Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2018

11.09.2017

The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity

verfasst von: Mahmut Sözmen, Alparslan K. Devrim, Yonca B. Kabak, Tuba Devrim, Mert Sudagidan

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Periostin is an extracellular matrix protein from fasciclin family, and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The present study was designed to investigate cardioprotective effects of the recombinant murine periostin peptide administration in a rat model of isoproterenol (ISO)-induced myocardial injury. The experiment was performed on 84 adult male Sprague Dawley rats in 4 groups (n = 21): control group (1), periostin-treated group (2), ISO-treated group (3), and ISO + periostin-treated group (4). The groups were further divided into three subgroups based on the duration of the experiment in which rats were killed on days 1, 7, and 28 (n = 7). Growth factors (VEGF, ANGPT, FGF-2, TGFβ), mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, phospho-histone H3), cell cycle activators and inhibitors (cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) mRNA were detected using quantitative real-time polymerase chain reaction (PCR) and PCR array. Immunohistochemistry staining was used to directly detect protein level and distribution in the heart tissues. Administration of periostin following ISO-induced cardiotoxicity revealed that periostin alleviated deleterious effects of ISO through several pathways: (1) periostin induced mitotic activity of endothelial/fibroblastic cells, (2) periostin drives cardiomyocytes into S and M phases, thus promoting proliferation of cardiomyocytes, (3) periostin contributed to collagen degradation, tissue remodeling, and reduced cardiac fibrosis during the healing process following myocardial damage while preserving tissue matrix, (4) periostin stimulated angiogenesis by upregulating THBS1, TGFB2, and HGF genes, (5) periostin regulated cell growth and proliferation while maintaining cell shape and cellular muscle contractions (ACTB) and functioned as chemoattractant factor (CCL2) at the beginning of myocardial damage.
Literatur
1.
2.
Zurück zum Zitat Martin-Puig, S., et al. (2012). Heart repair: From natural mechanisms of cardiomyocyte production to the design of new cardiac therapies. Annals of the New York Academy of Sciences, 1254, 71–81.CrossRefPubMed Martin-Puig, S., et al. (2012). Heart repair: From natural mechanisms of cardiomyocyte production to the design of new cardiac therapies. Annals of the New York Academy of Sciences, 1254, 71–81.CrossRefPubMed
3.
Zurück zum Zitat Piras, B. A., et al. (2016). Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction. Gene Therapy, 23(5), 469–478.CrossRefPubMed Piras, B. A., et al. (2016). Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction. Gene Therapy, 23(5), 469–478.CrossRefPubMed
4.
Zurück zum Zitat Engel, F. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19(10), 1175–1187.CrossRef Engel, F. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19(10), 1175–1187.CrossRef
5.
Zurück zum Zitat Kuhn, B., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Medicine, 13(8), 962–969.CrossRefPubMed Kuhn, B., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Medicine, 13(8), 962–969.CrossRefPubMed
6.
Zurück zum Zitat Takeshita, S., et al. (1993). Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochemical Journal, 294(Pt 1), 271–278.CrossRefPubMedPubMedCentral Takeshita, S., et al. (1993). Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochemical Journal, 294(Pt 1), 271–278.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Litvin, J., et al. (2006). Periostin and periostin-like factor in the human heart: Possible therapeutic targets. Cardiovascular Pathology, 15(1), 24–32.CrossRefPubMed Litvin, J., et al. (2006). Periostin and periostin-like factor in the human heart: Possible therapeutic targets. Cardiovascular Pathology, 15(1), 24–32.CrossRefPubMed
8.
Zurück zum Zitat Stanton, L. W., et al. (2000). Altered patterns of gene expression in response to myocardial infarction. Circulation Research, 86(9), 939–945.CrossRefPubMed Stanton, L. W., et al. (2000). Altered patterns of gene expression in response to myocardial infarction. Circulation Research, 86(9), 939–945.CrossRefPubMed
9.
Zurück zum Zitat Shimazaki, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. Journal of Experimental Medicine, 205(2), 295–303.CrossRefPubMedPubMedCentral Shimazaki, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. Journal of Experimental Medicine, 205(2), 295–303.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ojha, S., et al. (2013). Cardioprotective effect of lycopene against isoproterenol-induced myocardial infarction in rats. Human and Experimental Toxicology, 32(5), 492–503.CrossRefPubMed Ojha, S., et al. (2013). Cardioprotective effect of lycopene against isoproterenol-induced myocardial infarction in rats. Human and Experimental Toxicology, 32(5), 492–503.CrossRefPubMed
11.
