Skip to main content
Erschienen in: Alzheimer's Research & Therapy 1/2018

Open Access 01.12.2018 | Research

The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics

verfasst von: Isabelle Bos, Stephanie Vos, Rik Vandenberghe, Philip Scheltens, Sebastiaan Engelborghs, Giovanni Frisoni, José Luis Molinuevo, Anders Wallin, Alberto Lleó, Julius Popp, Pablo Martinez-Lage, Alison Baird, Richard Dobson, Cristina Legido-Quigley, Kristel Sleegers, Christine Van Broeckhoven, Lars Bertram, Mara ten Kate, Frederik Barkhof, Henrik Zetterberg, Simon Lovestone, Johannes Streffer, Pieter Jelle Visser

Erschienen in: Alzheimer's Research & Therapy | Ausgabe 1/2018

Abstract

Background

There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer’s disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants.

Methods

Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (Aβ) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling.

Results

We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage Aβ+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE ε4 allele was more frequent amongst Aβ+ individuals (p < 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p < 0.001). Aβ+ had a faster rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups.

Conclusions

The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of Aβ and APOE ε4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13195-018-0396-5) contains supplementary material, which is available to authorized users.
Abkürzungen
AD
Alzheimer’s disease
ADP
Affiliated data provider
APOE
Apolipoprotein E
Amyloid-beta
CSF
Cerebrospinal fluid
IMI
Innovative Medicine Initiative
MCI
Mild cognitive impairment
MMSE
Mini Mental State Examination
MRI
Magnetic resonance imaging
NC
Normal cognition
NFL
Neurofilament light
Ng
Neurogranin
PET
Positron emission tomography

Background

Over the last decade great progress has been made in diagnosing Alzheimer’s disease (AD) at an early disease stage, including before the onset of dementia [1, 2]. The biomarkers amyloid-beta (Aβ) and tau in cerebrospinal fluid (CSF) or amyloid and tau load via positron emission tomography (PET) have become indispensable in the AD research field, especially as part of clinical trials for disease modification and secondary prevention [36]. Nonetheless, a better understanding of the underlying pathophysiological disease mechanisms as well as the discovery of diagnostic and prognostic markers that are inexpensive and minimally invasive to obtain would enhance the development of therapeutic interventions.
Currently, CSF and PET biomarkers are commonly used for the early diagnosis and prognosis of AD [79]. However PET imaging is fairly expensive and not universally available and the procedure for obtaining a PET scan as well as CSF data are relatively invasive. Given this, complementing these highly specific biomarker modalities with markers in more readily accessible biofluids would mark an important step forward. Consequently, many initiatives have been undertaken to discover and validate blood-based biomarkers for AD pathology [10, 11], but so far results have been limited, due to small sample sizes, single modality analyses or other methodological issues [12]. One critical issue so far has been the design (comparing individuals with AD-type dementia with controls), which made the studies unsuitable for discovery of markers for the preclinical disease phase. To seek markers for the preclinical phase, a more sensitive and gradual approach has been proposed, described as the “endophenotype approach” where discovery is predicted on a measure of pathology [13]. Therefore, we designed the current study to enhance blood-based biomarker discovery by performing a series of omics techniques (e.g., proteomics, metabolomics, genomics) in a large cohort across the AD clinical disease spectrum, using an endophenotype approach.
This study was performed as a part of the European Medical Information Framework for Alzheimer’s disease (EMIF-AD; http://​www.​emif.​eu). Funded through the Innovative Medicines Initiative (IMI), the EMIF project was established to facilitate the process of reusing and combining existing healthcare data with a focus on two therapeutic areas in the first instance: metabolic diseases and AD. One of the main aims of the EMIF-AD project is to accelerate the discovery of novel diagnostic and prognostic biomarkers for AD and to unravel the underlying pathophysiological mechanisms, using existing data and existing samples, that would otherwise be inaccessible to research beyond the project teams responsible for the collection. In this report, we will describe the set-up of the EMIF-AD Multimodal Biomarker Discovery (EMIF-AD MBD) study, the methods as well as the characteristics of the included subjects. The results of the single and multimodal analyses will be described in future publications.

Methods

General outline

In the EMIF-AD MBD study we retrospectively combined and reused clinical data, samples and scans that had already been collected as part of existing prospective cohort studies. We aimed to include a total of 1000 subjects across the clinical AD spectrum: 400 subjects with normal cognition (NC), 400 subjects with mild cognitive impairment (MCI) and 200 subjects with mild AD-type dementia. To create a balanced design in terms of progression and to enable endophenotype designed biomarker studies, we intended to include 50% Aβ-positive (Aβ+) individuals and 50% Aβ-negative (Aβ–) individuals in the groups with NC and MCI. To conduct multimodal analyses, we initially aimed to include subjects who had material from MRI, plasma, DNA and CSF. Later, we adjusted this to subjects with material available in at least two of the modalities listed.

