001) Responses to materials. Annu Rev Mater Res 31:81–110CrossRef
9.
Zurück zum Zitat Luttikhuizen DT, Harmsen MC, Van Luyn MJA (2006) Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 12:1955–1970CrossRefPubMed Luttikhuizen DT, Harmsen MC, Van Luyn MJA (2006) Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 12:1955–1970CrossRefPubMed
10.
Zurück zum Zitat Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95:8841–8846CrossRefPubMedPubMedCentral Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95:8841–8846CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363CrossRefPubMed Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363CrossRefPubMed
12.
Zurück zum Zitat Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMed Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMed
13.
Zurück zum Zitat Chen WL et al (2009) Second harmonic generation χ tensor microscopy for tissue imaging. Appl Phys Lett 94:2007–2010 Chen WL et al (2009) Second harmonic generation χ tensor microscopy for tissue imaging. Appl Phys Lett 94:2007–2010
14.
Zurück zum Zitat Gay S, Vijanto J, Raekallio J, Penttinen R (1978) Collagen types in early phases of wound healing in children. Acta Chir Scand 144:205–211PubMed Gay S, Vijanto J, Raekallio J, Penttinen R (1978) Collagen types in early phases of wound healing in children. Acta Chir Scand 144:205–211PubMed
15.
Zurück zum Zitat Stuart K, Panitch A (2009) Characterization of gels composed of blends of collagen I, collagen III, and chondroitin sulfate. Biomacromolecules 10:25–31CrossRefPubMed Stuart K, Panitch A (2009) Characterization of gels composed of blends of collagen I, collagen III, and chondroitin sulfate. Biomacromolecules 10:25–31CrossRefPubMed
16.
Zurück zum Zitat Liu SH, Yang RS, Al-Shaikh R, Lane JM (1995) Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res:265–278 Liu SH, Yang RS, Al-Shaikh R, Lane JM (1995) Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res:265–278
17.
Zurück zum Zitat Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL (2011) Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 194:25–37CrossRefPubMedPubMedCentral Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL (2011) Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 194:25–37CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Jacob JT, Gebhardt BM, Lewando J (1996) Synthetic scleral reinforcement materials. II. Collagen types in the fibrous capsule. J Biomed Mater Res 32:181–186CrossRefPubMed Jacob JT, Gebhardt BM, Lewando J (1996) Synthetic scleral reinforcement materials. II. Collagen types in the fibrous capsule. J Biomed Mater Res 32:181–186CrossRefPubMed
19.
Zurück zum Zitat Shannon C, Thull R, Von Recum A (1997) Types I and III collagen in the tissue capsules of titanium and stainless-steel implants. J Biomed Mater Res 34:401–408CrossRefPubMed Shannon C, Thull R, Von Recum A (1997) Types I and III collagen in the tissue capsules of titanium and stainless-steel implants. J Biomed Mater Res 34:401–408CrossRefPubMed
20.
Zurück zum Zitat Erikson A, Lindgren M, Davies CDL (2008) Second-harmonic generation in collagen as a potential cancer diagnostic parameter. J Biomed Opt 13:1–11 Erikson A, Lindgren M, Davies CDL (2008) Second-harmonic generation in collagen as a potential cancer diagnostic parameter. J Biomed Opt 13:1–11
21.
Zurück zum Zitat Van Zuijlen PPM et al (2003) Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns 29:423–431CrossRefPubMed Van Zuijlen PPM et al (2003) Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns 29:423–431CrossRefPubMed
22.
Zurück zum Zitat Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503PubMed Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503PubMed
24.
Zurück zum Zitat Mester E, Ludany G, Sellyei M, Szende B, Gyenes GTG (1968) Studies on the inhibiting and activating effects of laser beams. Langenbecks Arch Chir 322:1022–1027CrossRefPubMed Mester E, Ludany G, Sellyei M, Szende B, Gyenes GTG (1968) Studies on the inhibiting and activating effects of laser beams. Langenbecks Arch Chir 322:1022–1027CrossRefPubMed
25.
Zurück zum Zitat Chung H et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533CrossRefPubMed Chung H et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533CrossRefPubMed
26.
27.
Zurück zum Zitat Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S (2005) Low-level laser therapy for wound healing: mechanism and efficiency. Dermatol Surg 31:334–340CrossRefPubMed Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S (2005) Low-level laser therapy for wound healing: mechanism and efficiency. Dermatol Surg 31:334–340CrossRefPubMed
28.
Zurück zum Zitat Bjordal JM, Couppe C, Chow RT, Tuner J (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 49:107–116CrossRefPubMed Bjordal JM, Couppe C, Chow RT, Tuner J (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 49:107–116CrossRefPubMed
29.
