Skip to main content
Erschienen in: Lasers in Medical Science 9/2016

30.08.2016 | Original Article

The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study

verfasst von: M. Rajaei Jafarabadi, G. Rouhi, G. Kaka, S. H. Sadraie, J. Arum

Erschienen in: Lasers in Medical Science | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats’ femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm2, 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P < 0.05 and P < 0.001, respectively) and 6 weeks after surgery (P < 0.05 and P < 0.05, respectively). Histological evaluations showed a higher amount of new bone formation and better maturity in the LLLT and WBV groups than the control groups at 3 and 6 weeks after surgery. Biomechanical tests showed that the maximum force at fracture in the LLLT (P < 0.05 in 3 weeks and P < 0.05 in 6 weeks) and WBV (P < 0.001 in 3 weeks and P < 0.05 in 6 weeks) groups was greater than that in the control groups at both time intervals. But a combination of laser and vibration therapy, LV, did not show a positive interaction on bone fracture healing process. The biostimulation effects of PBM or LLLT and of low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process.
Literatur
1.
Zurück zum Zitat Lirani-Galvao AP, Jorgetti V, da Silva OL (2006) Comparative study of how low-level laser therapy and low-intensify pulsed ultrasound affect bone repair in rats. Photomed Laser Surg 24:735–740CrossRefPubMed Lirani-Galvao AP, Jorgetti V, da Silva OL (2006) Comparative study of how low-level laser therapy and low-intensify pulsed ultrasound affect bone repair in rats. Photomed Laser Surg 24:735–740CrossRefPubMed
2.
Zurück zum Zitat Pretel H, Lizarelli RFZ, Ramalho LTO (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39:788–796CrossRefPubMed Pretel H, Lizarelli RFZ, Ramalho LTO (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39:788–796CrossRefPubMed
4.
Zurück zum Zitat Franco G, Laraia I, Maciel A, Miguel N, Dos Santos G, Fabrega-Carvalho C, Pinto C, Pettian M, Cunha M (2013) Effects of chronic passive smoking on the regeneration of rat femoral defects filled with hydroxyapatite and stimulated by laser therapy. Injury 44:908–913CrossRefPubMed Franco G, Laraia I, Maciel A, Miguel N, Dos Santos G, Fabrega-Carvalho C, Pinto C, Pettian M, Cunha M (2013) Effects of chronic passive smoking on the regeneration of rat femoral defects filled with hydroxyapatite and stimulated by laser therapy. Injury 44:908–913CrossRefPubMed
5.
Zurück zum Zitat Luger E, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRefPubMed Luger E, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRefPubMed
6.
Zurück zum Zitat Obradovic R, Kasic L, Mihailovic D, Ignjatovic N, Uskokovic D (2007) Comparative efficacy analysis of biomaterials and soft lasers in repair of bone defects. J Oral Laser Appl 7:161–166 Obradovic R, Kasic L, Mihailovic D, Ignjatovic N, Uskokovic D (2007) Comparative efficacy analysis of biomaterials and soft lasers in repair of bone defects. J Oral Laser Appl 7:161–166
7.
Zurück zum Zitat Pinheiro A, Limeira A, Marzola C (2003) Effect of low level laser therapy on repair of bone defects grafted with inorganic bovine bone. Braz Dent J 14:177–181CrossRefPubMed Pinheiro A, Limeira A, Marzola C (2003) Effect of low level laser therapy on repair of bone defects grafted with inorganic bovine bone. Braz Dent J 14:177–181CrossRefPubMed
8.
Zurück zum Zitat Diniz J, Nicolau R, Ocarino N, Magalhaes F, Pereira R, Serakides R (2009) Effect of low-power gallium-aluminium-arsenium laser therapy (830 nm) in combination with bisphosphonate treatment on osteopenic bone structure: an experimental animal study. Lasers Med Sci 24:347–352CrossRefPubMed Diniz J, Nicolau R, Ocarino N, Magalhaes F, Pereira R, Serakides R (2009) Effect of low-power gallium-aluminium-arsenium laser therapy (830 nm) in combination with bisphosphonate treatment on osteopenic bone structure: an experimental animal study. Lasers Med Sci 24:347–352CrossRefPubMed
9.