Selection of cohorts

We used the EMIF-AD Catalog (https://​emif-catalogue.​eu), established as part of the objective of the EMIF which seeks to enable the finding, assessment and reutilization of preexisting data. The EMIF-AD Catalog contains metadata about European AD cohorts, enabling the selection of studies that included subjects who, in this instance, met the following inclusion criteria: data on Aβ status, measured in CSF or by amyloid positron emission tomography (PET); age above 50 years at baseline; and availability of MRI scans, plasma and DNA samples. We identified 16 suitable cohorts. Two cohorts declined due to other research interests. Three cohorts were interested to collaborate, but unable because of legal and/or ethical restrictions, or unavailability of sufficient sample volumes. The 11 selected cohorts included three multicenter studies—EDAR (n = 204) [14], PharmaCog (n = 147) [15] and DESCRIPA (n = 29) [16]—and eight single centers: Antwerp (n = 149) [17], Amsterdam (n = 172) [18], Barcelona Sant Pau (n = 45) [19], Barcelona IDIBAPS (n = 120) [20], Leuven (n = 180) [21], San Sebastian GAP (n = 40) [22], Gothenburg (n = 95) [23] and Lausanne (n = 40) [24]. Of these 11 cohorts, DESCRIPA, EDAR, PharmaCog, Amsterdam, Antwerp and Gothenburg were linked to partners in the EMIF-AD, while the other five cohorts participated as affiliated data providers (ADP). All cohorts (e.g., partners and ADP) signed a material transfer agreement. The ADP also agreed to the EMIF project agreement. Study managers from each cohort selected the subjects based on the following criteria: age above 50 years at baseline; availability of Aβ status at baseline measured in CSF or via PET; availability of neuropsychological and clinical data; availability of at least two of the following materials: MRI scan, plasma sample, DNA samples or CSF sample; and absence of neurological, psychiatric or somatic disorders that could cause cognitive impairment. The local medical ethical committee in each center approved the study. Subjects had already provided written informed consent at the time of inclusion in the cohort for use of data, samples and scans. Figure 1 shows a timeline of the different events in establishing this cohort, from the search in the EMIF Catalog to the wet-lab analyses.

Baseline diagnoses

In all cohorts, the definition for NC was a normal performance on neuropsychological assessment (within 1.5 SD of the average for age, gender and education). Five cohorts also used a score of 0 on the Clinical Dementia Rating (CDR) [25] and a single cohort used a cutoff value < 3 on the Global Deterioration Scale [26] to determine NC. Diagnosis of MCI was made according to the criteria of Petersen [27] in nine cohorts. Two cohorts used the Winblad et al. criteria [28] to diagnose MCI. All cohorts used the National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association criteria (NINCDS-ADRDA) criteria [29] to diagnose AD-type dementia. Additional file 1: Table S1 presents the diagnostic criteria used per center.

Clinical data

All cohorts were asked to contribute available data on demographics, clinical information, neuropsychological testing and Aβ status, as presented in Table 1. Medication use and comorbidities were classified into a number of categories, for which we created dichotomous variables (Table 1).
Table 1
Clinical dataset
Demographics
 Age
 Gender
 Years of education
Clinical information
 Diagnosis
 Medication use
  Cardiovascular medication
  Dementia medication
  Hormonal medication
  Psychopharmaceuticals
  Other medication
 Comorbidities
  Cardiovascular disorders
  Cardiovascular risk factors
  Cerebrovascular disorders
  Endocrine disorders
  Neurological disorders
  Other cardiac disorders
  Psychiatric disorders
  Somatic disorders
 Family history of dementia
  First-degree relatives
  Second-degree relatives
 Functional impairment rating
Neuropsychological tests
 Memory, preferred test: AVLT
 Language, preferred test: animal fluency
 Attention, preferred test: Trail Making Test A
 Executive functioning, preferred test: Trail Making Test B
 Visuoconstruction, preferred test: Rey complex figure copy
Aβ measure a
 CSF Aβ42 value and local cutoff point
 Amyloid PET SUV and local cutoff point
aAt least one Aβ measure
amyloid-beta, AVLT Auditory Verbal Learning Test, CSF cerebrospinal fluid, PET positron emission tomography, SUV standardized uptake value
Cognitive data were collected in all cohorts. The cognitive tests used varied across centers. Only the Mini Mental State Examination (MMSE) was administered in all centers and was available for nearly all subjects (n = 1216). We requested at least one test from the following cognitive domains: memory, language, attention, executive functioning and visuoconstruction [16]. For each cognitive domain, we selected a primary test (Table 1). If the preferred tests were not available, we selected an alternative priority test from the same cognitive domain. Additional file 2: Table S2 provides an overview of the different tests used for each cognitive domain. For each test, we requested the raw scores and, if available, z-scores calculated based on local normative data. If local normative data were unavailable, we calculated z-scores based on published normative data from healthy controls for that test. Per cognitive domain, we combined z-scores which we used as a continuous variable, and we used a cutoff value of z-score < − 1.5 to define abnormality.
Clinical data were harmonized, pooled and stored on an online data platform using tranSMART [30], now enriched for dementia research purposes through the EMIF-AD project.