Zurück zum Zitat Oka, T., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101(3), 313–321.CrossRefPubMedPubMedCentral Oka, T., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101(3), 313–321.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Takeda, N., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. The Journal of Clinical Investigation, 120(1), 254–265.CrossRefPubMed Takeda, N., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. The Journal of Clinical Investigation, 120(1), 254–265.CrossRefPubMed
14.
Zurück zum Zitat Inagawa, K., & Ieda, M. (2013). Direct reprogramming of mouse fibroblasts into cardiac myocytes. Journal of Cardiovascular Translational Research, 6(1), 37–45.CrossRefPubMed Inagawa, K., & Ieda, M. (2013). Direct reprogramming of mouse fibroblasts into cardiac myocytes. Journal of Cardiovascular Translational Research, 6(1), 37–45.CrossRefPubMed
15.
Zurück zum Zitat Wei, Y., et al. (1998). Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proceedings of the National Academy of the Science of the USA, 95(13), 7480–7484. Wei, Y., et al. (1998). Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proceedings of the National Academy of the Science of the USA, 95(13), 7480–7484.
17.
Zurück zum Zitat Furtado, M. B., et al. (2014). Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circulation Research, 114(9), 1422–1434.CrossRefPubMedPubMedCentral Furtado, M. B., et al. (2014). Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circulation Research, 114(9), 1422–1434.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zimmermann, R., et al. (1997). Time course of mitosis and collateral growth following coronary microembolization in the porcine heart. Cell and Tissue Research, 287(3), 583–590.CrossRefPubMed Zimmermann, R., et al. (1997). Time course of mitosis and collateral growth following coronary microembolization in the porcine heart. Cell and Tissue Research, 287(3), 583–590.CrossRefPubMed
19.
Zurück zum Zitat Yuasa, S., et al. (2004). Cardiomyocytes undergo cells division following myocardial infarction is a spatially and temporally restricted event in rats. Molecular and Cellular Biochemistry, 259(1–2), 177–181.CrossRefPubMed Yuasa, S., et al. (2004). Cardiomyocytes undergo cells division following myocardial infarction is a spatially and temporally restricted event in rats. Molecular and Cellular Biochemistry, 259(1–2), 177–181.CrossRefPubMed
20.
Zurück zum Zitat Tamamori-Adachi, M., et al. (2008). Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and skp2 ubiquitin ligase. Cardiovascular Research, 80(2), 181–190.CrossRefPubMed Tamamori-Adachi, M., et al. (2008). Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and skp2 ubiquitin ligase. Cardiovascular Research, 80(2), 181–190.CrossRefPubMed
22.
Zurück zum Zitat Tamamori-Adachi, M., et al. (2008). Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase. Cardiovascular Research, 80(2), 181–190.CrossRefPubMed Tamamori-Adachi, M., et al. (2008). Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase. Cardiovascular Research, 80(2), 181–190.CrossRefPubMed
23.
Zurück zum Zitat Pasumarthi, K. B., et al. (2005). Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circulation Research, 96(1), 110–118.CrossRefPubMed Pasumarthi, K. B., et al. (2005). Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circulation Research, 96(1), 110–118.CrossRefPubMed
24.
Zurück zum Zitat Hassink, R. J., et al. (2008). Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovascular Research, 78(1), 18–25.CrossRefPubMed Hassink, R. J., et al. (2008). Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovascular Research, 78(1), 18–25.CrossRefPubMed
25.
Zurück zum Zitat Busk, P. K., et al. (2005). Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy. Experimental Cell Research, 304(1), 149–161.CrossRefPubMed Busk, P. K., et al. (2005). Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy. Experimental Cell Research, 304(1), 149–161.CrossRefPubMed
26.
Zurück zum Zitat Tamamori-Adachi, M., et al. (2008). Differential regulation of cyclin D1 and D2 in protecting against cardiomyocyte proliferation. Cell Cycle, 7(23), 3768–3774.CrossRefPubMed Tamamori-Adachi, M., et al. (2008). Differential regulation of cyclin D1 and D2 in protecting against cardiomyocyte proliferation. Cell Cycle, 7(23), 3768–3774.CrossRefPubMed
27.
Zurück zum Zitat Tamamori-Adachi, M., et al. (2003). Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circulation Research, 92(1), 12–19.CrossRef Tamamori-Adachi, M., et al. (2003). Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circulation Research, 92(1), 12–19.CrossRef
28.
Zurück zum Zitat Diehl, J. A., et al. (1998). Glycogen synthase kinase-3beta regulates cyclin d1 proteolysis and subcellular localization. Genes & Development, 12(22), 3499–3511.CrossRef Diehl, J. A., et al. (1998). Glycogen synthase kinase-3beta regulates cyclin d1 proteolysis and subcellular localization. Genes & Development, 12(22), 3499–3511.CrossRef
29.