Zurück zum Zitat Lopes CB, Pacheco MTT, Silveira L Jr, Duarte J, Cangussu MCT, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fracture treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B Biol 89:125–130CrossRef Lopes CB, Pacheco MTT, Silveira L Jr, Duarte J, Cangussu MCT, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fracture treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B Biol 89:125–130CrossRef
10.
Zurück zum Zitat Pinheiro A, Jr FL, Gerbi M, Ramalho L, Marzola C, Ponzi E, Soares A, Carvalho L, Lima H, Goncalves T (2003) Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg 21:383–388CrossRef Pinheiro A, Jr FL, Gerbi M, Ramalho L, Marzola C, Ponzi E, Soares A, Carvalho L, Lima H, Goncalves T (2003) Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg 21:383–388CrossRef
11.
Zurück zum Zitat Nicolau R, Jorgetti V, Rigau J, Pacheco M, Reis L, Zangaro R (2003) Effect of low-power GaAlAs (660 nm) on bone structure, cell activity: an experimental animal study. Lasers Med Sci 18:89–94CrossRef Nicolau R, Jorgetti V, Rigau J, Pacheco M, Reis L, Zangaro R (2003) Effect of low-power GaAlAs (660 nm) on bone structure, cell activity: an experimental animal study. Lasers Med Sci 18:89–94CrossRef
12.
Zurück zum Zitat Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700CrossRefPubMed Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700CrossRefPubMed
13.
Zurück zum Zitat Gerbi M, Marques A, Ramalho L, Ponzi E, Carvalho C, Santos R, Oliveira P, Noia M, Pinheiro A (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60CrossRefPubMed Gerbi M, Marques A, Ramalho L, Ponzi E, Carvalho C, Santos R, Oliveira P, Noia M, Pinheiro A (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60CrossRefPubMed
14.
Zurück zum Zitat Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533CrossRefPubMed Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533CrossRefPubMed
15.
Zurück zum Zitat Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1982) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Laser Life Sci 1:61–77 Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1982) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Laser Life Sci 1:61–77
16.
Zurück zum Zitat Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effect of low intensity of laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35:117–120CrossRefPubMed Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effect of low intensity of laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35:117–120CrossRefPubMed
17.
Zurück zum Zitat Khadra M, Ronold H, Lyngstadaas S, Ellingsen J, Haanæs H (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Impl Res 15:325–332CrossRef Khadra M, Ronold H, Lyngstadaas S, Ellingsen J, Haanæs H (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Impl Res 15:325–332CrossRef
18.
Zurück zum Zitat AbuElsaad N, Soory M, Gasalla L, Ragab L, Dunne S, Zalata K, Louca C (2009) Effect of soft laser and bioactive glass on bone regeneration in the treatment of bone defects (an experimental study). Lasers Med Sci 24:527–533CrossRef AbuElsaad N, Soory M, Gasalla L, Ragab L, Dunne S, Zalata K, Louca C (2009) Effect of soft laser and bioactive glass on bone regeneration in the treatment of bone defects (an experimental study). Lasers Med Sci 24:527–533CrossRef
19.
Zurück zum Zitat Nissan J, Assif D, Gross M, Yaffe A, Binderman I (2006) Effect of low intensify laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–624CrossRefPubMed Nissan J, Assif D, Gross M, Yaffe A, Binderman I (2006) Effect of low intensify laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–624CrossRefPubMed
20.
Zurück zum Zitat Adel S, Ayad K, Shaheen A (2011) Effect of low level laser therapy on bone histomorphometry in rats. Life Sci J 8:372–378 Adel S, Ayad K, Shaheen A (2011) Effect of low level laser therapy on bone histomorphometry in rats. Life Sci J 8:372–378
21.
Zurück zum Zitat Pereira C, Sallum E, Nociti F, Moreira R (2009) The effect of low-intensify laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac 24:47–51 Pereira C, Sallum E, Nociti F, Moreira R (2009) The effect of low-intensify laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac 24:47–51
22.
Zurück zum Zitat Maluf A, Maluf R, Brito C, Franca FM, de Brito RB Jr (2010) Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbone. Lasers Med Sci 25:693–698CrossRefPubMed Maluf A, Maluf R, Brito C, Franca FM, de Brito RB Jr (2010) Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbone. Lasers Med Sci 25:693–698CrossRefPubMed
23.
Zurück zum Zitat Fritton S, McLeod K, Rubin C (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33:317–325CrossRefPubMed Fritton S, McLeod K, Rubin C (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33:317–325CrossRefPubMed
24.