Plasma analyses

Initially, the minimum requested amount of plasma was 0.7 ml. If available, another 0.7 ml was requested to conduct additional analyses in a subgroup of subjects. In some cases, only 0.5 ml was available. Prior to the analyses, samples were checked visually for consistency and volume. Results of analyses were also quality checked by inspecting patterns of outliers, and excluding consistent outliers across analyses. Analyses conducted on these samples include: targeted analyses of plasma proteins identified previously [31] and confirmed in at least one replication study, a panel of complement proteins nominated because of increasing evidence from genomics of the role of innate immunity in AD and analysis of plasma neurofilament light (NFL) chain; untargeted proteomic analyses using aptamer capture approaches; and untargeted and targeted metabolic analyses using a 883-metabolite panel for the targeted assay.

Genetic analyses

A total amount of 2.6 μg DNA or 1 ml whole blood, from which DNA was to be extracted, was requested for the genetic analyses. After performing routine quality checks on extracted DNA (e.g., agarose gel electrophoresis, determination of A260/280 and A260/230 ratios, PicoGreen quantification), we performed three types of assessments on each sample passing quality control: genome-wide SNP genotyping (Global Screening Array; Illumina, Inc.), genome-wide DNA methylation profiling (Infinium MethylationEPIC BeadChip; Illumina, Inc.) and whole exome sequencing.

CSF analyses

The requested amount of CSF to conduct all planned analyses was 0.4 ml, which was used for untargeted proteomic and peptidomic analyses, and a number of targeted analyses measuring concentrations of Aβ38, Aβ40, Aβ42, Aβ42/40, YKL-40, NFL and neurogranin (Ng). Prior to the analyses, CSF samples were checked visually for volume and absence of blood contamination.

MRI analyses

MRI scans were assembled centrally, quality checked and assessed visually by a single rater. T1-weighted and, when available, FLAIR and/or T2*/SWI images were used for qualitative visual rating, including medial temporal lobe atrophy [32], global cortical atrophy [33], white matter hyperintensities [34] and microbleeds (defined as small (< 10 mm) round foci of hypointense signal in brain parenchyma). 3D T1 scans were uploaded to the Neurgrid platform (https://​neugrid4you.​eu) [35] for storage and automated quantitative analyses. Volumetric analysis included assessment of hippocampal and whole brain volume and cortical thickness.

Amyloid classification

Aβ status was defined by the CSF Aβ42/40 of the central analyses, using a cutoff value of < 0.061 to determine abnormality (n = 770). The cutoff value for the Aβ42/40 ratio was determined based on mixture model analyses comparing the NC and AD groups in this dataset. When no CSF was contributed for central analyses, the local CSF Aβ42 value (n = 271) or the standardized uptake value ratio (SUVR) on an amyloid PET scan (n = 180) with local cutoff values to determine abnormality were used (Additional file 3: Table S3).

Statistical analyses

Baseline characteristics were compared between groups using ANOVA for continuous variables and chi-square for categorical variables. General linear mixed models with random intercepts and slopes by study were used to examine the influence of Aβ status on MMSE performance and decline over time, adjusted for age, gender and years of education. Missing values for APOE genotype (n = 12) and years of education (n = 105) were imputed using regression within study with at least two significant predictors (i.e., age, gender, MMSE, etc.). Statistical analyses were performed using R Statistical Software (version 3.3.3) and SPSS (version 24), with significance defined as p < 0.05.

Results

We initially sought to identify 1000 individuals with data available in all modalities. However, because not all studies could contribute data for all modalities, we included more participants to meet the aimed number of individuals for each modality. In total, 1221 subjects were included in the study, with a mean age of 67.9 (SD 8.3) years. Six hundred and sixty-seven (54%) were female and the average education level was 11.7 (SD 4.1) years. At baseline, 492 (40%) subjects had NC, 527 (43%) subjects had a diagnosis of MCI and 202 (17%) subjects had a clinical diagnosis of AD-type dementia. For 758 (62%) individuals there were follow-up data available (e.g., at least a clinical diagnosis or MMSE at follow-up): 217 (44%) NC subjects, 398 (76%) MCI subjects and 143 (71%) demented subjects. The average follow-up time for all 758 individuals was 2.3 (SD 1.2) years. Per diagnostic groups, the average clinical follow-up time was: NC 2.4 (SD 0.9) years, MCI 2.2 (SD 1.3) years and AD 2.2 (SD 1.4) years.
Table 2 presents the baseline characteristics of the sample by Aβ status and by baseline diagnosis. In the NC and MCI groups, the Aβ+ subjects were older than the Aβ– subjects (NC, p = 0.002; MCI, p < 0.001). In all diagnostic groups, Aβ+ subjects were more likely to be an APOE ε4 carrier (all p < 0.001). In the MCI subjects only, there was a difference in baseline MMSE score between the Aβ groups (p = 0.001). Regarding cognitive domains, we found differences in memory (p < 0.001) and executive functioning (p = 0.042) z-scores in individuals with MCI. In individuals with AD-type dementia we found that Aβ+ individuals performed worse on an executive functioning task (p = 0.013).
Table 2
Baseline characteristics by clinical diagnosis and Aβ status
  
Normal cognition
MCI
AD-type dementia
Aβ–
Aβ+
Aβ–
Aβ+
Aβ–
Aβ+
Total n
n = 365
n = 127
n = 220
n = 307
n = 27
n = 175
Age (years)
1221
64.4 (7.6)
66.9 (7.9)**
68.3 (8.2)
70.7 (7.4)***
73.0 (8.4)
69.9 (8.8)
Female, n
1221
203 (56)
66 (52)
108 (49)
172 (56)
12 (44)
96 (55)
Education (years)
1221
13.5 (3.7)
12.7 (4.0)*
10.6 (3.8)
10.8 (3.7)
8.5 (4.4)
10.6 (3.8)**
APOE ε4 carrier, n
1221
122 (33)
76 (60)***
46 (21)
200 (65)***
7 (26)
114 (65)***
Mean follow-up time (years)
758
2.3 (0.8)
2.5 (1.1)
2.2 (1.3)
2.2 (1.3)
1.7 (0.9)
2.2 (1.4)
MMSE score
1215
28.9 (1.1)
28.8 (1.2)
27.0 (2.3)
25.9 (2.7)***
21.5 (5.4)
21.7 (4.6)
Memory delayed z-score
1049
0.1 (1.1)
0.0 (1.2)
−0.9 (1.3)
−1.4 (1.4)***
−2.2 (1.2)
−2.4 (1.1)
Language z-score
1181
−0.2 (1.0)
−0.1 (1.0)
− 0.7 (1.2)
− 1.0 (2.0)
− 1.9 (1.2)
− 2.3 (2.4)
Attention z-score
1128
0.3 (1.1)
0.2 (0.9)
−1.0 (1.8)
−1.0 (1.8)
−2.1 (2.5)
−2.1 (2.0)
Executive functioning z-score
976
0.3 (1.1)
0.1 (1.1)
−0.9 (1.9)
−1.4 (2.1)*
−1.2 (2.5)
−3.4 (2.8)*
Visuoconstruction z-score
664
0.2 (1.4)
0.2 (0.8)
−0.3 (1.7)
−0.4 (1.8)
−2.1 (2.4)
−1.3 (2.0)
Results are mean (standard deviation) for continuous variables or frequency (%) for dichotomous variables
amyloid-beta, AD Alzheimer’s disease, APOE apolipoprotein E, MCI mild cognitive impairment, MMSE Mini Mental State Examination
*p < 0.05 in comparison to Aβ– group
**p < 0.01in comparison to Aβ– group
***p < 0.001 in comparison to Aβ– group
Table 3 presents the number of subjects per modality by diagnostic category. Plasma samples were contributed for 1189 (97%) subjects, DNA for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF for 770 (63%) subjects. There were 482 (40%) subjects who contributed material in all modalities. Of this subsample, 89 (18%) subjects had NC, 318 (66%) subjects MCI and 75 (16%) subjects had a diagnosis of AD-type dementia at baseline.
Table 3
Number of subjects from different cohorts for each modality by diagnosis
Cohort
Diagnosis
Clinical data
Plasma
DNA
MRI
CSF
Amsterdam
NC
30
29
26
30
30
MCI
82
80
68
82
82
AD-type dementia
60
60
53
60
60
Antwerp
MCI
103
100
101
50
103
AD-type dementia
46
47
46
0
46
DESCRIPA
NC
12
12
8
5
12
MCI
17
17
12
9
17
EDAR
NC
48
47
42
14
47
MCI
77
75
65
24
75
AD-type dementia
79
78
69
19
76
GAP
NC
40
40
40
38
40
Gothenburg
NC
49
48
48
MCI
46
44
46
IDIBAPS
NC
76
77
40
MCI
27
27
14
AD-type dementia
17
16
14
Lausanne
NC
12
12
12
12
12
MCI
28
28
28
27
28
Leuven
NC
180
163
168
179
PharmaCog
MCI
147
144
146
147
147
Sant Pau
NC
45
45
45
Total
NC
492
473
341
366
141
MCI
527
515
420
399
452
AD-type dementia
202
201
168
100
182
Overall
1221
1189
929
865
775
CSF cerebrospinal fluid, DESCRIPA development of screening guidelines and clinical criteria for predementia Alzheimer's disease, EDAR beta amyloid oligomers in the early diagnosis of AD and as a marker for treatment reponse, GAP gipuzkoa Alzheimer project, IDIBAPS institut d'investigacions biomèdiques August Pi i Sunyer, MCI mild cognitive impairment, MRI magnetic resonance imaging, NC normal cognition
Table 4 and Fig. 2 show the effect of Aβ on MMSE scores over time for each diagnostic group, adjusted for demographics. At baseline, there is only a difference in MMSE for the MCI group (p < 0.001). In the NC and MCI groups, the Aβ+ individuals in the NC and MCI groups decline at a faster rate than the Aβ– individuals (NC, p < 0.001; MCI, p < 0.001). For the demented subjects, Aβ did not influence the rate of decline (Table 4, Fig. 2).
Table 4
Effect of Aβ on MMSE scores over time by diagnostic group
Diagnosis
n
Baseline
p value
Slope
p value
NC
482
− 0.35 ± 0.20
0.170
− 0.60 ± 0.13
< 0.001
MCI
459
− 1.56 ± 0.24
< 0.001
− 0.60 ± 0.14
< 0.001
AD dementia
162
− 0.05 ± 1.05
0.965
− 0.21 ± 0.64
0.742
Numbers are linear mixed-model coefficients ± standard error, relative to the Aβ– group, adjusted for age, gender and years of education
amyloid-beta, AD Alzheimer’s disease, MCI mild cognitive impairment, MMSE Mini Mental State Examination, NC normal cognition

