Skip to main content
Erschienen in: Inflammation 3/2019

22.11.2018 | ORIGINAL ARTICLE

The Expression of CXCL10/CXCR3 and Effect of the Axis on the Function of T Lymphocyte Involved in Oral Lichen Planus

verfasst von: Jiaxiang Fang, Chen Wang, Chen Shen, Jing Shan, Xuewei Wang, Lin Liu, Yuan Fan

Erschienen in: Inflammation | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

The etiology of oral lichen planus (OLP) is still not clear. The purpose of this study was to explore the role of CXC chemokine receptor 3(CXCR3) and its ligand CXC motif chemokine 10(CXCL10) in the pathogenesis of OLP. We examined the expression of CXCR3 and CXCL10 in OLP patients and healthy controls by quantitative real-time PCR, Western blotting, ELISAs, and immunohistochemistry, respectively. Moreover, we detected the effects of CXCL10/CXCR3 axis on T lymphocyte migration, proliferation and apoptosis by Transwell assays, CCK8 assays, and flow cytometry. We found that the expression of CXCR3 and CXCL10 was significantly increased in OLP patients. In addition, T lymphocyte migration rate of CXCL10 stimulation group was significantly higher than that of control and CXCR3 antagonist groups. After antagonizing CXCR3, the migration ability of T lymphocytes was significantly decreased, and regardless of whether CXCL10 was added in the upper chamber culture medium, the number of migrating cells was similar. The addition of CXCL10 stimulant could stimulate the proliferation of T lymphocytes, but there was no significant difference compared with control group. After antagonizing CXCR3, the proliferation rate of T lymphocytes was significantly reduced. However, there were no significant differences in the apoptosis rates of T lymphocytes between CXCL10 stimulation group, antagonist CXCR3 group, and control group. Due to the change of expression in CXCR3 and CXCL10, and its interaction in mediating the directional migration of peripheral blood T lymphocytes, affecting the proliferation of T lymphocytes, it suggests that CXCL10/CXCR3 axis may be related to the immune mechanism of OLP.
Literatur
1.
Zurück zum Zitat McCartan, B.E., and C.M. Healy. 2008. The reported prevalence of oral lichen planus: A review and critique. Journal of Oral Pathology & Medicine 37 (8): 447–453.CrossRef McCartan, B.E., and C.M. Healy. 2008. The reported prevalence of oral lichen planus: A review and critique. Journal of Oral Pathology & Medicine 37 (8): 447–453.CrossRef
2.
Zurück zum Zitat van der Waal, I. 2010. Potentially malignant disorders of the oral and oropharyngeal mucosa; present concepts of management. Oral Oncology 46 (6): 423–425.PubMedCrossRef van der Waal, I. 2010. Potentially malignant disorders of the oral and oropharyngeal mucosa; present concepts of management. Oral Oncology 46 (6): 423–425.PubMedCrossRef
3.
Zurück zum Zitat Wu, Y., G. Zhou, H. Zeng, C.R. Xiong, M. Lin, and H.M. Zhou. 2010. A randomized double-blind, positive-control trial of topical thalidomide in erosive oral lichen planus. Oral Surgery Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 110 (2): 188–195.CrossRef Wu, Y., G. Zhou, H. Zeng, C.R. Xiong, M. Lin, and H.M. Zhou. 2010. A randomized double-blind, positive-control trial of topical thalidomide in erosive oral lichen planus. Oral Surgery Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 110 (2): 188–195.CrossRef
4.
Zurück zum Zitat Crincoli, V., M.B. Di Bisceglie, M. Scivetti, A. Lucchese, S. Tecco, and F. Festa. 2011. Oral lichen planus: Update on etiopathogenesis, diagnosis and treatment. Immunopharmacol Immunotoxicol 33 (1): 11–20.PubMedCrossRef Crincoli, V., M.B. Di Bisceglie, M. Scivetti, A. Lucchese, S. Tecco, and F. Festa. 2011. Oral lichen planus: Update on etiopathogenesis, diagnosis and treatment. Immunopharmacol Immunotoxicol 33 (1): 11–20.PubMedCrossRef
5.
Zurück zum Zitat Suresh, S.S., K. Chokshi, S. Desai, R. Malu, and A. Chokshi. 2016. Medical management of oral lichen planus: A systematic review. Journal of Clinical and Diagnostic Research 10 (2): ZE10–ZE15.PubMed Suresh, S.S., K. Chokshi, S. Desai, R. Malu, and A. Chokshi. 2016. Medical management of oral lichen planus: A systematic review. Journal of Clinical and Diagnostic Research 10 (2): ZE10–ZE15.PubMed
6.