Zurück zum Zitat Garman R, Guadette G, Donahue L, Rubin C, Judex S (2007) Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res 25:732–740CrossRefPubMed Garman R, Guadette G, Donahue L, Rubin C, Judex S (2007) Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res 25:732–740CrossRefPubMed
25.
Zurück zum Zitat Judex S, Donahue L, Rubin C (2002) Genetic predisposition to osteoporosis is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 16(10):1280–82PubMed Judex S, Donahue L, Rubin C (2002) Genetic predisposition to osteoporosis is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 16(10):1280–82PubMed
26.
Zurück zum Zitat Garman R, Rubin C, Judex S (2002) The structural response of trabecular bone to low-level mechanical stimuli. Second Joint EMBS/BMES Conference, Houston, pp 456–457 Garman R, Rubin C, Judex S (2002) The structural response of trabecular bone to low-level mechanical stimuli. Second Joint EMBS/BMES Conference, Houston, pp 456–457
27.
Zurück zum Zitat Judex S, Boyd S, Qin Y, Turner S, Ye K, Muller R, Rubin C (2003) Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann Biomed Eng 31:12–20CrossRefPubMed Judex S, Boyd S, Qin Y, Turner S, Ye K, Muller R, Rubin C (2003) Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann Biomed Eng 31:12–20CrossRefPubMed
28.
Zurück zum Zitat Rubin C, Turner A, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism: low mechanical signals strengthen long bones. Nature 412:603–604CrossRefPubMed Rubin C, Turner A, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism: low mechanical signals strengthen long bones. Nature 412:603–604CrossRefPubMed
29.
Zurück zum Zitat Xie L, Jacobson J, Choi E, Busa B, Donahue L, Miller L, Rubin C, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059–1066CrossRefPubMed Xie L, Jacobson J, Choi E, Busa B, Donahue L, Miller L, Rubin C, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059–1066CrossRefPubMed
30.
Zurück zum Zitat Gilsanz V, Wren T, Sanchez M, Dorey F, Judex S, Rubin C (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21:1464–1474CrossRefPubMed Gilsanz V, Wren T, Sanchez M, Dorey F, Judex S, Rubin C (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21:1464–1474CrossRefPubMed
31.
Zurück zum Zitat Rubin C, Pecker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19:343–351CrossRefPubMed Rubin C, Pecker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19:343–351CrossRefPubMed
32.
Zurück zum Zitat Ward K, Alsop C, Caulton J, Rubin C, Adams J, Moghul Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369CrossRefPubMed Ward K, Alsop C, Caulton J, Rubin C, Adams J, Moghul Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369CrossRefPubMed
33.
Zurück zum Zitat Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K (2003) Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine 28:2621–2627CrossRefPubMed Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K (2003) Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine 28:2621–2627CrossRefPubMed
34.
Zurück zum Zitat Daly R (2007) The effect of exercise on bone mass and structural geometry during growth. Med Sport Sci 51:33–49CrossRefPubMed Daly R (2007) The effect of exercise on bone mass and structural geometry during growth. Med Sport Sci 51:33–49CrossRefPubMed
35.
Zurück zum Zitat Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40:1333–1339CrossRefPubMed Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40:1333–1339CrossRefPubMed
36.
Zurück zum Zitat Garman R, Rubin C, Judex S (2007) Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One 2(7):e653CrossRefPubMedPubMedCentral Garman R, Rubin C, Judex S (2007) Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One 2(7):e653CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ozcivici E, Garman R, Judex S (2007) High-frequency oscillatory motions enhance the simulated mechanical properties of nonweight bearing trabecular bone. J Biomech 40:3404–3411CrossRefPubMed Ozcivici E, Garman R, Judex S (2007) High-frequency oscillatory motions enhance the simulated mechanical properties of nonweight bearing trabecular bone. J Biomech 40:3404–3411CrossRefPubMed
38.
Zurück zum Zitat Hwang S, Lublinsky S, Seo Y, Kim I, Judex S (2009) Extremely small-magnitude accelerations enhance bone regeneration. Clin Orthop Relat Res 467:1083–1091CrossRefPubMed Hwang S, Lublinsky S, Seo Y, Kim I, Judex S (2009) Extremely small-magnitude accelerations enhance bone regeneration. Clin Orthop Relat Res 467:1083–1091CrossRefPubMed
39.
Zurück zum Zitat Van-Pelt LF (1977) Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc 171:842–844PubMed Van-Pelt LF (1977) Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc 171:842–844PubMed
41.