Discussion

The aim of the EMIF consortium is to enable the reutilization of preexisting data including the finding and assessment of relevant datasets and facilitation of their interoperability and reuse. For the EMIF-AD component, a major use-case objective has been to use the processes and tools established in the consortium to generate a novel cross-cohort data and sample collection for the discovery and validation of biomarkers for use in clinical trials using a multimodal and endophenotype design. The first results presented in this report confirm the central roles of Aβ and APOE ε4 in the pathogenesis of AD, which is consistent with findings from other large cohorts [36, 37]. The molecular studies are ongoing and will be reported in future publications.
AD is a complex and multifactorial disorder, which underscores the need for multimodal studies with sufficient statistical power [38]. To date these large studies are scarce, especially those including subjects across the whole clinical AD spectrum. To our knowledge, the only other large-scale studies that collected plasma, DNA, CSF and imaging material from individuals in various cognitive stages are the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [36] and the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging [37] studies. Since these datasets are so unique, findings from these studies are difficult to validate. The current study will not only be of great additional value due to its explorative nature and complementary laboaratory analyses, but also because previous findings can be validated in a large-size cohort with multimodal data. We collected a wide variety of clinical variables including neuropsychological tests, comorbidities, medication use and psychiatric questionnaires. All of the clinical data and results from the multimodal wet-lab analyses will be stored on an online, secure data platform (tranSMART). Research proposals can be submitted via the EMIF-AD Catalog (https://​emif-catalogue.​eu) to work with these data, which require approval from the EMIF-AD team and the data-owners.
Besides the major advantages, this study also has some limitations. Currently, we do not have clinical follow-up data for all subjects, as some centers are still in the process of collecting these. However, these data may be added to the database in the future. Also, the data, samples and scans contributed to this study were collected at different centers and were not collected using the same protocol, which will lead to preanalytical variability. To limit this variability, the samples were analyzed centrally and the clinical data were harmonized using standardized values and dichotomous variables.

Conclusion

The various complementary analyses conducted in plasma, DNA and CSF and on MRI scans in a large-sized cohort of individuals across the clinical AD spectrum provide a unique opportunity to discover novel diagnostic and prognostic markers, and will also increase knowledge into the AD pathophysiology, which is required for the development of novel therapeutic interventions.

Acknowledgements

The authors would like to thank all people involved in data and sample collection and/or logistics across the different centers, and in particular: Marije Benedictus, Wiesje van de Flier, Charlotte Teunissen, Ellen De Roeck, Naomi De Roeck, Ellis Niemantsverdriet, Charisse Somers, Babette Reijs, Andrea Izagirre Otaegi, Mirian Ecay Torres, Sindre Rolstad, Eva Bringman, Domilé Tautvydaité, Barbara Moullet, Charlotte Evenepoel, Isabelle Cleynen, Bea Bosch, Daniel Alcolea Rodriguez, Moira Marizzoni, Alberto Redolfi and Paolo Bosco.

Funding

The present study was conducted as part of the EMIF-AD project which has received support from the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement n° 115372, the resources of which are composed of financial contribution from the European Union’s Seventh Framework Program (FP7/2007–2013) and EFPIA companies’ in kind contribution. The DESCRIPA study was funded by the European Commission within the 5th framework program (QLRT-2001-2455). The EDAR study was funded by the European Commission within the 5th framework program (contract # 37670). The Leuven cohort was funded by the Stichting voor Alzheimer Onderzoek (grant numbers #11020, #13007 and #15005). RV is a senior clinical investigator of the Flemish Research Foundation (FWO). The San Sebastian GAP study is partially funded by the Department of Health of the Basque Government (allocation 17.0.1.08.12.0000.2.454.01.41142.001.H). The authors acknowledge the contribution of the personnel of the Genomic Service Facility at the VIB-U Antwerp Center for Molecular Neurology. The research at VIB-CMN is funded in part by the University of Antwerp Research Fund.

