Skip to main content
main-content

01.12.2015 | Research article | Ausgabe 1/2015 Open Access

BMC Musculoskeletal Disorders 1/2015

The efficacy of a lysine-based dendritic hydrogel does not differ from those of commercially available tissue sealants and adhesives: an ex vivo study

Zeitschrift:
BMC Musculoskeletal Disorders > Ausgabe 1/2015
Autoren:
Juan C Villa-Camacho, Cynthia Ghobril, Lorenzo Anez-Bustillos, Mark W Grinstaff, Edward K Rodríguez, Ara Nazarian
Wichtige Hinweise
Edward K Rodríguez and Ara Nazarian contributed equally to this work.

Competing interests

The authors declare that they have no competing interest. This work was supported in part by the NIBIB (R21 EB013721).

Authors’ contributions

JCV-C: Literature search, study design, data collection, data analysis, manuscript writing. CG: Study design, data collection, data analysis, manuscript writing. LA-B: Study design, data collection, critical revision of the article. MWG: Study design, critical revision of the article. EKR: Study design, critical revision of the article. AN: Study design, critical revision of the article. All authors read and approved the final manuscript.

Abstract

Background

Hemostatic agents, tissue adhesives and sealants may contribute to a reduction in hemorrhage-associated morbidity and mortality. Towards this end, we have recently developed a lysine-based dendritic hydrogel (PEG-LysNH2) that can potentially be used in the management of severe trauma and/or intraoperative bleeding. As a first step in demonstrating the potential utility of this approach, our objective was to ascertain the ability of the PEG-LysNH2 to adhere to and seal injured tissues, as well as to maintain the seal under physiological conditions.

Methods

The efficacy of the PEG-LysNH2 in sealing injured tissues was evaluated using an ex-vivo pressure testing system. A 2.5 mm incision was made on intact ex-vivo tissues and then sealed with the PEG-LysNH2. Application of the PEG-LysNH2 was followed by 1) step-wise pressure increase to a maximum of 250 mmHg and 2) fluctuating pressures, between 100–180 mmHg with a rate of 3 Hz, over a 24-hour period. The performance of the PEG-LysNH2 was compared to those of commercially available sealants and adhesives.

Results

During gradual pressure increase, mean pressures at 30 seconds (P30) ranged between 206.36 - 220.17 mmHg for the sealants, and they were greater than control and suture groups (p < 0.01 and p = 0.013, respectively). Additionally, all products held under fluctuating pressures: mean pressures ranged between 135.20 - 160.09 mmHg, and there were no differences observed between groups (p = 0.96).

Conclusions

The efficacy of the PEG-LysNH2 was significantly superior to conventional injury repair methods (sutures) and did not differ from those of commercially available products when sealing small incisions.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

BMC Musculoskeletal Disorders 1/2015 Zur Ausgabe

Neu im Fachgebiet Orthopädie und Unfallchirurgie

21.11.2019 | ACR 2019 | Kongressbericht | Onlineartikel

Anifrolumab bei SLE nun doch mit signifikanten Ergebnissen

21.11.2019 | ACR 2019 | Kongressbericht | Onlineartikel

Handarthrose: Tops und Flops vom ACR-Kongress

21.11.2019 | ACR 2019 | Kongressbericht | Onlineartikel

JAK - selektive Inhibitoren bei RA mit Vorteilen?

21.11.2019 | ACR 2019 | Kongressbericht | Onlineartikel

Erste Daten zur Differentialtherapie der PsA

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Orthopädie und Unfallchirurgie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise