Skip to main content
Erschienen in: Inflammation 3/2015

01.06.2015

The Effects of Cordycepin on Ovalbumin-Induced Allergic Inflammation by Strengthening Treg Response and Suppressing Th17 Responses in Ovalbumin-Sensitized Mice

verfasst von: Zhang Tianzhu, Yang Shihai, Du Juan

Erschienen in: Inflammation | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

The aim of the current study was to use a mouse model of allergic asthma to investigate whether cordycepin has antiasthmatic effects, and if so, to determine the mechanism of these effects. A total of 50 mice were randomly assigned to five experimental groups: control, model, dexamethasone (Dex, 2 mg/kg), and cordycepin (20–40 mg/kg). Histological studies were evaluated by the hematoxylin and eosin staining, OVA-specific serum and BALF IgE levels and Treg/Th17 cytokines were evaluated by enzyme-linked immunosorbent assay, and RORγt and Foxp3 were evaluated by western blot. Our study demonstrated that cordycepin inhibited OVA-induced increases in eosinophil count; IL-17A levels were recovered and increased IL-10 levels in bronchoalveolar lavage fluid. Histological studies demonstrated that cordycepin substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot study demonstrated that cordycepin increased Foxp3 and inhibited RORγt. These findings suggest that cordycepin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.
Literatur
1.
Zurück zum Zitat Schuijs, M.J., M.A. Willart, H. Hammad, and B.N. Lambrecht. 2013. Cytokine targets in airway inflammation. Current Opinion in Pharmacology 13: 351–361.CrossRefPubMed Schuijs, M.J., M.A. Willart, H. Hammad, and B.N. Lambrecht. 2013. Cytokine targets in airway inflammation. Current Opinion in Pharmacology 13: 351–361.CrossRefPubMed
2.
Zurück zum Zitat Greenfeder, S., S.P. Umland, F.M. Cuss, R.W. Chapman, and R.W. Egan. 2001. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research 2: 71–79.CrossRefPubMedCentralPubMed Greenfeder, S., S.P. Umland, F.M. Cuss, R.W. Chapman, and R.W. Egan. 2001. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research 2: 71–79.CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Romagnani, S. 2000. The role of lymphocytes in allergic disease. The Journal of Allergy and Clinical Immunology 105: 399–408.CrossRefPubMed Romagnani, S. 2000. The role of lymphocytes in allergic disease. The Journal of Allergy and Clinical Immunology 105: 399–408.CrossRefPubMed
4.
Zurück zum Zitat Mosmann, T.R., and K.W. Moore. 1991. The role of IL-10 in cross regulation of TH1 and TH2 responses. Immunology Today 12: A49–A53.CrossRefPubMed Mosmann, T.R., and K.W. Moore. 1991. The role of IL-10 in cross regulation of TH1 and TH2 responses. Immunology Today 12: A49–A53.CrossRefPubMed
5.
Zurück zum Zitat Brewer, J.M., M. Conacher, and C.A. Hunter. 1999. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. Journal of Immunology 163: 6448–6454. Brewer, J.M., M. Conacher, and C.A. Hunter. 1999. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. Journal of Immunology 163: 6448–6454.
6.
Zurück zum Zitat Weaver, C.T., and R.D. Hatton. 2009. Interplay between the TH17 and TReg cell lineages:a (co-)evolutionary perspective. Nature Reviews Immunology 12: 883–889.CrossRef Weaver, C.T., and R.D. Hatton. 2009. Interplay between the TH17 and TReg cell lineages:a (co-)evolutionary perspective. Nature Reviews Immunology 12: 883–889.CrossRef
7.
Zurück zum Zitat Sakaguchi, S., M. Ono, and R. Setoguchi. 2006. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews 212: 8–27.CrossRefPubMed Sakaguchi, S., M. Ono, and R. Setoguchi. 2006. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews 212: 8–27.CrossRefPubMed
8.
Zurück zum Zitat Yoo, H.S., J.W. Shin, J.H. Cho, C.G. Son, Y.W. Lee, S.Y. Park, and C.K. Cho. 2004. Effect of cordyceps militarisextract on angiogenesis and tumor growth. Acta Pharmacologica Sinica 25: 657–665.PubMed Yoo, H.S., J.W. Shin, J.H. Cho, C.G. Son, Y.W. Lee, S.Y. Park, and C.K. Cho. 2004. Effect of cordyceps militarisextract on angiogenesis and tumor growth. Acta Pharmacologica Sinica 25: 657–665.PubMed
9.
Zurück zum Zitat Yun, Y.H., S.H. Han, S.J. Lee, S.K. Ko, C.K. Lee, N.J. Ha, and K.J. Kim. 2003. Anti-diabetic effects of CCCA, cmESS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Natural Product Sciences 9: 291–298. Yun, Y.H., S.H. Han, S.J. Lee, S.K. Ko, C.K. Lee, N.J. Ha, and K.J. Kim. 2003. Anti-diabetic effects of CCCA, cmESS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Natural Product Sciences 9: 291–298.
10.
