Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 1/2019

25.05.2018 | Review Article

The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application

verfasst von: Mengmeng Lu, Shuaifang Yuan, Shicheng Li, Ling Li, Min Liu, Shaogui Wan

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Exosomes are now accepted as potential biomarkers in cardiovascular disease development, especially in atherosclerosis. Atherosclerosis is a leading cause of cardiovascular disease-related death and morbidity, accounting for one-fifth of all deaths globally. Therefore, the biomarkers for the management of atherosclerosis is urgently needed. Exosomes are reported to play key roles cell-to-cell communication in atherosclerosis with lipid bilayer membranous vesicles containing nucleic acids, proteins, and lipid contents, which are released from all most of multiple kinds of living cells. This review aims to discuss the potential roles of exosome-derived miRNA, protein, and DNA as biomarkers in atherosclerosis pathogenesis, diagnosis, and therapy.
Literatur
1.
Zurück zum Zitat Huber, H. J., & Holvoet, P. (2015). Exosomes: Emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26, 412–419.CrossRefPubMedPubMedCentral Huber, H. J., & Holvoet, P. (2015). Exosomes: Emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26, 412–419.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Hao, X., & Fan, H. (2017). Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. European Review for Medical and Pharmacological Sciences, 21, 2725–2733.PubMed Hao, X., & Fan, H. (2017). Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. European Review for Medical and Pharmacological Sciences, 21, 2725–2733.PubMed
3.
Zurück zum Zitat Yin, M., Loyer, X., & Boulanger, C. M. (2015). Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 763, 90–103.CrossRefPubMed Yin, M., Loyer, X., & Boulanger, C. M. (2015). Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 763, 90–103.CrossRefPubMed
4.
Zurück zum Zitat Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 72, 2697–2708.CrossRefPubMed Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 72, 2697–2708.CrossRefPubMed
5.
Zurück zum Zitat Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta, 1852, 1–11.CrossRefPubMed Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta, 1852, 1–11.CrossRefPubMed
6.
Zurück zum Zitat Alvarez-Llamas, G., Cuesta Fdl, G. M. E., Barderas, V., Darde, L. R. P., & Vivanco, F. (2008). Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspective. Expert Review Proteomics, 5, 679–691.CrossRefPubMed Alvarez-Llamas, G., Cuesta Fdl, G. M. E., Barderas, V., Darde, L. R. P., & Vivanco, F. (2008). Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspective. Expert Review Proteomics, 5, 679–691.CrossRefPubMed
7.
Zurück zum Zitat de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., Schiffelers, R. M., Gucek, M., & van Balkom, B. W. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. Journal of Extracellular Vesicles, 1, 18396. https://doi.org/10.3402/jev.v1i0.18396.CrossRef de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., Schiffelers, R. M., Gucek, M., & van Balkom, B. W. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. Journal of Extracellular Vesicles, 1, 18396. https://​doi.​org/​10.​3402/​jev.​v1i0.​18396.CrossRef
8.
Zurück zum Zitat Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288.CrossRefPubMed Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288.CrossRefPubMed
9.
Zurück zum Zitat Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193–208.CrossRefPubMed Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193–208.CrossRefPubMed
10.
Zurück zum Zitat Bretz, N. P., Ridinger, J., Rupp, A. K., Rimbach, K., Keller, S., Rupp, C., Marme, F., Umansky, L., Umansky, V., Eigenbrod, T., Sammar, M., & Altevogt, P. (2013). Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. The Journal of Biological Chemistry, 288, 36691–36702.CrossRefPubMedPubMedCentral Bretz, N. P., Ridinger, J., Rupp, A. K., Rimbach, K., Keller, S., Rupp, C., Marme, F., Umansky, L., Umansky, V., Eigenbrod, T., Sammar, M., & Altevogt, P. (2013). Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. The Journal of Biological Chemistry, 288, 36691–36702.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Emanueli, C., Shearn, A. I. U., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 71, 24–30.CrossRefPubMedPubMedCentral Emanueli, C., Shearn, A. I. U., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 71, 24–30.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ge, Q., Zhou, Y., Lu, J., Bai, Y., Xie, X., & Lu, Z. (2014). miRNA in plasma exosome is stable under different storage conditions. Molecules, 19, 1568–1575.CrossRefPubMedPubMedCentral Ge, Q., Zhou, Y., Lu, J., Bai, Y., Xie, X., & Lu, Z. (2014). miRNA in plasma exosome is stable under different storage conditions. Molecules, 19, 1568–1575.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Packard, R. R., & Libby, P. (2008). Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clinical Chemistry, 54, 24–38.CrossRefPubMed Packard, R. R., & Libby, P. (2008). Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clinical Chemistry, 54, 24–38.CrossRefPubMed