Zurück zum Zitat Wang, Y., J. Zhou, S. Fu, C. Wang, and B. Zhou. 2015. A study of association between oral lichen planus and immune balance of Th1/Th2 cells. Inflammation 38 (5): 1874–1879.PubMedCrossRef Wang, Y., J. Zhou, S. Fu, C. Wang, and B. Zhou. 2015. A study of association between oral lichen planus and immune balance of Th1/Th2 cells. Inflammation 38 (5): 1874–1879.PubMedCrossRef
7.
Zurück zum Zitat Peng, W.Y., Y. Ye, B.A. Rabinovich, C.W. Liu, Y.Y. Lou, M.Y. Zhang, M. Whittington, Y. Yang, W.W. Overwijk, G. Lizee, and P. Hwu. 2010. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clinical Cancer Research 16 (22): 5458–5468.PubMedPubMedCentralCrossRef Peng, W.Y., Y. Ye, B.A. Rabinovich, C.W. Liu, Y.Y. Lou, M.Y. Zhang, M. Whittington, Y. Yang, W.W. Overwijk, G. Lizee, and P. Hwu. 2010. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clinical Cancer Research 16 (22): 5458–5468.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Altara, R., M. Manca, R.D. Brandao, A. Zeidan, G.W. Booz, and F.A. Zouein. 2016. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clinical Science (London, England) 130 (7): 463–478.CrossRef Altara, R., M. Manca, R.D. Brandao, A. Zeidan, G.W. Booz, and F.A. Zouein. 2016. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clinical Science (London, England) 130 (7): 463–478.CrossRef
9.
Zurück zum Zitat van den Borne, P., P.H. Quax, I.E. Hoefer, and G. Pasterkamp. 2014. The multifaceted functions of CXCL10 in cardiovascular disease. BioMed Research International 2014: 893106.PubMedPubMedCentral van den Borne, P., P.H. Quax, I.E. Hoefer, and G. Pasterkamp. 2014. The multifaceted functions of CXCL10 in cardiovascular disease. BioMed Research International 2014: 893106.PubMedPubMedCentral
10.
Zurück zum Zitat Van Raemdonck, K., P.E. Van den Steen, S. Liekens, J. Van Damme, and S. Struyf. 2015. CXCR3 ligands in disease and therapy. Cytokine & Growth Factor Reviews 26 (3): 311–327.CrossRef Van Raemdonck, K., P.E. Van den Steen, S. Liekens, J. Van Damme, and S. Struyf. 2015. CXCR3 ligands in disease and therapy. Cytokine & Growth Factor Reviews 26 (3): 311–327.CrossRef
11.
Zurück zum Zitat Andalib, A., H. Doulabi, M. Najafi, M. Tazhibi, and A. Rezaie. 2011. Expression of chemokine receptors on Th1/Th2 CD4+ lymphocytes in patients with multiple sclerosis. Iranian Journal of Immunology 8 (1): 1–10.PubMed Andalib, A., H. Doulabi, M. Najafi, M. Tazhibi, and A. Rezaie. 2011. Expression of chemokine receptors on Th1/Th2 CD4+ lymphocytes in patients with multiple sclerosis. Iranian Journal of Immunology 8 (1): 1–10.PubMed
12.
Zurück zum Zitat Muller, M., S. Carter, M.J. Hofer, and I.L. Campbell. 2010. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathology and Applied Neurobiology 36 (5): 368–387.PubMedCrossRef Muller, M., S. Carter, M.J. Hofer, and I.L. Campbell. 2010. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathology and Applied Neurobiology 36 (5): 368–387.PubMedCrossRef
13.
Zurück zum Zitat Marques, C.P., P. Kapil, D.R. Hinton, C. Hindinger, S.L. Nutt, R.M. Ransohoff, T.W. Phares, S.A. Stohlman, and C.C. Bergmann. 2011. CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis. Journal of Virology 85 (13): 6136–6147.PubMedPubMedCentralCrossRef Marques, C.P., P. Kapil, D.R. Hinton, C. Hindinger, S.L. Nutt, R.M. Ransohoff, T.W. Phares, S.A. Stohlman, and C.C. Bergmann. 2011. CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis. Journal of Virology 85 (13): 6136–6147.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Fallahi, P., S.M. Ferrari, G. Elia, F. Nasini, M. Colaci, D. Giuggioli, R. Vita, S. Benvenga, C. Ferri, and A. Antonelli. 2016. Novel therapies for thyroid autoimmune diseases. Expert Review of Clinical Pharmacology 9 (6): 853–861.PubMedCrossRef Fallahi, P., S.M. Ferrari, G. Elia, F. Nasini, M. Colaci, D. Giuggioli, R. Vita, S. Benvenga, C. Ferri, and A. Antonelli. 2016. Novel therapies for thyroid autoimmune diseases. Expert Review of Clinical Pharmacology 9 (6): 853–861.PubMedCrossRef
15.
