Skip to main content
Erschienen in:

20.06.2017 | Basic Research

The Effect of Surgical Technique and Spacer Texture on Bone Regeneration: A Caprine Study Using the Masquelet Technique

verfasst von: Viviane Luangphakdy, MS, G. Elizabeth Pluhar, DVM, PhD, Nicolás S. Piuzzi, MD, Jean-Claude D’Alleyrand, MD, Cathy S. Carlson, DVM, PhD, Joan E. Bechtold, PhD, Jonathan Forsberg, MD, PhD, George F. Muschler, MD

Erschienen in: Clinical Orthopaedics and Related Research® | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

The Masquelet-induced-membrane technique is a commonly used method for treating segmental bone defects. However, there are no established clinical standards for management of the induced membrane before grafting.

Questions/purposes

Two clinically based theories were tested in a chronic caprine tibial defect model: (1) a textured spacer that increases the induced-membrane surface area will increase bone regeneration; and (2) surgical scraping to remove a thin tissue layer of the inner induced-membrane surface will enhance bone formation.

Methods

Thirty-two skeletally mature female goats were assigned to four groups: smooth spacer with or without membrane scraping and textured spacer with or without membrane scraping. During an initial surgical procedure (unilateral, left tibia), a defect was created excising bone (5 cm), periosteum (9 cm), and muscle (10 g). Segments initially were stabilized with an intramedullary rod and an antibiotic-impregnated polymethylmethacrylate spacer with a smooth or textured surface. Four weeks later, the spacer was removed and the induced-membrane was either scraped or left intact before bone grafting. Bone formation was assessed using micro-CT (total bone volume in 2.5-cm central defect region) as the primary outcome; radiographs and histologic analysis as secondary outcomes, with the reviewer blinded to the treatment groups of the samples being assessed 12 weeks after grafting. All statistical tests were performed using a linear mixed effects model approach.

Results

Micro-CT analysis showed greater bone formation in defects with scraped induced membrane (mean, 3034.5 mm3; median, 1928.0 mm3; quartile [Q]1–Q3, 273.3–2921.1 mm3) compared with defects with intact induced membrane (mean, 1709.5 mm3; median, 473.8 mm3; Q1–Q3, 132.2–1272.3 mm3; p = 0.034). There was no difference in bone formation between textured spacers (mean, 2405.5 mm3; median, 772.7 mm3; Q1–Q3, 195.9–2743.8 mm3) and smooth spacers (mean, 2473.2 mm3; median, 1143.6 mm3; Q1–Q3, 230.2–451.1 mm3; p = 0.917).

Conclusions

Scraping the induced-membrane surface to remove the innermost layer of the induced-membrane increased bone regeneration. A textured spacer that increased the induced-membrane surface area had no effect on bone regeneration.