15.
Zurück zum Zitat Izarra, A., Moscoso, I., Levent, E., Cañón, S., Cerrada, I., Díez-Juan, A., Blanca, V., Núñez-Gil, I.-J., Valiente, I., Ruíz-Sauri, A., Sepúlveda, P., Tiburcy, M., Zimmermann, W.-H., & Bernad, A. (2014). miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 3, 1029–1042.CrossRefPubMedPubMedCentral Izarra, A., Moscoso, I., Levent, E., Cañón, S., Cerrada, I., Díez-Juan, A., Blanca, V., Núñez-Gil, I.-J., Valiente, I., Ruíz-Sauri, A., Sepúlveda, P., Tiburcy, M., Zimmermann, W.-H., & Bernad, A. (2014). miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 3, 1029–1042.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., & Dimmeler, S. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14, 249–256.CrossRefPubMed Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., & Dimmeler, S. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14, 249–256.CrossRefPubMed
17.
Zurück zum Zitat Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell, 39, 133–144.CrossRefPubMed Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell, 39, 133–144.CrossRefPubMed
18.
Zurück zum Zitat Zheng, B., Yin, W. N., Suzuki, T., Zhang, X. H., Zhang, Y., Song, L. L., Jin, L. S., Zhan, H., Zhang, H., Li, J. S., & Wen, J. K. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25, 1279–1294.CrossRefPubMedPubMedCentral Zheng, B., Yin, W. N., Suzuki, T., Zhang, X. H., Zhang, Y., Song, L. L., Jin, L. S., Zhan, H., Zhang, H., Li, J. S., & Wen, J. K. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25, 1279–1294.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., van Eijndhoven, M. A., Pegtel, D. M., Stoorvogel, W., Wurdinger, T., & Verhaar, M. C. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121, 3997–4006.CrossRefPubMed van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., van Eijndhoven, M. A., Pegtel, D. M., Stoorvogel, W., Wurdinger, T., & Verhaar, M. C. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121, 3997–4006.CrossRefPubMed
20.
Zurück zum Zitat Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah, P., Wisler, J., Eubank, T. D., Tridandapani, S., Paulaitis, M. E., Piper, M. G., & Marsh, C. B. (2013). Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 121, 984–995.CrossRefPubMedPubMedCentral Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah, P., Wisler, J., Eubank, T. D., Tridandapani, S., Paulaitis, M. E., Piper, M. G., & Marsh, C. B. (2013). Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 121, 984–995.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Tan, M., Yan, H. B., Li, J. N., Li, W. K., Fu, Y. Y., Chen, W., & Zhou, Z. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cellular Physiology and Biochemistry, 38, 2348–2365.CrossRefPubMed Tan, M., Yan, H. B., Li, J. N., Li, W. K., Fu, Y. Y., Chen, W., & Zhou, Z. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cellular Physiology and Biochemistry, 38, 2348–2365.CrossRefPubMed
22.
Zurück zum Zitat Gidlof, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM-1 expression. Blood, 121, 3908–3917.CrossRefPubMed Gidlof, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM-1 expression. Blood, 121, 3908–3917.CrossRefPubMed
25.
Zurück zum Zitat Neppl, R. L., & Wang, D.-Z. (2014). The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes & Diseases, 1, 18–39.CrossRef Neppl, R. L., & Wang, D.-Z. (2014). The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes & Diseases, 1, 18–39.CrossRef
26.
Zurück zum Zitat Hulsmans, M., & Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 100, 7–18.CrossRefPubMed Hulsmans, M., & Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 100, 7–18.CrossRefPubMed
27.
Zurück zum Zitat Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., & Dorn II, G. W. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106, 166–175.CrossRefPubMed Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., & Dorn II, G. W. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106, 166–175.CrossRefPubMed
