Skip to main content
Erschienen in: Brain Structure and Function 4-5/2009

01.09.2009 | Short Communication

The efficacy of the fluorescent conjugates of cholera toxin subunit B for multiple retrograde tract tracing in the central nervous system

verfasst von: William L. Conte, Hiroaki Kamishina, Roger L. Reep

Erschienen in: Brain Structure and Function | Ausgabe 4-5/2009

Einloggen, um Zugang zu erhalten

Abstract

Cholera toxin subunit B (CTB) is a sensitive neuroanatomical tracer that generally transports retrogradely in the nervous system, and has been used extensively in brightfield microscopy. Recently, Alexa Fluor (AF) conjugates of CTB have been made available, which now allows multiple tracing with CTB. In this study, we examined the efficacy of these new AF-CTB conjugates when injected into the brain, and compared the results to our previous experiences using fluorescent 3k dextran amines. To test this, we injected AF 488 and AF 594 CTB into the anterior cingulate cortex and the medial agranular cortex in the rat, and examined the retrograde transport to the lateral posterior nucleus of the thalamus. We found that CTB was very viscous but yet very sensitive: small injection sites revealed very intense and detailed retrograde labeling. Anterograde transport was seen only when tissue at the injection site was damaged. These findings suggest that AF-CTB is a very reliable and sensitive retrograde tracer, and should be the first choice retrograde tracer for experiments examining multiple pathways within the same brain.

Literatur
  1. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712PubMed
  2. Chen S, Aston-Jones G (1995) Evidence that cholera toxin b subunit (CTB) can be avidly taken up and transported by fibers of passage. Brain Res 674:107–111PubMedView Article
  3. Christianson JA, Liang R, Ustinova EE, Davis BM, Fraser MO, Pezzone MA (2007) Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 128:235–243PubMedView Article
  4. Conte WL, Kamishina H, Corwin JV, Reep RL (2008) Topography in the projections of lateral posterior thalamus with cingulate and medial agranular cortex in relation to circuitry for directed attention and neglect. Brain Res 1240:87–95PubMedView Article
  5. Conte WL, Kamishina H, Reep RL (2009) Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit b in rats. Nat Protoc 4:1157–1166PubMedView Article
  6. Coolen LM, Jansen HT, Goodman RL, Wood RI, Lehman MN (1999) A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin. J Neurosci Methods 91:1–8PubMedView Article
  7. Dederen P, Gribnau A, Curfs M (1994) Retrograde neuronal tracing with cholera toxin b subunit: comparison of three different visualization methods. Histochem J 26:856–862PubMedView Article
  8. DeVries GH, Zetusky WJ, Zmachinski C, Calabrese VP (1981) Lipid composition of axolemma-enriched fractions from human brains. J Lipid Res 22:208–216PubMed
  9. Fishman PH (1982) Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol 69:85–97PubMedView Article
  10. Kamishina H, Yurcisin GH, Corwin JV, Reep RL (2008) Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res 1204:24–39PubMedView Article
  11. Kamishina H, Conte WL, Patel SS, Tai RJ, Corwin JV, Reep RL (2009) Cortical connections of the rat lateral posterior thalamic nucleus. Brain Res 1264:39–56View Article
  12. Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351PubMedView Article
  13. Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, Sauerwein HP, Fliers E, Romijn JA, Buijs RM (2006) Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 147:1140–1147PubMedView Article
  14. Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101PubMedView Article
  15. Kumar RK, Chapple CC, Hunter N (1999) Improved double immunofluorescence for confocal laser scanning microscopy. J Histochem Cytochem 47:1213–1218PubMed
  16. Llewellyn-Smith IJ, Martin CL, Arnolda LF, Minson JB (2000) Tracer-toxins: cholera toxin b-saporin as a model. J Neurosci Methods 103:83–90PubMedView Article
  17. Luppi P-H, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin b subunit (CTB) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224PubMedView Article
  18. Masco D, Van de Walle M, Spiegel S (1991) Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates growth and differentiation of neuroblastoma N18 cells. J Neurosci 11:2443–2452PubMed
  19. McDavid S, Lund JP, Auclair F, Kolta A (2006) Morphological and immunohistochemical characterization of interneurons within the rat trigeminal motor nucleus. Neuroscience 139:1049–1059PubMedView Article
  20. Muscat L, Huberman AD, Jordan CL, Morin LP (2003) Crossed and uncrossed retinal projections to the hamster circadian system. J Comp Neurol 466:513–524PubMedView Article
  21. Niedringhaus M, Jackson PG, Pearson R, Shi M, Dretchen K, Gillis RA, Sahibzada N (2008) Brainstem sites controlling the lower esophageal sphincter and crural diaphragm in the ferret: a neuroanatomical study. Auton Neurosci 144:50–60PubMedView Article
  22. Panchuk-Voloshina N, Haugland RP, Bishop–Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung W-Y, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188PubMed
  23. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, San Diego
  24. van Heyningen WE (1974) Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin. Nature 249:415–417View Article
  25. Wang HF, Shortland P, Park MJ, Grant G (1998) Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin b subunit, wheatgerm agglutinin and isolectin b4 from griffonia simplicifolia i in primary afferent neurons innervating the rat urinary bladder. Neuroscience 87:275–288PubMedView Article
  26. Zin-Ka-Ieu S, Roger M, Arnault P (1997) Direct contacts between fibers from the ventrolateral thalamic nucleus and frontal cortical neurons projecting to the striatum: a light-microscopy study in the rat. Anat Embryol 197:77–87View Article
Metadaten
Titel
The efficacy of the fluorescent conjugates of cholera toxin subunit B for multiple retrograde tract tracing in the central nervous system
verfasst von
William L. Conte
Hiroaki Kamishina
Roger L. Reep
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 4-5/2009
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-009-0212-x

Weitere Artikel der Ausgabe 4-5/2009

Brain Structure and Function 4-5/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.