Clinical Relevance

Scraping the induced membrane during the second stage of the Masquelet technique may be a rapid and simple means of improving healing of segmental bone defects, which needs to be confirmed clinically.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res. 2010;96:549–553.CrossRefPubMed Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res. 2010;96:549–553.CrossRefPubMed
2.
Zurück zum Zitat Ashman O, Phillips AM. Treatment of non-unions with bone defects: which option and why? Injury. 2013;44(suppl 1):S43–S45.CrossRefPubMed Ashman O, Phillips AM. Treatment of non-unions with bone defects: which option and why? Injury. 2013;44(suppl 1):S43–S45.CrossRefPubMed
3.
Zurück zum Zitat Aurégan JC, Bégué T. Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. Int Orthop. 2014;38:1971–1978.CrossRefPubMed Aurégan JC, Bégué T. Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. Int Orthop. 2014;38:1971–1978.CrossRefPubMed
4.
Zurück zum Zitat Brown KV, Guthrie HC, Ramasamy A, Kendrew JM, Clasper J. Modern military surgery: lessons from Iraq and Afghanistan. J Bone Joint Surg Br. 2012;94:536–543.CrossRefPubMed Brown KV, Guthrie HC, Ramasamy A, Kendrew JM, Clasper J. Modern military surgery: lessons from Iraq and Afghanistan. J Bone Joint Surg Br. 2012;94:536–543.CrossRefPubMed
5.
Zurück zum Zitat Chong KW, Woon CY, Wong MK. Induced membranes: a staged technique of bone-grafting for segmental bone loss: surgical technique. J Bone Joint Surg Am. 2011;93(suppl 1):85–91.CrossRefPubMed Chong KW, Woon CY, Wong MK. Induced membranes: a staged technique of bone-grafting for segmental bone loss: surgical technique. J Bone Joint Surg Am. 2011;93(suppl 1):85–91.CrossRefPubMed
6.
Zurück zum Zitat Dumic-Cule I, Pecina M, Jelic M, Jankolija M, Popek I, Grgurevic L, Vukicevic S. Biological aspects of segmental bone defects management. Int Orthop. 2015;39:1005–1011.CrossRefPubMed Dumic-Cule I, Pecina M, Jelic M, Jankolija M, Popek I, Grgurevic L, Vukicevic S. Biological aspects of segmental bone defects management. Int Orthop. 2015;39:1005–1011.CrossRefPubMed
7.
Zurück zum Zitat Giannoudis PV. Has the induced membrane technique revolutionalized the treatment of bone defects? Tech Orthop. 2016;31:2.CrossRef Giannoudis PV. Has the induced membrane technique revolutionalized the treatment of bone defects? Tech Orthop. 2016;31:2.CrossRef
8.
Zurück zum Zitat Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42:591–598.CrossRefPubMed Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42:591–598.CrossRefPubMed
9.
Zurück zum Zitat Grass M, Köhler T, Proksa R. 3D cone-beam CT reconstruction for circular trajectories. Phys Med Biol. 2000;45:329–347.CrossRefPubMed Grass M, Köhler T, Proksa R. 3D cone-beam CT reconstruction for circular trajectories. Phys Med Biol. 2000;45:329–347.CrossRefPubMed
10.
Zurück zum Zitat Klaue K, Knothe U, Anton C, Pfluger H, Stoddart M, Masquelet AC, Perren SM. Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury. 2009;40(suppl 4):S95–102.CrossRefPubMed Klaue K, Knothe U, Anton C, Pfluger H, Stoddart M, Masquelet AC, Perren SM. Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury. 2009;40(suppl 4):S95–102.CrossRefPubMed
11.
Zurück zum Zitat Lasanianos NG, Kanakaris NK, Giannoudis P V. Current management of long bone large segmental defects. Orthop Trauma. 2010;24:149–163.CrossRef Lasanianos NG, Kanakaris NK, Giannoudis P V. Current management of long bone large segmental defects. Orthop Trauma. 2010;24:149–163.CrossRef
12.
Zurück zum Zitat Luangphakdy V, Boehm C, Pan H, Nicholson C, Carloson J, Bechtold J, Pluhar E, Muschler G. Characterizaton of the Chronic Caprine Tibial Defect Model. Tissue Engineering International & Regenerative Medicine Society. TERMIS Annual Meeting. Washington, DC, USA, December 14–16, 2014. Luangphakdy V, Boehm C, Pan H, Nicholson C, Carloson J, Bechtold J, Pluhar E, Muschler G. Characterizaton of the Chronic Caprine Tibial Defect Model. Tissue Engineering International & Regenerative Medicine Society. TERMIS Annual Meeting. Washington, DC, USA, December 14–16, 2014.
13.
Zurück zum Zitat Masquelet AC. The evolution of the induced membrane technique: current status and future directions. Tech Orthop. 2016;31:3–8.CrossRef Masquelet AC. The evolution of the induced membrane technique: current status and future directions. Tech Orthop. 2016;31:3–8.CrossRef
14.
Zurück zum Zitat Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41:27–37.CrossRefPubMed Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41:27–37.CrossRefPubMed
15.
Zurück zum Zitat Masquelet AC, Fitoussi F, Begue T, Muller GP. [Reconstruction of the long bones by the induced membrane and spongy autograft][in French]. Ann Chir Plast Esthet. 2000;45:346–353.PubMed Masquelet AC, Fitoussi F, Begue T, Muller GP. [Reconstruction of the long bones by the induced membrane and spongy autograft][in French]. Ann Chir Plast Esthet. 2000;45:346–353.PubMed
16.
Zurück zum Zitat Masquelet AC, Obert L. [Induced membrane technique for bone defects in the hand and wrist][in French]. Chir Main. 2010;29(suppl 1]:S221–224. Masquelet AC, Obert L. [Induced membrane technique for bone defects in the hand and wrist][in French]. Chir Main. 2010;29(suppl 1]:S221–224.
17.
Zurück zum Zitat Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143–153.PubMed Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143–153.PubMed
18.
Zurück zum Zitat Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of long bone infections using the induced membrane technique: tips and tricks. J Orthop Trauma. 2016;30:e188–193.CrossRefPubMed Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of long bone infections using the induced membrane technique: tips and tricks. J Orthop Trauma. 2016;30:e188–193.CrossRefPubMed
19.
Zurück zum Zitat Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2010;16:123–145.CrossRefPubMed Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2010;16:123–145.CrossRefPubMed
20.
Zurück zum Zitat National Research Council. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: National Academies Press; 2011. National Research Council. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: National Academies Press; 2011.
21.
Zurück zum Zitat Owens BD, Kragh JF Jr, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2007;21:254–257.CrossRefPubMed Owens BD, Kragh JF Jr, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2007;21:254–257.CrossRefPubMed
22.
Zurück zum Zitat Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–79.CrossRefPubMed Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–79.CrossRefPubMed
23.
Zurück zum Zitat Pipitone PS, Rehman S. Management of traumatic bone loss in the lower extremity. Orthop Clin North Am. 2014;45:469–482.CrossRefPubMed Pipitone PS, Rehman S. Management of traumatic bone loss in the lower extremity. Orthop Clin North Am. 2014;45:469–482.CrossRefPubMed
24.
Zurück zum Zitat Pluhar E, Luangphakdy V, Boehm C, Shinohara K, Pan H, Carlson C, Muschler G. Effect of Grafting Materials on Bone Healing in a Chronic Caprine Tibial Defect Model. Military Health System Research Symposium. August 18–21, 2014, Fort Lauderdale, FL, USA. Pluhar E, Luangphakdy V, Boehm C, Shinohara K, Pan H, Carlson C, Muschler G. Effect of Grafting Materials on Bone Healing in a Chronic Caprine Tibial Defect Model. Military Health System Research Symposium. August 18–21, 2014, Fort Lauderdale, FL, USA.
25.
Zurück zum Zitat Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med. 2010;14:2561–2569.CrossRefPubMedPubMedCentral Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med. 2010;14:2561–2569.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Pountos I, Panteli M, Jones EA, Giannoudis PV. How the induced membrane contributes to bone repair. Tech Orthop. 2016;31:9–13.CrossRef Pountos I, Panteli M, Jones EA, Giannoudis PV. How the induced membrane contributes to bone repair. Tech Orthop. 2016;31:9–13.CrossRef
27.
Zurück zum Zitat Ronga M, Ferraro S, Fagetti A, Cherubino M, Valdatta L, Cherubino P. Masquelet technique for the treatment of a severe acute tibial bone loss. Injury. 2014;45(suppl 6):S111–115.CrossRefPubMed Ronga M, Ferraro S, Fagetti A, Cherubino M, Valdatta L, Cherubino P. Masquelet technique for the treatment of a severe acute tibial bone loss. Injury. 2014;45(suppl 6):S111–115.CrossRefPubMed
28.
Zurück zum Zitat Viateau V, Bensidhoum M, Guillemin G, Petite H, Hannouche D, Anagnostou F, Pelissier P. Use of the induced membrane technique for bone tissue engineering purposes: animal studies. Orthop Clin North Am. 2010;41:49–56.CrossRefPubMed Viateau V, Bensidhoum M, Guillemin G, Petite H, Hannouche D, Anagnostou F, Pelissier P. Use of the induced membrane technique for bone tissue engineering purposes: animal studies. Orthop Clin North Am. 2010;41:49–56.CrossRefPubMed
Metadaten
Titel
The Effect of Surgical Technique and Spacer Texture on Bone Regeneration: A Caprine Study Using the Masquelet Technique
verfasst von
Viviane Luangphakdy, MS
G. Elizabeth Pluhar, DVM, PhD
Nicolás S. Piuzzi, MD
Jean-Claude D’Alleyrand, MD
Cathy S. Carlson, DVM, PhD
Joan E. Bechtold, PhD
Jonathan Forsberg, MD, PhD
George F. Muschler, MD
Publikationsdatum
20.06.2017
Verlag
Springer US
Erschienen in
Clinical Orthopaedics and Related Research® / Ausgabe 10/2017
Print ISSN: 0009-921X
Elektronische ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-017-5420-8