Zurück zum Zitat Madsen J, Hukkhanen M (1996) Fracture healing and callus innervations after peripheral nerve resection in rats. Clin Orthop Relat Res 353:230–240 Madsen J, Hukkhanen M (1996) Fracture healing and callus innervations after peripheral nerve resection in rats. Clin Orthop Relat Res 353:230–240
42.
Zurück zum Zitat Leppänen O, Sievänen H, Jokihaara J, Pajamäki I, Järvinen TL (2006) Three‐point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res 21:1231–1237CrossRefPubMed Leppänen O, Sievänen H, Jokihaara J, Pajamäki I, Järvinen TL (2006) Three‐point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res 21:1231–1237CrossRefPubMed
43.
Zurück zum Zitat Callis G, Sterchi D (1998) Decalcification of bone: literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J Histotechnol 21:49–58CrossRef Callis G, Sterchi D (1998) Decalcification of bone: literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J Histotechnol 21:49–58CrossRef
45.
Zurück zum Zitat Ferreira G, Cestari T, Granjeiro J, Taga R (2004) Lack of repair of rat skull critical size defect treated with bovine morphometric protein bound to microgranular bioabsorbable hydroxyapatite. Braz Dent J 15:175–180CrossRefPubMed Ferreira G, Cestari T, Granjeiro J, Taga R (2004) Lack of repair of rat skull critical size defect treated with bovine morphometric protein bound to microgranular bioabsorbable hydroxyapatite. Braz Dent J 15:175–180CrossRefPubMed
46.
Zurück zum Zitat Marins L, Cestari T, Sottovia A, Granjeiro J, Taga R (2004) Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material. J Appl Oral Sci 12:62–69CrossRefPubMed Marins L, Cestari T, Sottovia A, Granjeiro J, Taga R (2004) Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material. J Appl Oral Sci 12:62–69CrossRefPubMed
47.
Zurück zum Zitat Guehennec LL, Goyenvalle E, Aguado E, Houchmand-Cuny M, Enkel B, Pilet P, Daculsi G, Layrolle P (2005) Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res Part B Appl Biomater 72:69–78CrossRefPubMed Guehennec LL, Goyenvalle E, Aguado E, Houchmand-Cuny M, Enkel B, Pilet P, Daculsi G, Layrolle P (2005) Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res Part B Appl Biomater 72:69–78CrossRefPubMed
48.
Zurück zum Zitat Silva-Jounior A, Pinheiro A, Oliveira M, Weismann R, Ramalho L, Nicolau R (2002) Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20:83–87CrossRef Silva-Jounior A, Pinheiro A, Oliveira M, Weismann R, Ramalho L, Nicolau R (2002) Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20:83–87CrossRef
49.
Zurück zum Zitat Shakouri S, Soleimanpour J, Salekzamani Y, Oskuie M (2010) Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci 25:73–77CrossRef Shakouri S, Soleimanpour J, Salekzamani Y, Oskuie M (2010) Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci 25:73–77CrossRef
50.
Zurück zum Zitat Liu X, Lyon R, Meier H, Thometz J, Haworth S (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25:487–494CrossRefPubMed Liu X, Lyon R, Meier H, Thometz J, Haworth S (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25:487–494CrossRefPubMed
51.
Zurück zum Zitat Zivcovic R, Kesic L, Mihailovic D, Ignjatovic N, Uskokovic D (2006) Investigation of HeNe laser therapy influence on BCP/PLGA osseointegration—experimental study. Med Biol 13:109–113 Zivcovic R, Kesic L, Mihailovic D, Ignjatovic N, Uskokovic D (2006) Investigation of HeNe laser therapy influence on BCP/PLGA osseointegration—experimental study. Med Biol 13:109–113
52.
Zurück zum Zitat Queiroga A, Sousa F, Araujo J, Santos S, Sousa CF, Quintans T, Almeida T, Nonaka C, Batista L, Junior FL (2008) Evaluation of bone repair in the femur of rats submitted to laser therapy in different wavelengths: an image segmentation method of analysis. Laser Phys 18:1087–1091CrossRef Queiroga A, Sousa F, Araujo J, Santos S, Sousa CF, Quintans T, Almeida T, Nonaka C, Batista L, Junior FL (2008) Evaluation of bone repair in the femur of rats submitted to laser therapy in different wavelengths: an image segmentation method of analysis. Laser Phys 18:1087–1091CrossRef
53.
