Skip to main content
Erschienen in: Inflammation 1/2019

31.08.2018 | ORIGINAL ARTICLE

The Glycolytic Enzyme PFKFB3 Controls TNF-α-Induced Endothelial Proinflammatory Responses

verfasst von: Ruyuan Zhang, Ranran Li, Yiyun Liu, Lei Li, Yaoqing Tang

Erschienen in: Inflammation | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Endothelial cells play an important role in health and a variety of diseases. Recent evidences show that endothelial cells rely on glycolysis rather than on oxidative phosphorylation to generate energy to support cellular functions such as angiogenesis. However, the effect of endothelial glycolysis on vascular inflammation remains little known. Here, we investigate the role of key glycolytic enzyme PFKFB3 in tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory responses. siRNAs were used to knockdown the expression of PFKFB3. In some experiments, PFKFB3 inhibitors were also used. TNF-α at 20 ng/ml was added to confluent endothelial cells for different time period of stimulation. PFKFB3 expression was examined by RT-PCR and western blotting. Cytokine antibody panel membranes were employed to detect different cytokines/chemokines in culture supernatant of endothelial cells. The determination of monocyte adhesion to endothelial cells after TNF-α treatment was conducted using THP-1 cells. The monocyte attraction was performed using Transwell filters. For further mechanisms, NF-κB-p65 localization was examined by immunofluorescence. Expression of total IκB, phospho-IκB, phospho-NF-κB-p65, and Ikkβ was detected by western blotting. DNA-binding activity of NF-κB was assessed using electrophoretic mobility shift assay. We found that TNF-α increased endothelial PFKFB3 expression. Knockdown of PFKFB3 almost blocked all TNF-α-induced release of the proinflammatory cytokines/chemokines (MCP-1, IL-8, CXCL1, GMCSF, RANTES, TNF-α) and ICAM-1. PFKFB3 knockdown also significantly inhibited TNF-α-induced monocyte adhesion and transmigration. Furthermore, inhibition of PFKFB3 inhibited TNF-α-induced Ikkβ phosphorylation, IκBα phosphorylation and degradation, NF-κB-p65 phosphorylation, nuclear translocation, and DNA-binding activity. Thus, our results demonstrate that glycolytic enzyme PFKFB3 plays a critical role in TNF-α-induced endothelial inflammation.
Literatur
2.
3.
Zurück zum Zitat Aird, W.C. 2008. Endothelium in health and disease. Pharmacological Reports 60: 139–143.PubMed Aird, W.C. 2008. Endothelium in health and disease. Pharmacological Reports 60: 139–143.PubMed
4.
Zurück zum Zitat Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah. 1995. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America 92: 10599–10603.CrossRefPubMedPubMedCentral Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah. 1995. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America 92: 10599–10603.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Cantelmo, A.R., L.C. Conradi, A. Brajic, J. Goveia, J. Kalucka, A. Pircher, P. Chaturvedi, J. Hol, B. Thienpont, L.A. Teuwen, S. Schoors, B. Boeckx, J. Vriens, A. Kuchnio, K. Veys, B. Cruys, L. Finotto, L. Treps, T.E. Stav-Noraas, F. Bifari, P. Stapor, I. Decimo, K. Kampen, K. de Bock, G. Haraldsen, L. Schoonjans, T. Rabelink, G. Eelen, B. Ghesquière, J. Rehman, D. Lambrechts, A.B. Malik, M. Dewerchin, and P. Carmeliet. 2016. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30: 968–985. https://doi.org/10.1016/j.ccell.2016.10.006. CrossRefPubMedPubMedCentral Cantelmo, A.R., L.C. Conradi, A. Brajic, J. Goveia, J. Kalucka, A. Pircher, P. Chaturvedi, J. Hol, B. Thienpont, L.A. Teuwen, S. Schoors, B. Boeckx, J. Vriens, A. Kuchnio, K. Veys, B. Cruys, L. Finotto, L. Treps, T.E. Stav-Noraas, F. Bifari, P. Stapor, I. Decimo, K. Kampen, K. de Bock, G. Haraldsen, L. Schoonjans, T. Rabelink, G. Eelen, B. Ghesquière, J. Rehman, D. Lambrechts, A.B. Malik, M. Dewerchin, and P. Carmeliet. 2016. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30: 968–985. https://​doi.​org/​10.​1016/​j.​ccell.​2016.​10.​006.​ CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Chen, Z., J. Hagler, V.J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes & Development 9: 1586–1597.CrossRef Chen, Z., J. Hagler, V.J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes & Development 9: 1586–1597.CrossRef