Availability of data and materials

The dataset presented in the current study is available upon request and after approval of each data provider, via the EMIF-AD platform (https://​emif-catalogue.​eu; http://​www.​emif.​eu/​about/​emif-ad).
Written informed consent was obtained from all participants before inclusion in the study. The medical ethics committee at each site approved the study (Additional file 4: Table S4).

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.CrossRefPubMedPubMedCentral Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367(9):795–804.CrossRefPubMedPubMedCentral Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367(9):795–804.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer's disease: implications for prevention trials. Neuron. 2014;84(3):608–22.CrossRefPubMedPubMedCentral Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer's disease: implications for prevention trials. Neuron. 2014;84(3):608–22.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Mattsson N, Carrillo MC, Dean RA, Devous MD Sr, Nikolcheva T, Pesini P, Salter H, Potter WZ, Sperling RS, Bateman RJ, et al. Revolutionizing Alzheimer's disease and clinical trials through biomarkers. Alzheimers Dement (Amst). 2015;1(4):412–9. Mattsson N, Carrillo MC, Dean RA, Devous MD Sr, Nikolcheva T, Pesini P, Salter H, Potter WZ, Sperling RS, Bateman RJ, et al. Revolutionizing Alzheimer's disease and clinical trials through biomarkers. Alzheimers Dement (Amst). 2015;1(4):412–9.
5.
Zurück zum Zitat Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, et al. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9(7):560–74.CrossRefPubMed Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, et al. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9(7):560–74.CrossRefPubMed
6.
Zurück zum Zitat Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chetelat G. Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer's disease. Neuroimage Clin. 2013;2:497–511.CrossRefPubMedPubMedCentral Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chetelat G. Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer's disease. Neuroimage Clin. 2013;2:497–511.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer's disease. Lancet. 2016;388(10043):505–17.CrossRefPubMed Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer's disease. Lancet. 2016;388(10043):505–17.CrossRefPubMed
8.
Zurück zum Zitat Duits FH, Prins ND, Lemstra AW, Pijnenburg YA, Bouwman FH, Teunissen CE, Scheltens P, van der Flier WM. Diagnostic impact of CSF biomarkers for Alzheimer's disease in a tertiary memory clinic. Alzheimers Dement. 2015;11(5):523–32.CrossRefPubMed Duits FH, Prins ND, Lemstra AW, Pijnenburg YA, Bouwman FH, Teunissen CE, Scheltens P, van der Flier WM. Diagnostic impact of CSF biomarkers for Alzheimer's disease in a tertiary memory clinic. Alzheimers Dement. 2015;11(5):523–32.CrossRefPubMed
9.
Zurück zum Zitat Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. NeuroImage. 2017;155:530–48.CrossRefPubMedPubMedCentral Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. NeuroImage. 2017;155:530–48.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Laske C. Blood-based biomarkers in Alzheimer disease: where are we now and where have we to go? JAMA Neurol. 2013;70(1):133.CrossRefPubMed Laske C. Blood-based biomarkers in Alzheimer disease: where are we now and where have we to go? JAMA Neurol. 2013;70(1):133.CrossRefPubMed
11.
Zurück zum Zitat Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, Mielke MM, O'Bryant S, Sarasa M, Sjogren M, et al. Developing novel blood-based biomarkers for Alzheimer's disease. Alzheimers Dement. 2014;10(1):109–14.CrossRefPubMedPubMedCentral Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, Mielke MM, O'Bryant S, Sarasa M, Sjogren M, et al. Developing novel blood-based biomarkers for Alzheimer's disease. Alzheimers Dement. 2014;10(1):109–14.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Galasko D, Golde TE. Biomarkers for Alzheimer's disease in plasma, serum and blood—conceptual and practical problems. Alzheimers Res Ther. 2013;5(2):10.CrossRefPubMedPubMedCentral Galasko D, Golde TE. Biomarkers for Alzheimer's disease in plasma, serum and blood—conceptual and practical problems. Alzheimers Res Ther. 2013;5(2):10.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Reijs BLR, Ramakers I, Elias-Sonnenschein L, Teunissen CE, Koel-Simmelink M, Tsolaki M, Wahlund LO, Waldemar G, Hausner L, Johannsen P, et al. Relation of odor identification with Alzheimer's disease markers in cerebrospinal fluid and cognition. J Alzheimers Dis. 2017;60(3):1025–34.CrossRefPubMed Reijs BLR, Ramakers I, Elias-Sonnenschein L, Teunissen CE, Koel-Simmelink M, Tsolaki M, Wahlund LO, Waldemar G, Hausner L, Johannsen P, et al. Relation of odor identification with Alzheimer's disease markers in cerebrospinal fluid and cognition. J Alzheimers Dis. 2017;60(3):1025–34.CrossRefPubMed