Zurück zum Zitat Antonelli, A., S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, and P. Fallahi. 2014. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews 13 (3): 272–280.PubMedCrossRef Antonelli, A., S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, and P. Fallahi. 2014. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews 13 (3): 272–280.PubMedCrossRef
16.
Zurück zum Zitat Antonelli, A., S.M. Ferrari, A. Corrado, E. Ferrannini, and P. Fallahi. 2014. CXCR3, CXCL10 and type 1 diabetes. Cytokine & Growth Factor Reviews 25 (1): 57–65.CrossRef Antonelli, A., S.M. Ferrari, A. Corrado, E. Ferrannini, and P. Fallahi. 2014. CXCR3, CXCL10 and type 1 diabetes. Cytokine & Growth Factor Reviews 25 (1): 57–65.CrossRef
17.
Zurück zum Zitat Ferrari, S.M., I. Ruffilli, M. Colaci, A. Antonelli, C. Ferri, and P. Fallahi. 2015. CXCL10 in psoriasis. Advances in Medical Sciences 60 (2): 349–354.PubMedCrossRef Ferrari, S.M., I. Ruffilli, M. Colaci, A. Antonelli, C. Ferri, and P. Fallahi. 2015. CXCL10 in psoriasis. Advances in Medical Sciences 60 (2): 349–354.PubMedCrossRef
18.
Zurück zum Zitat van der Meij, E.H., and I. van der Waal. 2003. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. Journal of Oral Pathology & Medicine 32 (9): 507–512.CrossRef van der Meij, E.H., and I. van der Waal. 2003. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. Journal of Oral Pathology & Medicine 32 (9): 507–512.CrossRef
19.
Zurück zum Zitat Ferri, E.P., C.B. Gallo, C.S. Abboud, W.H. Yanaguizawa, A. Horliana, D. Silva, C. Pavani, S.K. Bussadori, F.D. Nunes, R.A. Mesquita-Ferrari, K.P.S. Fernandes, and M.F.S.D. Rodrigues. 2018. Efficacy of photobiomodulation on oral lichen planus: A protocol study for a double-blind, randomised controlled clinical trial. BMJ Open 8 (10): e024083.PubMedPubMedCentralCrossRef Ferri, E.P., C.B. Gallo, C.S. Abboud, W.H. Yanaguizawa, A. Horliana, D. Silva, C. Pavani, S.K. Bussadori, F.D. Nunes, R.A. Mesquita-Ferrari, K.P.S. Fernandes, and M.F.S.D. Rodrigues. 2018. Efficacy of photobiomodulation on oral lichen planus: A protocol study for a double-blind, randomised controlled clinical trial. BMJ Open 8 (10): e024083.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Hu, J.Y., J. Zhang, J.L. Cui, X.Y. Liang, R. Lu, G.F. Du, X.Y. Xu, and G. Zhou. 2013. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine 62 (1): 141–145.PubMedCrossRef Hu, J.Y., J. Zhang, J.L. Cui, X.Y. Liang, R. Lu, G.F. Du, X.Y. Xu, and G. Zhou. 2013. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine 62 (1): 141–145.PubMedCrossRef
21.
Zurück zum Zitat Liu, L.K., X.Y. Jiang, X.X. Zhou, D.M. Wang, X.L. Song, and H.B. Jiang. 2010. Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: Correlation with the clinicopathological features and patient outcome. Modern Pathology 23 (2): 213–224.PubMedCrossRef Liu, L.K., X.Y. Jiang, X.X. Zhou, D.M. Wang, X.L. Song, and H.B. Jiang. 2010. Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: Correlation with the clinicopathological features and patient outcome. Modern Pathology 23 (2): 213–224.PubMedCrossRef
22.
Zurück zum Zitat Chaiyarit, P., K. Luengtrakoon, W. Wannakasemsuk, V. Vichitrananda, P. Klanrit, D. Hormdee, and R. Noisombut. 2017. Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Medical Hypotheses 104: 40–44.PubMedCrossRef Chaiyarit, P., K. Luengtrakoon, W. Wannakasemsuk, V. Vichitrananda, P. Klanrit, D. Hormdee, and R. Noisombut. 2017. Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Medical Hypotheses 104: 40–44.PubMedCrossRef
23.