Zurück zum Zitat Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U (2009) Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener 4:26CrossRefPubMedPubMedCentral Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U (2009) Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener 4:26CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kipshidze N et al (2001) Low-power Helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells. In Vitro 364:355–364 Kipshidze N et al (2001) Low-power Helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells. In Vitro 364:355–364
31.
Zurück zum Zitat Monstrey S et al (2001) The effect of polarized light on wound healing. Eur J Plast Surg 24:377–382CrossRef Monstrey S et al (2001) The effect of polarized light on wound healing. Eur J Plast Surg 24:377–382CrossRef
32.
Zurück zum Zitat Ribeiro MS, Da Silva DF, De Araújo CE, De Oliveira SF, Pelegrini CM, Zorn TM (2004) Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. J Clin Laser Med Surg 22:59–66CrossRefPubMed Ribeiro MS, Da Silva DF, De Araújo CE, De Oliveira SF, Pelegrini CM, Zorn TM (2004) Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. J Clin Laser Med Surg 22:59–66CrossRefPubMed
33.
Zurück zum Zitat Demidova-rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715CrossRefPubMedPubMedCentral Demidova-rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Kana JS, Hutschenreiter G, Haina D (1981) Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch Surg 116:293–296CrossRefPubMed Kana JS, Hutschenreiter G, Haina D (1981) Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch Surg 116:293–296CrossRefPubMed
35.
Zurück zum Zitat Sommer AP, Pinheiro AL, Mester AR, Franke RP (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 19:29–33CrossRefPubMed Sommer AP, Pinheiro AL, Mester AR, Franke RP (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 19:29–33CrossRefPubMed
36.
Zurück zum Zitat Pinheiro ALB, Pozza DH, De Oliveira MG, Weissmann R, Ramalho LMP (2005) Polarized light (400–2000 nm) and non-ablative laser (685 nm): a description of the wound healing process using immunohistochemical analysis. Photomed. Laser Surg. 23:485–492CrossRefPubMed Pinheiro ALB, Pozza DH, De Oliveira MG, Weissmann R, Ramalho LMP (2005) Polarized light (400–2000 nm) and non-ablative laser (685 nm): a description of the wound healing process using immunohistochemical analysis. Photomed. Laser Surg. 23:485–492CrossRefPubMed
37.
Zurück zum Zitat Yasui T, Tohno Y, Araki T (2004) Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light. Appl Opt 43:10–14CrossRef Yasui T, Tohno Y, Araki T (2004) Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light. Appl Opt 43:10–14CrossRef
38.
Zurück zum Zitat Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52PubMedPubMedCentral Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52PubMedPubMedCentral
39.
Zurück zum Zitat Ali AM, Jemeel EI (2013) Improvement of wound healing in rabbit skin by low level polarized laser light. Iraqi Journal of Applied Physics 9:29–32 Ali AM, Jemeel EI (2013) Improvement of wound healing in rabbit skin by low level polarized laser light. Iraqi Journal of Applied Physics 9:29–32
40.
Zurück zum Zitat da Silva DF, Vidal BC, Zezell DM, Zorn TM, Nuñez SC, Ribeiro MS (2006) Collagen birefringence in skin repair in response to red polarized-laser therapy. J Biomed Opt 11:024002CrossRef da Silva DF, Vidal BC, Zezell DM, Zorn TM, Nuñez SC, Ribeiro MS (2006) Collagen birefringence in skin repair in response to red polarized-laser therapy. J Biomed Opt 11:024002CrossRef
41.
Zurück zum Zitat Fenyö M (1984) Theoretical and experimental basis of biostimulation. Opt Laser Technol 16:209CrossRef Fenyö M (1984) Theoretical and experimental basis of biostimulation. Opt Laser Technol 16:209CrossRef
42.
Zurück zum Zitat Lanza R (2007) Principles of tissue engineering. Elsevier Science Lanza R (2007) Principles of tissue engineering. Elsevier Science
43.
Zurück zum Zitat Wenzel GI, Anvari B, Mazhar A, Pikkula B, Oghalai JS (2007) Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea. J Biomed Opt 12 Wenzel GI, Anvari B, Mazhar A, Pikkula B, Oghalai JS (2007) Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea. J Biomed Opt 12
44.
Zurück zum Zitat Fung DT, Ng GY, Leung MC (2002) Therapeutic low energy laser improves the mechanical strength of repairing medial collateral ligamen. Lasers Surg Med 31:91–96CrossRefPubMed Fung DT, Ng GY, Leung MC (2002) Therapeutic low energy laser improves the mechanical strength of repairing medial collateral ligamen. Lasers Surg Med 31:91–96CrossRefPubMed
45.