15.
Zurück zum Zitat Galluzzi S, Marizzoni M, Babiloni C, Albani D, Antelmi L, Bagnoli C, Bartres-Faz D, Cordone S, Didic M, Farotti L, et al. Clinical and biomarker profiling of prodromal Alzheimer's disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a 'European ADNI study. J Intern Med. 2016;279(6):576–91.CrossRefPubMed Galluzzi S, Marizzoni M, Babiloni C, Albani D, Antelmi L, Bagnoli C, Bartres-Faz D, Cordone S, Didic M, Farotti L, et al. Clinical and biomarker profiling of prodromal Alzheimer's disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a 'European ADNI study. J Intern Med. 2016;279(6):576–91.CrossRefPubMed
16.
Zurück zum Zitat Visser PJ, Verhey FR, Boada M, Bullock R, De Deyn PP, Frisoni GB, Frolich L, Hampel H, Jolles J, Jones R, et al. Development of screening guidelines and clinical criteria for predementia Alzheimer's disease. The DESCRIPA study. Neuroepidemiology. 2008;30(4):254–65.CrossRefPubMedPubMedCentral Visser PJ, Verhey FR, Boada M, Bullock R, De Deyn PP, Frisoni GB, Frolich L, Hampel H, Jolles J, Jones R, et al. Development of screening guidelines and clinical criteria for predementia Alzheimer's disease. The DESCRIPA study. Neuroepidemiology. 2008;30(4):254–65.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Somers C, Struyfs H, Goossens J, Niemantsverdriet E, Luyckx J, De Roeck N, De Roeck E, De Vil B, Cras P, Martin JJ, et al. A decade of cerebrospinal fluid biomarkers for Alzheimer's disease in Belgium. J Alzheimers Dis. 2016;54(1):383–95.CrossRefPubMed Somers C, Struyfs H, Goossens J, Niemantsverdriet E, Luyckx J, De Roeck N, De Roeck E, De Vil B, Cras P, Martin JJ, et al. A decade of cerebrospinal fluid biomarkers for Alzheimer's disease in Belgium. J Alzheimers Dis. 2016;54(1):383–95.CrossRefPubMed
18.
Zurück zum Zitat van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, van Berckel BN, Stam CJ, Barkhof F, Visser PJ, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis. 2014;41(1):313–27.CrossRefPubMed van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, van Berckel BN, Stam CJ, Barkhof F, Visser PJ, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis. 2014;41(1):313–27.CrossRefPubMed
19.
Zurück zum Zitat Alcolea D, Carmona-Iragui M, Suarez-Calvet M, Sanchez-Saudinos MB, Sala I, Anton-Aguirre S, Blesa R, Clarimon J, Fortea J, Lleo A. Relationship between beta-Secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease. J Alzheimers Dis. 2014;42(1):157–67.CrossRefPubMed Alcolea D, Carmona-Iragui M, Suarez-Calvet M, Sanchez-Saudinos MB, Sala I, Anton-Aguirre S, Blesa R, Clarimon J, Fortea J, Lleo A. Relationship between beta-Secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease. J Alzheimers Dis. 2014;42(1):157–67.CrossRefPubMed
20.
Zurück zum Zitat Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, Sanchez-Valle R. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;22(3):909–22.CrossRefPubMed Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, Sanchez-Valle R. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;22(3):909–22.CrossRefPubMed
21.
Zurück zum Zitat Adamczuk K, Schaeverbeke J, Nelissen N, Neyens V, Vandenbulcke M, Goffin K, Lilja J, Hilven K, Dupont P, Van Laere K, et al. Amyloid imaging in cognitively normal older adults: comparison between (18)F-flutemetamol and (11)C-Pittsburgh compound B. Eur J Nucl Med Mol Imaging. 2016;43(1):142–51.CrossRefPubMed Adamczuk K, Schaeverbeke J, Nelissen N, Neyens V, Vandenbulcke M, Goffin K, Lilja J, Hilven K, Dupont P, Van Laere K, et al. Amyloid imaging in cognitively normal older adults: comparison between (18)F-flutemetamol and (11)C-Pittsburgh compound B. Eur J Nucl Med Mol Imaging. 2016;43(1):142–51.CrossRefPubMed
22.
Zurück zum Zitat Estanga A, Ecay-Torres M, Ibanez A, Izagirre A, Villanua J, Garcia-Sebastian M, Iglesias Gaspar MT, Otaegui-Arrazola A, Iriondo A, Clerigue M, et al. Beneficial effect of bilingualism on Alzheimer's disease CSF biomarkers and cognition. Neurobiol Aging. 2017;50:144–51.CrossRefPubMed Estanga A, Ecay-Torres M, Ibanez A, Izagirre A, Villanua J, Garcia-Sebastian M, Iglesias Gaspar MT, Otaegui-Arrazola A, Iriondo A, Clerigue M, et al. Beneficial effect of bilingualism on Alzheimer's disease CSF biomarkers and cognition. Neurobiol Aging. 2017;50:144–51.CrossRefPubMed
23.