Zurück zum Zitat Deuse, T., et al. (2009). Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120(11 Suppl), S247–S254.CrossRefPubMed Deuse, T., et al. (2009). Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120(11 Suppl), S247–S254.CrossRefPubMed
30.
Zurück zum Zitat Tuby, H., et al. (2006). Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers in Surgery and Medicine, 38(7), 682–688.CrossRefPubMed Tuby, H., et al. (2006). Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers in Surgery and Medicine, 38(7), 682–688.CrossRefPubMed
31.
Zurück zum Zitat Davis, S., et al. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 87(7), 1161–1169.CrossRefPubMed Davis, S., et al. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 87(7), 1161–1169.CrossRefPubMed
32.
Zurück zum Zitat Katsuragi, N., et al. (2004). Periostin as a novel factor responsible for ventricular dilation. Circulation, 110(13), 1806–1813.CrossRefPubMed Katsuragi, N., et al. (2004). Periostin as a novel factor responsible for ventricular dilation. Circulation, 110(13), 1806–1813.CrossRefPubMed
33.
Zurück zum Zitat Wang, D., et al. (2003). Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension, 42(1), 88–95.CrossRefPubMed Wang, D., et al. (2003). Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension, 42(1), 88–95.CrossRefPubMed
34.
Zurück zum Zitat Yoshioka, N., et al. (2002). Suppression of anchorage-independent growth of human cancer cell lines by the TRIF52/periostin/OSF-2 gene. Experimental Cell Research, 279(1), 91–99.CrossRefPubMed Yoshioka, N., et al. (2002). Suppression of anchorage-independent growth of human cancer cell lines by the TRIF52/periostin/OSF-2 gene. Experimental Cell Research, 279(1), 91–99.CrossRefPubMed
35.
Zurück zum Zitat Taniyama, Y., et al. (2016). Selective blockade of periostin exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension, 67(2), 356–361.PubMed Taniyama, Y., et al. (2016). Selective blockade of periostin exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension, 67(2), 356–361.PubMed
36.
Zurück zum Zitat Suzuki, G., et al. (2011). Autologous mesenchymal stem cells mobilize cKit + and CD133 + bone marrow progenitor cells and improve regional function in hibernating myocardium. Circulation Research, 109(9), 1044–1054.CrossRefPubMed Suzuki, G., et al. (2011). Autologous mesenchymal stem cells mobilize cKit + and CD133 + bone marrow progenitor cells and improve regional function in hibernating myocardium. Circulation Research, 109(9), 1044–1054.CrossRefPubMed
37.
Zurück zum Zitat Irigoyen, J. P., et al. (1999). The plasminogen activator system: Biology and regulation. Cellular and Molecular Life Sciences, 56(1–2), 104–132.CrossRefPubMed Irigoyen, J. P., et al. (1999). The plasminogen activator system: Biology and regulation. Cellular and Molecular Life Sciences, 56(1–2), 104–132.CrossRefPubMed
38.
Zurück zum Zitat Stavropoulou, A., et al. (2010). uPA, uPAR and TGFβ1 expression during early and late post myocardial infarction period in rat myocardium. In Vivo, 24(5), 647–652.PubMed Stavropoulou, A., et al. (2010). uPA, uPAR and TGFβ1 expression during early and late post myocardial infarction period in rat myocardium. In Vivo, 24(5), 647–652.PubMed
39.
Zurück zum Zitat Xia, Y., et al. (2011). Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension, 58(5), 902–911.CrossRefPubMedPubMedCentral Xia, Y., et al. (2011). Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension, 58(5), 902–911.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Nakamura, T., et al. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106(12), 1511–1519.CrossRefPubMedPubMedCentral Nakamura, T., et al. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106(12), 1511–1519.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Duan, H. F., et al. (2007). Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Human Gene Therapy, 18(11), 1119–1128.CrossRefPubMed Duan, H. F., et al. (2007). Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Human Gene Therapy, 18(11), 1119–1128.CrossRefPubMed
42.
Zurück zum Zitat Jianqiang, P., et al. (2015). Expression of hypoxia-inducible factor 1 alpha ameliorate myocardial ischemia in rat. Biochemical Biophysical Research Communications, 465(4), 691–695.CrossRefPubMed Jianqiang, P., et al. (2015). Expression of hypoxia-inducible factor 1 alpha ameliorate myocardial ischemia in rat. Biochemical Biophysical Research Communications, 465(4), 691–695.CrossRefPubMed
43.
Zurück zum Zitat Arumugam, S., et al. (2012). Quercetin offers cardioprotection against progression of experimental autoimmune myocarditis by suppression of oxidative and endoplasmic reticulum stress via endothelin-1/MAPK signalling. Free Radical Research, 46(2), 154–163.CrossRefPubMed Arumugam, S., et al. (2012). Quercetin offers cardioprotection against progression of experimental autoimmune myocarditis by suppression of oxidative and endoplasmic reticulum stress via endothelin-1/MAPK signalling. Free Radical Research, 46(2), 154–163.CrossRefPubMed
44.