Zurück zum Zitat Renno ACM, Moura FMD, Santos NSAD, Tirico RP, Bossini PS, Parizotto NA (2006) Effects of 830-nm laser light on preventing bone loss after ovariectomy. Photomed Laser Ther 24:642–645CrossRef Renno ACM, Moura FMD, Santos NSAD, Tirico RP, Bossini PS, Parizotto NA (2006) Effects of 830-nm laser light on preventing bone loss after ovariectomy. Photomed Laser Ther 24:642–645CrossRef
54.
Zurück zum Zitat Barbosa D, Villaverde AGJB, LoschiavoArisawa EÂ, Souza RA (2014) Laser therapy in bone repair in rats: analysis of bone optical density. Acta Ortop Bras 22:71–74CrossRefPubMedPubMedCentral Barbosa D, Villaverde AGJB, LoschiavoArisawa EÂ, Souza RA (2014) Laser therapy in bone repair in rats: analysis of bone optical density. Acta Ortop Bras 22:71–74CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat de Oliveira AM, Castro‐Silva II, de Oliveira Fernandes GV, Melo BR, Alves ATNN, Silva Júnior A, Lima ICB, Granjeiro JM (2014) Effectiveness and acceleration of bone repair in critical‐sized rat calvarial defects using low‐level laser therapy. Lasers Surg Med 46:61–67CrossRef de Oliveira AM, Castro‐Silva II, de Oliveira Fernandes GV, Melo BR, Alves ATNN, Silva Júnior A, Lima ICB, Granjeiro JM (2014) Effectiveness and acceleration of bone repair in critical‐sized rat calvarial defects using low‐level laser therapy. Lasers Surg Med 46:61–67CrossRef
56.
Zurück zum Zitat Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24:38–44CrossRefPubMed Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24:38–44CrossRefPubMed
57.
Zurück zum Zitat Kim Y-D, Kim S-S, Hwang D-S, Kim S-G, Kwon Y-H, Shin S-H, Kim U-K, Kim J-R, Chung I-K (2007) Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39:441–450CrossRefPubMed Kim Y-D, Kim S-S, Hwang D-S, Kim S-G, Kwon Y-H, Shin S-H, Kim U-K, Kim J-R, Chung I-K (2007) Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39:441–450CrossRefPubMed
58.
Zurück zum Zitat Maia LGM, Alves AVF, Bastos TS, Moromizato LS, Lima-Verde IB, Ribeiro MAG, Júnior LGG, de Albuquerque-Júnior RLC (2014) Histological analysis of the periodontal ligament and alveolar bone during dental movement in diabetic rats subjected to low-level laser therapy. J Photochem Photobiol B Biol 135:65–74CrossRef Maia LGM, Alves AVF, Bastos TS, Moromizato LS, Lima-Verde IB, Ribeiro MAG, Júnior LGG, de Albuquerque-Júnior RLC (2014) Histological analysis of the periodontal ligament and alveolar bone during dental movement in diabetic rats subjected to low-level laser therapy. J Photochem Photobiol B Biol 135:65–74CrossRef
59.
Zurück zum Zitat Batista JD, Sargenti-Neto S, Dechichi P, Rocha FS, Pagnoncelli RM (2015) Low-level laser therapy on bone repair: is there any effect outside the irradiated field? Lasers Med Sci 30:1569–1574CrossRefPubMed Batista JD, Sargenti-Neto S, Dechichi P, Rocha FS, Pagnoncelli RM (2015) Low-level laser therapy on bone repair: is there any effect outside the irradiated field? Lasers Med Sci 30:1569–1574CrossRefPubMed
60.
Zurück zum Zitat Rubin C, Judex S, Qin Y-X (2006) Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing 35:ii32–ii36CrossRefPubMed Rubin C, Judex S, Qin Y-X (2006) Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing 35:ii32–ii36CrossRefPubMed
61.
Zurück zum Zitat Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, Tang N (2009) Low‐magnitude high‐frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 27:458–465CrossRefPubMed Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, Tang N (2009) Low‐magnitude high‐frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 27:458–465CrossRefPubMed
62.