9.
Zurück zum Zitat Culic, O., M.L. Gruwel, and J. Schrader. 1997. Energy turnover of vascular endothelial cells. The American Journal of Physiology 273: C205–C213.CrossRefPubMed Culic, O., M.L. Gruwel, and J. Schrader. 1997. Energy turnover of vascular endothelial cells. The American Journal of Physiology 273: C205–C213.CrossRefPubMed
11.
Zurück zum Zitat Dobrina, A., and F. Rossi. 1983. Metabolic properties of freshly isolated bovine endothelial cells. Biochimica et Biophysica Acta 762: 295–301.CrossRefPubMed Dobrina, A., and F. Rossi. 1983. Metabolic properties of freshly isolated bovine endothelial cells. Biochimica et Biophysica Acta 762: 295–301.CrossRefPubMed
14.
Zurück zum Zitat Libby, P., P.M. Ridker, and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105: 1135–1143.CrossRefPubMed Libby, P., P.M. Ridker, and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105: 1135–1143.CrossRefPubMed
16.
Zurück zum Zitat Obach, M., A. Navarro-Sabate, J. Caro, X. Kong, J. Duran, M. Gomez, J.C. Perales, F. Ventura, J.L. Rosa, and R. Bartrons. 2004. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. The Journal of Biological Chemistry 279: 53562–53570. https://doi.org/10.1074/jbc.M406096200.CrossRefPubMed Obach, M., A. Navarro-Sabate, J. Caro, X. Kong, J. Duran, M. Gomez, J.C. Perales, F. Ventura, J.L. Rosa, and R. Bartrons. 2004. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. The Journal of Biological Chemistry 279: 53562–53570. https://​doi.​org/​10.​1074/​jbc.​M406096200.CrossRefPubMed
18.
Zurück zum Zitat Peters, K., G. Kamp, A. Berz, R.E. Unger, S. Barth, A. Salamon, J. Rychly, and C.J. Kirkpatrick. 2009. Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation. Cellular Physiology and Biochemistry 24: 483–492. https://doi.org/10.1159/000257490.CrossRefPubMed Peters, K., G. Kamp, A. Berz, R.E. Unger, S. Barth, A. Salamon, J. Rychly, and C.J. Kirkpatrick. 2009. Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation. Cellular Physiology and Biochemistry 24: 483–492. https://​doi.​org/​10.​1159/​000257490.CrossRefPubMed
20.
Zurück zum Zitat Pober, J.S., and W.C. Sessa. 2007. Evolving functions of endothelial cells in inflammation. Nature Reviews. Immunology 7: 803–815.CrossRefPubMed Pober, J.S., and W.C. Sessa. 2007. Evolving functions of endothelial cells in inflammation. Nature Reviews. Immunology 7: 803–815.CrossRefPubMed
21.
Zurück zum Zitat Reid, M.A., X.H. Lowman, M. Pan, T.Q. Tran, M.O. Warmoes, M.B. Ishak Gabra, Y. Yang, J.W. Locasale, and M. Kong. 2016. IKKbeta promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes & Development 30: 1837–1851. https://doi.org/10.1101/gad.287235.116.CrossRef Reid, M.A., X.H. Lowman, M. Pan, T.Q. Tran, M.O. Warmoes, M.B. Ishak Gabra, Y. Yang, J.W. Locasale, and M. Kong. 2016. IKKbeta promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes & Development 30: 1837–1851. https://​doi.​org/​10.​1101/​gad.​287235.​116.CrossRef
23.
Zurück zum Zitat Sakurai, H., S. Suzuki, N. Kawasaki, H. Nakano, T. Okazaki, A. Chino, T. Doi, and I. Saiki. 2003. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278: 36916–36923. https://doi.org/10.1074/jbc.M301598200.CrossRef Sakurai, H., S. Suzuki, N. Kawasaki, H. Nakano, T. Okazaki, A. Chino, T. Doi, and I. Saiki. 2003. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278: 36916–36923. https://​doi.​org/​10.​1074/​jbc.​M301598200.CrossRef
Metadaten
Titel
The Glycolytic Enzyme PFKFB3 Controls TNF-α-Induced Endothelial Proinflammatory Responses
verfasst von
Ruyuan Zhang
Ranran Li
Yiyun Liu
Lei Li
Yaoqing Tang
Publikationsdatum
31.08.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0880-x

Weitere Artikel der Ausgabe 1/2019

Inflammation 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.