Zurück zum Zitat Wallin A, Nordlund A, Jonsson M, Blennow K, Zetterberg H, Ohrfelt A, Stalhammar J, Eckerstrom M, Carlsson M, Olsson E, et al. Alzheimer's disease—subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies. J Cereb Blood Flow Metab. 2016;36(1):95–113.CrossRefPubMedPubMedCentral Wallin A, Nordlund A, Jonsson M, Blennow K, Zetterberg H, Ohrfelt A, Stalhammar J, Eckerstrom M, Carlsson M, Olsson E, et al. Alzheimer's disease—subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies. J Cereb Blood Flow Metab. 2016;36(1):95–113.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Tautvydaite D, Kukreja D, Antonietti JP, Henry H, von Gunten A, Popp J. Interaction between personality traits and cerebrospinal fluid biomarkers of Alzheimer's disease pathology modulates cognitive performance. Alzheimers Res Ther. 2017;9(1):6.CrossRefPubMedPubMedCentral Tautvydaite D, Kukreja D, Antonietti JP, Henry H, von Gunten A, Popp J. Interaction between personality traits and cerebrospinal fluid biomarkers of Alzheimer's disease pathology modulates cognitive performance. Alzheimers Res Ther. 2017;9(1):6.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.CrossRefPubMed Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.CrossRefPubMed
26.
Zurück zum Zitat Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139(9):1136–9.CrossRefPubMed Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139(9):1136–9.CrossRefPubMed
27.
Zurück zum Zitat Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.CrossRefPubMed Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.CrossRefPubMed
28.
Zurück zum Zitat Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.CrossRefPubMed Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.CrossRefPubMed
29.
Zurück zum Zitat McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34(7):939–44.CrossRefPubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34(7):939–44.CrossRefPubMed
30.
Zurück zum Zitat Scheufele E, Aronzon D, Coopersmith R, McDuffie MT, Kapoor M, Uhrich CA, Avitabile JE, Liu J, Housman D, Palchuk MB. tranSMART: an open source knowledge management and high content data analytics platform. AMIA Jt Summits Transl Sci Proc. 2014;2014:96–101.PubMedPubMedCentral Scheufele E, Aronzon D, Coopersmith R, McDuffie MT, Kapoor M, Uhrich CA, Avitabile JE, Liu J, Housman D, Palchuk MB. tranSMART: an open source knowledge management and high content data analytics platform. AMIA Jt Summits Transl Sci Proc. 2014;2014:96–101.PubMedPubMedCentral
31.
Zurück zum Zitat Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R, Sattlecker M, et al. Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement. 2014;10(6):799–807. e792CrossRefPubMedPubMedCentral Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R, Sattlecker M, et al. Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement. 2014;10(6):799–807. e792CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72.CrossRefPubMedPubMedCentral Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol. 1996;36(5):268–72.CrossRefPubMed Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol. 1996;36(5):268–72.CrossRefPubMed
34.
Zurück zum Zitat Koedam EL, Lehmann M, van der Flier WM, Scheltens P, Pijnenburg YA, Fox N, Barkhof F, Wattjes MP. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol. 2011;21(12):2618–25.CrossRefPubMedPubMedCentral Koedam EL, Lehmann M, van der Flier WM, Scheltens P, Pijnenburg YA, Fox N, Barkhof F, Wattjes MP. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol. 2011;21(12):2618–25.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Redolfi A, Bosco P, Manset D, Frisoni GB. Brain investigation and brain conceptualization. Funct Neurol. 2013;28(3):175–90.PubMedPubMedCentral Redolfi A, Bosco P, Manset D, Frisoni GB. Brain investigation and brain conceptualization. Funct Neurol. 2013;28(3):175–90.PubMedPubMedCentral
36.
Zurück zum Zitat Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW, Beckett L. The Alzheimer's Disease Neuroimaging Initiative. Neuroimaging Clin N Am. 2005;15(4):869–77. xi–xii.CrossRefPubMedPubMedCentral Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW, Beckett L. The Alzheimer's Disease Neuroimaging Initiative. Neuroimaging Clin N Am. 2005;15(4):869–77. xi–xii.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr. 2009;21(4):672–87.CrossRefPubMed Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr. 2009;21(4):672–87.CrossRefPubMed
38.
Metadaten
Titel
The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics
verfasst von
Isabelle Bos
Stephanie Vos
Rik Vandenberghe
Philip Scheltens
Sebastiaan Engelborghs
Giovanni Frisoni
José Luis Molinuevo
Anders Wallin
Alberto Lleó
Julius Popp
Pablo Martinez-Lage
Alison Baird
Richard Dobson
Cristina Legido-Quigley
Kristel Sleegers
Christine Van Broeckhoven
Lars Bertram
Mara ten Kate
Frederik Barkhof
Henrik Zetterberg
Simon Lovestone
Johannes Streffer
Pieter Jelle Visser
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Alzheimer's Research & Therapy / Ausgabe 1/2018
Elektronische ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-018-0396-5

Weitere Artikel der Ausgabe 1/2018

Alzheimer's Research & Therapy 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.