Zurück zum Zitat Fritton JC, Rubin CT, Qin Y-X, McLeod KJ (1997) Whole-body vibration in the skeleton: development of a resonance-based testing device. Ann Biomed Eng 25:831–839CrossRefPubMed Fritton JC, Rubin CT, Qin Y-X, McLeod KJ (1997) Whole-body vibration in the skeleton: development of a resonance-based testing device. Ann Biomed Eng 25:831–839CrossRefPubMed
63.
Zurück zum Zitat de Oliveira ML, Bergamaschi CT, Silva OL, Nonaka KO, Wang CC, Carvalho AB, Jorgetti V, Campos RR, Lazaretti-Castro M (2010) Mechanical vibration preserves bone structure in rats treated with glucocorticoids. Bone 46:1516–1521 de Oliveira ML, Bergamaschi CT, Silva OL, Nonaka KO, Wang CC, Carvalho AB, Jorgetti V, Campos RR, Lazaretti-Castro M (2010) Mechanical vibration preserves bone structure in rats treated with glucocorticoids. Bone 46:1516–1521
64.
Zurück zum Zitat Trelles M, Mayoyo E (1987) Bone fracture consolidates faster with low power lasers. Lasers Surg Med 7:36–45CrossRefPubMed Trelles M, Mayoyo E (1987) Bone fracture consolidates faster with low power lasers. Lasers Surg Med 7:36–45CrossRefPubMed
65.
Zurück zum Zitat Barushka O, Yaakobi T, Oron U (1995) Effect of low energy laser (HeNe) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55PubMed Barushka O, Yaakobi T, Oron U (1995) Effect of low energy laser (HeNe) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55PubMed
66.
Zurück zum Zitat Granjeiro J, Oliveira R, Bustos-Valenzuela J, Sogayar M, Taga R (2005) Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res 38:1463–1473CrossRefPubMed Granjeiro J, Oliveira R, Bustos-Valenzuela J, Sogayar M, Taga R (2005) Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res 38:1463–1473CrossRefPubMed
67.
Zurück zum Zitat Martin RB, Burr DB, Sharkey NA (1998) Skeletal biology. In: Martin RG, Burr DB, Sharkey NA (eds) Skeletal tissue mechanics. Springer, New York, pp 29–78CrossRef Martin RB, Burr DB, Sharkey NA (1998) Skeletal biology. In: Martin RG, Burr DB, Sharkey NA (eds) Skeletal tissue mechanics. Springer, New York, pp 29–78CrossRef
68.
Zurück zum Zitat Wolff J, Wessinghage D. Das gesetz der transformation der knochen: Schattauer Wolff J, Wessinghage D. Das gesetz der transformation der knochen: Schattauer
69.
Zurück zum Zitat Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706CrossRefPubMed Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706CrossRefPubMed
70.
Zurück zum Zitat Rouhi G, Vahdati A, Li X, Sudak L (2015) A three-dimensional computer model to simulate spongy bone remodeling under overload using a semi-mechanistic bone remodeling theory. J Mech Med Biol 15:1550061CrossRef Rouhi G, Vahdati A, Li X, Sudak L (2015) A three-dimensional computer model to simulate spongy bone remodeling under overload using a semi-mechanistic bone remodeling theory. J Mech Med Biol 15:1550061CrossRef
71.
Zurück zum Zitat Vahdati A, Rouhi G (2009) A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse. Mech Res Commun 36:284–293CrossRef Vahdati A, Rouhi G (2009) A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse. Mech Res Commun 36:284–293CrossRef
72.
Zurück zum Zitat Judex S, Gupta S, Rubin C (2009) Regulation of mechanical signals in bone. Orthod Craniofac Res 12:94–104CrossRefPubMed Judex S, Gupta S, Rubin C (2009) Regulation of mechanical signals in bone. Orthod Craniofac Res 12:94–104CrossRefPubMed
73.
Zurück zum Zitat Hubler R, Blando E, Gaiao L, Kreisner P, Post L, Xavier C, Oliveira M (2010) Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci 25:213–219CrossRefPubMed Hubler R, Blando E, Gaiao L, Kreisner P, Post L, Xavier C, Oliveira M (2010) Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci 25:213–219CrossRefPubMed
Metadaten
Titel
The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study
verfasst von
M. Rajaei Jafarabadi
G. Rouhi
G. Kaka
S. H. Sadraie
J. Arum
Publikationsdatum
30.08.2016
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 9/2016
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-2058-9

Weitere Artikel der Ausgabe 9/2016

Lasers in Medical Science 9/2016 Zur Ausgabe