28.
Zurück zum Zitat Gao, S., Wassler, M., Zhang, L., Li, Y., Wang, J., Zhang, Y., Shelat, H., Williams, J., & Geng, Y. J. (2014). MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 232, 171–179.CrossRefPubMed Gao, S., Wassler, M., Zhang, L., Li, Y., Wang, J., Zhang, Y., Shelat, H., Williams, J., & Geng, Y. J. (2014). MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 232, 171–179.CrossRefPubMed
30.
Zurück zum Zitat Pan, Y., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C. Y., & Zen, K. (2013). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. The Journal of Immunology, 192, 437–446.CrossRefPubMed Pan, Y., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C. Y., & Zen, K. (2013). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. The Journal of Immunology, 192, 437–446.CrossRefPubMed
31.
Zurück zum Zitat Jiang, M., Jing, Q., Zhang, H., Ding, Q. Q., Xiang, M., Meng, D., Sun, N., & Chen, S. F. (2016). Proteomic identification of proteins in exosomes of patients with atherosclerosis. Chinese Journal Pathophysiology, 24, 1525–1526. Jiang, M., Jing, Q., Zhang, H., Ding, Q. Q., Xiang, M., Meng, D., Sun, N., & Chen, S. F. (2016). Proteomic identification of proteins in exosomes of patients with atherosclerosis. Chinese Journal Pathophysiology, 24, 1525–1526.
32.
Zurück zum Zitat Chyrchel, B., Toton-Zuranska, J., Kruszelnicka, O., Chyrchel, M., Mielecki, W., Kolton-Wroz, M., Wolkow, P., & Surdacki, A. (2015). Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets, 26, 593–597.CrossRefPubMed Chyrchel, B., Toton-Zuranska, J., Kruszelnicka, O., Chyrchel, M., Mielecki, W., Kolton-Wroz, M., Wolkow, P., & Surdacki, A. (2015). Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets, 26, 593–597.CrossRefPubMed
33.
Zurück zum Zitat Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB Journal, 30, 3097–3106.CrossRefPubMedPubMedCentral Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB Journal, 30, 3097–3106.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., Willard, B., Zu, L., Zhou, E., Li, Y., Pan, B., Yang, F., & Zheng, L. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.116.004099. Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., Willard, B., Zu, L., Zhou, E., Li, Y., Pan, B., Yang, F., & Zheng, L. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association. https://​doi.​org/​10.​1161/​JAHA.​116.​004099.
35.
Zurück zum Zitat Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., & Jicha, G. A. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 31, 3689–3694.CrossRefPubMedPubMedCentral Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., & Jicha, G. A. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 31, 3689–3694.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., Lin, J., & Chen, N. (2017). Salivary exosomal PSMA7: A promising biomarker of inflammatory bowel disease. Protein & Cell, 8, 686–695.CrossRef Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., Lin, J., & Chen, N. (2017). Salivary exosomal PSMA7: A promising biomarker of inflammatory bowel disease. Protein & Cell, 8, 686–695.CrossRef
37.
Zurück zum Zitat Cai, J., Han, Y., Ren, H., Chen, C., He, D., Zhou, L., Eisner, G. M., Asico, L. D., Jose, P. A., & Zeng, C. (2013). Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of Molecular Cell Biology, 5, 227–238.CrossRefPubMedPubMedCentral Cai, J., Han, Y., Ren, H., Chen, C., He, D., Zhou, L., Eisner, G. M., Asico, L. D., Jose, P. A., & Zeng, C. (2013). Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of Molecular Cell Biology, 5, 227–238.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., Zou, X., Zhou, F., Wang, J., Pei, F., Chen, X., Luo, H., Wang, X., He, D., Zhou, L., Jose, P. A., & Zeng, C. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129, 259–269.CrossRefPubMed Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., Zou, X., Zhou, F., Wang, J., Pei, F., Chen, X., Luo, H., Wang, X., He, D., Zhou, L., Jose, P. A., & Zeng, C. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129, 259–269.CrossRefPubMed
Metadaten
Titel
The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application
verfasst von
Mengmeng Lu
Shuaifang Yuan
Shicheng Li
Ling Li
Min Liu
Shaogui Wan
Publikationsdatum
25.05.2018
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 1/2019
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9796-y

Weitere Artikel der Ausgabe 1/2019

Journal of Cardiovascular Translational Research 1/2019 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.