Zurück zum Zitat Flier, J., D.M. Boorsma, P.J. van Beek, C. Nieboer, T.J. Stoof, R. Willemze, and C.P. Tensen. 2001. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. The Journal of Pathology 194 (4): 398–405.PubMedCrossRef Flier, J., D.M. Boorsma, P.J. van Beek, C. Nieboer, T.J. Stoof, R. Willemze, and C.P. Tensen. 2001. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. The Journal of Pathology 194 (4): 398–405.PubMedCrossRef
24.
Zurück zum Zitat Aggarwal, A., S. Agarwal, and R. Misra. 2007. Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA). Clinical and Experimental Immunology 148 (3): 515–519.PubMedPubMedCentralCrossRef Aggarwal, A., S. Agarwal, and R. Misra. 2007. Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA). Clinical and Experimental Immunology 148 (3): 515–519.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Zhou, H., J. Wu, T. Wang, X. Zhang, and D. Liu. 2016. CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomedicine & Pharmacotherapy 82: 479–488.CrossRef Zhou, H., J. Wu, T. Wang, X. Zhang, and D. Liu. 2016. CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomedicine & Pharmacotherapy 82: 479–488.CrossRef
26.
Zurück zum Zitat Coppieters, K.T., N. Amirian, P.P. Pagni, C. Baca Jones, A. Wiberg, S. Lasch, E. Hintermann, U. Christen, and M.G. von Herrath. 2013. Functional redundancy of CXCR3/CXCL10 signaling in the recruitment of diabetogenic cytotoxic T lymphocytes to pancreatic islets in a virally induced autoimmune diabetes model. Diabetes 62 (7): 2492–2499.PubMedPubMedCentralCrossRef Coppieters, K.T., N. Amirian, P.P. Pagni, C. Baca Jones, A. Wiberg, S. Lasch, E. Hintermann, U. Christen, and M.G. von Herrath. 2013. Functional redundancy of CXCR3/CXCL10 signaling in the recruitment of diabetogenic cytotoxic T lymphocytes to pancreatic islets in a virally induced autoimmune diabetes model. Diabetes 62 (7): 2492–2499.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Mirones, I., I. de Prada, A.M. Gomez, A. Luque, R. Martin, M.A. Perez-Jimenez, L. Madero, J. Garcia-Castro, and M. Ramirez. 2013. A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis. Pediatric Neurology 49 (6): 451–457 e451.PubMedCrossRef Mirones, I., I. de Prada, A.M. Gomez, A. Luque, R. Martin, M.A. Perez-Jimenez, L. Madero, J. Garcia-Castro, and M. Ramirez. 2013. A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis. Pediatric Neurology 49 (6): 451–457 e451.PubMedCrossRef
28.
Zurück zum Zitat Ruschpler, P., P. Lorenz, W. Eichler, D. Koczan, C. Hanel, R. Scholz, C. Melzer, H.J. Thiesen, and P. Stiehl. 2003. High CXCR3 expression in synovial mast cells associated with CXCL9 and CXCL10 expression in inflammatory synovial tissues of patients with rheumatoid arthritis. Arthritis Research & Therapy 5 (5): R241–R252.CrossRef Ruschpler, P., P. Lorenz, W. Eichler, D. Koczan, C. Hanel, R. Scholz, C. Melzer, H.J. Thiesen, and P. Stiehl. 2003. High CXCR3 expression in synovial mast cells associated with CXCL9 and CXCL10 expression in inflammatory synovial tissues of patients with rheumatoid arthritis. Arthritis Research & Therapy 5 (5): R241–R252.CrossRef
29.
Zurück zum Zitat Teleshova, N., M. Pashenkov, Y.M. Huang, M. Soderstrom, P. Kivisakk, V. Kostulas, M. Haglund, and H. Link. 2002. Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. Journal of Neurology 249 (6): 723–729.PubMedCrossRef Teleshova, N., M. Pashenkov, Y.M. Huang, M. Soderstrom, P. Kivisakk, V. Kostulas, M. Haglund, and H. Link. 2002. Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. Journal of Neurology 249 (6): 723–729.PubMedCrossRef
30.
Zurück zum Zitat Jatczak-Pawlik, I., D. Ksiazek-Winiarek, D. Wojkowska, K. Jozwiak, K. Jastrzebski, M. Pietruczuk, and A. Glabinski. 2016. The impact of multiple sclerosis relapse treatment on migration of effector T cells—preliminary study. Neurologia i Neurochirurgia Polska 50 (3): 155–162.PubMedCrossRef Jatczak-Pawlik, I., D. Ksiazek-Winiarek, D. Wojkowska, K. Jozwiak, K. Jastrzebski, M. Pietruczuk, and A. Glabinski. 2016. The impact of multiple sclerosis relapse treatment on migration of effector T cells—preliminary study. Neurologia i Neurochirurgia Polska 50 (3): 155–162.PubMedCrossRef
31.