Weitere Artikel der Ausgabe 10/2017

Clinical Orthopaedics and Related Research® 10/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Neue Osteoporose-Leitlinie: Frakturinzidenz senken, Versorgung verbessern

Das sind – zusammen mit dem Erhalt bzw. der Verbesserung der Funktionsfähigkeit und Lebensqualität der Patientinnen und Patienten – die Ziele der 2023er Leitlinie der Osteologischen Fachgesellschaften e.V. (DVO). Noch fremdeln viele Ärztinnen und Ärzte mit den neuen Konzepten und Risikotabellen. 

Myositiden – Fortschritte bei der Risikostratifizierung und Diagnostik

Bei der Myositis hat sich viel getan, was für den klinischen Alltag relevant ist – so Prof. Dr. Britta Maurer, Universitätsspital Bern, beim Deutschen Rheumatologiekongress 2024. Morbidität und Mortalität könnten zurückgehen.

Mesenchymale Stammzellen praktisch nutzlos gegen Gonarthrose

Die Idee, mit mesenchymalen Stammzellen arthrotische Kniegelenke zu regenerieren, klingt vielversprechend. Entsprechend zahlreich sind die Angebote dafür. Die Therapie ist allerdings nicht ganz billig – und vermutlich ohne großen Effekt, wie eine Metaanalyse einschlägiger Studien zeigt.

Unterarmfraktur: Tipps für ein zielgerichtetes Vorgehen

Bei Verdacht auf eine Unterarmfraktur seien 1000 Entscheidungen in 15 Minuten zu treffen, so der Kinderchirurg Dr. Stephan Rohleder auf dem Kongress für Kinder- und Jugendmedizin. Seine Tipps für ein zielgerichtetes Vorgehen erleichtern die adäquate Versorgung.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.