Zurück zum Zitat Doherty, G. J., & McMahon, H. T. (2008). Mediation, modulation, and consequences of membrane–cytoskeleton interactions. Annual Review of Biophysics, 37, 65–95.CrossRefPubMed Doherty, G. J., & McMahon, H. T. (2008). Mediation, modulation, and consequences of membrane–cytoskeleton interactions. Annual Review of Biophysics, 37, 65–95.CrossRefPubMed
45.
Zurück zum Zitat Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195.CrossRefPubMed Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195.CrossRefPubMed
46.
Zurück zum Zitat Schwarz, E. R., et al. (2004). Monocyte chemoattractant protein 1-induced monocyte infiltration produces angiogenesis but not arteriogenesis in chronically infarcted myocardium. Journal of Cardiovascular Pharmacolology Therapeutics, 9(4), 279–289.CrossRef Schwarz, E. R., et al. (2004). Monocyte chemoattractant protein 1-induced monocyte infiltration produces angiogenesis but not arteriogenesis in chronically infarcted myocardium. Journal of Cardiovascular Pharmacolology Therapeutics, 9(4), 279–289.CrossRef
47.
Zurück zum Zitat Kakio, T., et al. (2000). Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the ischemic and reperfused rat heart. Laboratory Investigation, 80(7), 1127–1136.CrossRefPubMed Kakio, T., et al. (2000). Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the ischemic and reperfused rat heart. Laboratory Investigation, 80(7), 1127–1136.CrossRefPubMed
48.
Zurück zum Zitat Schaper, W. (2000). Quo vadis collateral blood flow? A commentary on a highly cited paper. Cardiovascular Research, 45(1), 220–223.CrossRefPubMed Schaper, W. (2000). Quo vadis collateral blood flow? A commentary on a highly cited paper. Cardiovascular Research, 45(1), 220–223.CrossRefPubMed
49.
Zurück zum Zitat Lee, S. G., et al. (2012). Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina. Clinical and Experimental Ophthalmology, 40(1), e47–e57.CrossRefPubMed Lee, S. G., et al. (2012). Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina. Clinical and Experimental Ophthalmology, 40(1), e47–e57.CrossRefPubMed
50.
Zurück zum Zitat Cao, H., et al. (2006). Novel role for stat-5b in the regulation of hsp27-fgf-2 axis facilitating thrombin-induced vascular smooth muscle cell growth and motility. Circulation Research, 98(7), 913–922.CrossRefPubMed Cao, H., et al. (2006). Novel role for stat-5b in the regulation of hsp27-fgf-2 axis facilitating thrombin-induced vascular smooth muscle cell growth and motility. Circulation Research, 98(7), 913–922.CrossRefPubMed
51.
Zurück zum Zitat Bian, Y., et al. (2009). Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. American Journal of Physiology Heart and Circulatory Physiology, 297(6), H1974–H1983.CrossRefPubMedPubMedCentral Bian, Y., et al. (2009). Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. American Journal of Physiology Heart and Circulatory Physiology, 297(6), H1974–H1983.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Thompson, K. L., et al. (2010). Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 66(2), 303–314.CrossRefPubMed Thompson, K. L., et al. (2010). Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 66(2), 303–314.CrossRefPubMed
53.
Zurück zum Zitat Fukuda, K., et al. (2001). Quantification of TGF-beta1 mRNA along rat nephron in obstructive nephropathy. American Journal of Physiology. Renal Physiology, 281(3), F513–F521.CrossRefPubMed Fukuda, K., et al. (2001). Quantification of TGF-beta1 mRNA along rat nephron in obstructive nephropathy. American Journal of Physiology. Renal Physiology, 281(3), F513–F521.CrossRefPubMed
54.
Zurück zum Zitat McFee, R. M., et al. (2009). Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biology of Reproduction, 81(5), 966–977.CrossRefPubMedPubMedCentral McFee, R. M., et al. (2009). Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biology of Reproduction, 81(5), 966–977.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Mikalsen, B., et al. (2010). Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat. American Journal of Transplantation, 10(7), 1534–1544.CrossRefPubMed Mikalsen, B., et al. (2010). Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat. American Journal of Transplantation, 10(7), 1534–1544.CrossRefPubMed
Metadaten
Titel
The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity
verfasst von
Mahmut Sözmen
Alparslan K. Devrim
Yonca B. Kabak
Tuba Devrim
Mert Sudagidan
Publikationsdatum
11.09.2017
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9426-y

Weitere Artikel der Ausgabe 2/2018

Cardiovascular Toxicology 2/2018 Zur Ausgabe