Zurück zum Zitat Moody BR, McCarthy JE, Hruza GJ, Alam M (2003) Collagen remodeling after 585-nm pulsed dye laser irradiation: an ultrasonographic analysis. Dermatologic Surg 29:997–1000 Moody BR, McCarthy JE, Hruza GJ, Alam M (2003) Collagen remodeling after 585-nm pulsed dye laser irradiation: an ultrasonographic analysis. Dermatologic Surg 29:997–1000
46.
Zurück zum Zitat Sarrazy V, Billet F, Micallef L, Coulomb B, Desmoulière A (2011) Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen 19:10–155CrossRef Sarrazy V, Billet F, Micallef L, Coulomb B, Desmoulière A (2011) Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen 19:10–155CrossRef
47.
Zurück zum Zitat Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA (2006) Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 90:693–703CrossRefPubMed Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA (2006) Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 90:693–703CrossRefPubMed
48.
Zurück zum Zitat Stoller PC, Celliers PM, Reiser KM, Rubenchik AM (2002) Imaging collagen orientation using polarization-modulated second harmonic generation. Multiphot Microsc Biomed Sci II 4620:157–165CrossRef Stoller PC, Celliers PM, Reiser KM, Rubenchik AM (2002) Imaging collagen orientation using polarization-modulated second harmonic generation. Multiphot Microsc Biomed Sci II 4620:157–165CrossRef
49.
Zurück zum Zitat Plotnikov S, Juneja V, Isaacson AB, Mohler WA, Campagnola PJ (2006) Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys J 90:328–339CrossRefPubMed Plotnikov S, Juneja V, Isaacson AB, Mohler WA, Campagnola PJ (2006) Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys J 90:328–339CrossRefPubMed
50.
Zurück zum Zitat Gavin, H. P. (2013) The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University Gavin, H. P. (2013) The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University
51.
Zurück zum Zitat Stojadinovic OKA, Kodra A, Golinko M, Tomic-Canic M, Brem H (2007) A novel, non-angiogenic, mechanism of VEGF: stimulation of keratinocyte and fibroblast migration. Wound Repair Regen 15:A30–A30 Stojadinovic OKA, Kodra A, Golinko M, Tomic-Canic M, Brem H (2007) A novel, non-angiogenic, mechanism of VEGF: stimulation of keratinocyte and fibroblast migration. Wound Repair Regen 15:A30–A30
52.
Zurück zum Zitat Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:346–363CrossRef Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:346–363CrossRef
54.
Zurück zum Zitat Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17CrossRefPubMed Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17CrossRefPubMed
55.
Zurück zum Zitat Kertesza MI, Fenyöb E (1982) Hypothetical physical model for laser biostimulation. Opt Laser Technol 14:31–32CrossRef Kertesza MI, Fenyöb E (1982) Hypothetical physical model for laser biostimulation. Opt Laser Technol 14:31–32CrossRef
56.
Zurück zum Zitat Yu HS, Chang KL, Yu CL, Chen JW (1996) Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107:593–596CrossRefPubMed Yu HS, Chang KL, Yu CL, Chen JW (1996) Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107:593–596CrossRefPubMed
57.
Zurück zum Zitat Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M (2010) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364CrossRef Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M (2010) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364CrossRef
58.
Zurück zum Zitat Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125CrossRefPubMed Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125CrossRefPubMed
59.
Zurück zum Zitat Zhang WG, Wu CY, Pan WX, Tian L (2004) Low-power helium-neon laser irradiation enhances the expression of VEGF in murine myocardium. Chin Med J 117:1476–1480PubMed Zhang WG, Wu CY, Pan WX, Tian L (2004) Low-power helium-neon laser irradiation enhances the expression of VEGF in murine myocardium. Chin Med J 117:1476–1480PubMed
60.
Zurück zum Zitat Brem H et al (2009) Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Invest Dermatol 129:2275–2287CrossRefPubMed Brem H et al (2009) Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Invest Dermatol 129:2275–2287CrossRefPubMed
61.
Zurück zum Zitat Hutchison N, Fligny C (2013) Resident mesenchymal cells and fibrosis. Biochim Biophys Acta 1932:962–971CrossRef Hutchison N, Fligny C (2013) Resident mesenchymal cells and fibrosis. Biochim Biophys Acta 1932:962–971CrossRef
Metadaten
Titel
The effect of polarized light on the organization of collagen secreted by fibroblasts
verfasst von
Dana Akilbekova
Anuraag Boddupalli
Kaitlin M. Bratlie
Publikationsdatum
30.11.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2398-0

Weitere Artikel der Ausgabe 3/2018

Lasers in Medical Science 3/2018 Zur Ausgabe