Zurück zum Zitat Cho, M.A., D.S. Lee, M.J. Kim, J.M. Sung, and S.S. Ham. 2003. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Science and Biotechnology 12: 472–475. Cho, M.A., D.S. Lee, M.J. Kim, J.M. Sung, and S.S. Ham. 2003. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Science and Biotechnology 12: 472–475.
11.
Zurück zum Zitat Choi, S.B., C.H. Park, M.K. Choi, D.W. Jun, and S.M. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipesin 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry 68: 2257–2264.CrossRefPubMed Choi, S.B., C.H. Park, M.K. Choi, D.W. Jun, and S.M. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipesin 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry 68: 2257–2264.CrossRefPubMed
12.
Zurück zum Zitat Sugar, A.M., and R.P. McCaffrey. 1998. Antifungal activity of 3′-deoxyadenosine (cordycepin). Antimicrobial Agents and Chemotherapy 42: 1424–1427.PubMedCentralPubMed Sugar, A.M., and R.P. McCaffrey. 1998. Antifungal activity of 3′-deoxyadenosine (cordycepin). Antimicrobial Agents and Chemotherapy 42: 1424–1427.PubMedCentralPubMed
13.
Zurück zum Zitat De Julian-Ortiz, J.V., J. Galvez, C. Munoz-Collado, R. Garcia-Domenech, and C. Gimeno-Cardona. 1999. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. Journal of Medicinal Chemistry 42: 3308–3314.CrossRefPubMed De Julian-Ortiz, J.V., J. Galvez, C. Munoz-Collado, R. Garcia-Domenech, and C. Gimeno-Cardona. 1999. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. Journal of Medicinal Chemistry 42: 3308–3314.CrossRefPubMed
14.
Zurück zum Zitat Zhou, X., C.U. Meyer, P. Schmidtke, and F. Zepp. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology 453(2–3): 309–317.CrossRefPubMed Zhou, X., C.U. Meyer, P. Schmidtke, and F. Zepp. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology 453(2–3): 309–317.CrossRefPubMed
15.
Zurück zum Zitat Oh, S.R., M.Y. Lee, K. Ahn, B.Y. Park, O.K. Kwon, H. Joung, J. Lee, D.Y. Kim, S. Lee, J.H. Kim, and H.K. Lee. 2006. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. International Immunopharmacology 6: 978–986.CrossRefPubMed Oh, S.R., M.Y. Lee, K. Ahn, B.Y. Park, O.K. Kwon, H. Joung, J. Lee, D.Y. Kim, S. Lee, J.H. Kim, and H.K. Lee. 2006. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. International Immunopharmacology 6: 978–986.CrossRefPubMed
16.
Zurück zum Zitat Djukanovic, R., W.R. Roche, J.W. Wilson, et al. 1990. Mucosal inflammation in asthma. American Review of Respiratory Disease 142: 434–457.CrossRefPubMed Djukanovic, R., W.R. Roche, J.W. Wilson, et al. 1990. Mucosal inflammation in asthma. American Review of Respiratory Disease 142: 434–457.CrossRefPubMed
17.
Zurück zum Zitat Duan, W., J.H. Chan, C.H. Wong CH, et al. 2004. Anti inflammatory effects of mitogen-activated protein kinase inhibitor U0126 in an asthma mouse model. Journal of Immunology 172: 7053–7059.CrossRef Duan, W., J.H. Chan, C.H. Wong CH, et al. 2004. Anti inflammatory effects of mitogen-activated protein kinase inhibitor U0126 in an asthma mouse model. Journal of Immunology 172: 7053–7059.CrossRef
18.
Zurück zum Zitat Jain, V.V., K. Kitagaki, T. Businga, et al. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. Journal of Allergy and Clinical Immunology 110(6): 867–872.CrossRefPubMed Jain, V.V., K. Kitagaki, T. Businga, et al. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. Journal of Allergy and Clinical Immunology 110(6): 867–872.CrossRefPubMed
19.
Zurück zum Zitat Elsner, J., and A. Kapp. 1999. Regulation and modulation of eosinophil effector functions. Allergy 54: 15–26.CrossRefPubMed Elsner, J., and A. Kapp. 1999. Regulation and modulation of eosinophil effector functions. Allergy 54: 15–26.CrossRefPubMed
20.
Zurück zum Zitat Doganci, A., T. Eigenbrod, and N. Krug. 2005. The IL-6R alpha chain controls lung CD4+CD25+Treg development and function during allergic airway inflammation in vivo. Journal of Clinical Investigation 115: 313–325.CrossRefPubMedCentralPubMed Doganci, A., T. Eigenbrod, and N. Krug. 2005. The IL-6R alpha chain controls lung CD4+CD25+Treg development and function during allergic airway inflammation in vivo. Journal of Clinical Investigation 115: 313–325.CrossRefPubMedCentralPubMed
Metadaten
Titel
The Effects of Cordycepin on Ovalbumin-Induced Allergic Inflammation by Strengthening Treg Response and Suppressing Th17 Responses in Ovalbumin-Sensitized Mice
verfasst von
Zhang Tianzhu
Yang Shihai
Du Juan
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0068-y

Weitere Artikel der Ausgabe 3/2015

Inflammation 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.