Zurück zum Zitat Cruise, M.W., J.R. Lukens, A.P. Nguyen, M.G. Lassen, S.N. Waggoner, and Y.S. Hahn. 2006. Fas ligand is responsible for CXCR3 chemokine induction in CD4+ T cell-dependent liver damage. Journal of Immunology 176 (10): 6235–6244.CrossRef Cruise, M.W., J.R. Lukens, A.P. Nguyen, M.G. Lassen, S.N. Waggoner, and Y.S. Hahn. 2006. Fas ligand is responsible for CXCR3 chemokine induction in CD4+ T cell-dependent liver damage. Journal of Immunology 176 (10): 6235–6244.CrossRef
32.
Zurück zum Zitat Bondar, C., R.E. Araya, L. Guzman, E.C. Rua, N. Chopita, and F.G. Chirdo. 2014. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One 9 (2): e89068.PubMedPubMedCentralCrossRef Bondar, C., R.E. Araya, L. Guzman, E.C. Rua, N. Chopita, and F.G. Chirdo. 2014. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One 9 (2): e89068.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Shimada, A., Y. Oikawa, Y. Yamada, Y. Okubo, and S. Narumi. 2009. The role of the CXCL10/CXCR3 system in type 1 diabetes. The Review of Diabetic Studies 6 (2): 81–84.PubMedCrossRef Shimada, A., Y. Oikawa, Y. Yamada, Y. Okubo, and S. Narumi. 2009. The role of the CXCL10/CXCR3 system in type 1 diabetes. The Review of Diabetic Studies 6 (2): 81–84.PubMedCrossRef
34.
Zurück zum Zitat Ha, Y., H. Liu, S. Zhu, P. Yi, W. Liu, J. Nathanson, R. Kayed, B. Loucas, J. Sun, L.J. Frishman, M. Motamedi, and W. Zhang. 2017. Critical role of the CXCL10/C-X-C chemokine receptor 3 axis in promoting leukocyte recruitment and neuronal injury during traumatic optic neuropathy induced by optic nerve crush. The American Journal of Pathology 187 (2): 352–365.PubMedPubMedCentralCrossRef Ha, Y., H. Liu, S. Zhu, P. Yi, W. Liu, J. Nathanson, R. Kayed, B. Loucas, J. Sun, L.J. Frishman, M. Motamedi, and W. Zhang. 2017. Critical role of the CXCL10/C-X-C chemokine receptor 3 axis in promoting leukocyte recruitment and neuronal injury during traumatic optic neuropathy induced by optic nerve crush. The American Journal of Pathology 187 (2): 352–365.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat He, J., C. Lian, Y. Fang, J. Wu, J. Weng, X. Ye, and H. Zhou. 2015. Effect of CXCL10 receptor antagonist on islet cell apoptosis in a type I diabetes rat model. International Journal of Clinical and Experimental Pathology 8 (11): 14542–14548.PubMedPubMedCentral He, J., C. Lian, Y. Fang, J. Wu, J. Weng, X. Ye, and H. Zhou. 2015. Effect of CXCL10 receptor antagonist on islet cell apoptosis in a type I diabetes rat model. International Journal of Clinical and Experimental Pathology 8 (11): 14542–14548.PubMedPubMedCentral
36.
Zurück zum Zitat Sidahmed, A.M., A.J. Leon, S.E. Bosinger, D. Banner, A. Danesh, M.J. Cameron, and D.J. Kelvin. 2012. CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro. Cytokine 59 (2): 433–441.PubMedCrossRef Sidahmed, A.M., A.J. Leon, S.E. Bosinger, D. Banner, A. Danesh, M.J. Cameron, and D.J. Kelvin. 2012. CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro. Cytokine 59 (2): 433–441.PubMedCrossRef
Metadaten
Titel
The Expression of CXCL10/CXCR3 and Effect of the Axis on the Function of T Lymphocyte Involved in Oral Lichen Planus
verfasst von
Jiaxiang Fang
Chen Wang
Chen Shen
Jing Shan
Xuewei Wang
Lin Liu
Yuan Fan
Publikationsdatum
22.11.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0934-0

Weitere Artikel der Ausgabe 3/2019

Inflammation 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.