Skip to main content
Erschienen in: Inflammation 2/2016

17.12.2015 | ORIGINAL ARTICLE

The Golgi-Associated Plant Pathogenesis-Related Protein GAPR-1 Enhances Type I Interferon Signaling Pathway in Response to Toll-Like Receptor 4

verfasst von: Qing Zhou, Lu Hao, Weiren Huang, Zhiming Cai

Erschienen in: Inflammation | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4) through the TIRAP-MyD88 dependent and TRAM-TRIF dependent signaling pathways, respectively. However, the underlying relevance between two signaling pathways remains largely elusive. Here, we investigated the role of the Golgi-Associated plant Pathogenesis-Related protein (GAPR-1) in type I interferon (IFN) signaling pathway in response to TLR4. We found that TIRAP-MyD88 dependent kinase IRAK1 phosphorylated GAPR-1 at Serine 58 site. The phosphorylation of GAPR-1 promoted its interaction with TRAM-TRIF dependent inhibitor TMED7, and impaired TMED7-mediated disruption of the TRAM-TRIF complex to trigger IFN-β and the IL10 secretion. Collectively, our study identified a previously unrecognized role for GAPR-1 to control a unifying TLR4 signaling complex and to regulate type I IFN signaling activation. Understanding the mechanism of GAPR-1 in type I IFN signaling pathway would provide strategies for treatment of infectious diseases.
Literatur
1.
Zurück zum Zitat Janeway Jr., C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.CrossRefPubMed Janeway Jr., C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.CrossRefPubMed
2.
Zurück zum Zitat Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801.CrossRefPubMed Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801.CrossRefPubMed
3.
Zurück zum Zitat Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430: 257–263.CrossRefPubMed Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430: 257–263.CrossRefPubMed
4.
Zurück zum Zitat Akira, S. 2006. TLR signaling. Current Topics in Microbiology and Immunology 311: 1–16.PubMed Akira, S. 2006. TLR signaling. Current Topics in Microbiology and Immunology 311: 1–16.PubMed
5.
Zurück zum Zitat Palsson-McDermott, E.M., and L.A. O’Neill. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162.CrossRefPubMedPubMedCentral Palsson-McDermott, E.M., and L.A. O’Neill. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Ohashi, K., V. Burkart, S. Flohe, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. Journal of Immunology 164: 558–561.CrossRef Ohashi, K., V. Burkart, S. Flohe, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. Journal of Immunology 164: 558–561.CrossRef
7.
Zurück zum Zitat Okamura, Y., M. Watari, E.S. Jerud, D.W. Young, S.T. Ishizaka, J. Rose, et al. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. Journal of Biological Chemistry 276: 10229–10233.CrossRefPubMed Okamura, Y., M. Watari, E.S. Jerud, D.W. Young, S.T. Ishizaka, J. Rose, et al. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. Journal of Biological Chemistry 276: 10229–10233.CrossRefPubMed
8.
Zurück zum Zitat O’Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews Immunology 7: 353–364.CrossRefPubMed O’Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews Immunology 7: 353–364.CrossRefPubMed
9.
Zurück zum Zitat Kagan, J.C., and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125: 943–955.CrossRefPubMed Kagan, J.C., and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125: 943–955.CrossRefPubMed
10.
Zurück zum Zitat Kagan, J.C., T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov. 2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nature Immunology 9: 361–368.CrossRefPubMedPubMedCentral Kagan, J.C., T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov. 2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nature Immunology 9: 361–368.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Gottipati, S., N.L. Rao, and W.P. Fung-Leung. 2008. IRAK1: a critical signaling mediator of innate immunity. Cellular Signalling 20: 269–276.CrossRefPubMed Gottipati, S., N.L. Rao, and W.P. Fung-Leung. 2008. IRAK1: a critical signaling mediator of innate immunity. Cellular Signalling 20: 269–276.CrossRefPubMed
12.
Zurück zum Zitat Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, et al. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunology 4: 1144–1150.CrossRefPubMed Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, et al. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunology 4: 1144–1150.CrossRefPubMed
13.
Zurück zum Zitat Siegemund, S., and K. Sauer. 2012. Balancing pro- and anti-inflammatory TLR4 signaling. Nature Immunology 13: 1031–1033.CrossRefPubMed Siegemund, S., and K. Sauer. 2012. Balancing pro- and anti-inflammatory TLR4 signaling. Nature Immunology 13: 1031–1033.CrossRefPubMed
14.
Zurück zum Zitat Rowe, D.C., A.F. McGettrick, E. Latz, B.G. Monks, N.J. Gay, M. Yamamoto, et al. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America 103: 6299–6304.CrossRefPubMedPubMedCentral Rowe, D.C., A.F. McGettrick, E. Latz, B.G. Monks, N.J. Gay, M. Yamamoto, et al. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America 103: 6299–6304.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Palsson-McDermott, E.M., S.L. Doyle, A.F. McGettrick, M. Hardy, H. Husebye, K. Banahan, M. Gong, et al. 2009. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nature Immunology 10: 579–586.CrossRefPubMed Palsson-McDermott, E.M., S.L. Doyle, A.F. McGettrick, M. Hardy, H. Husebye, K. Banahan, M. Gong, et al. 2009. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nature Immunology 10: 579–586.CrossRefPubMed
16.
Zurück zum Zitat Doyle, S.L., H. Husebye, D.J. Connolly, T. Espevik, L.A. O’Neill, and A.F. McGettrick. 2012. The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nature Communications 3: 707.CrossRefPubMed Doyle, S.L., H. Husebye, D.J. Connolly, T. Espevik, L.A. O’Neill, and A.F. McGettrick. 2012. The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nature Communications 3: 707.CrossRefPubMed
17.
Zurück zum Zitat Serrano, R.L., A. Kuhn, A. Hendricks, J.B. Helms, I. Sinning, and M.R. Groves. 2004. Structural analysis of the human Golgi-associated plant pathogenesis related protein GAPR-1 implicates dimerization as a regulatory mechanism. Journal of Molecular Biology 339: 173–183.CrossRefPubMed Serrano, R.L., A. Kuhn, A. Hendricks, J.B. Helms, I. Sinning, and M.R. Groves. 2004. Structural analysis of the human Golgi-associated plant pathogenesis related protein GAPR-1 implicates dimerization as a regulatory mechanism. Journal of Molecular Biology 339: 173–183.CrossRefPubMed
18.
Zurück zum Zitat Olrichs, N.K., A.K. Mahalka, D. Kaloyanova, P.K. Kinnunen, and J. Bernd Helms. 2014. Golgi-associated plant pathogenesis related protein 1 (GAPR-1) forms amyloid-like fibrils by interaction with acidic phospholipids and inhibits Abeta aggregation. Amyloid 21: 88–96.CrossRefPubMed Olrichs, N.K., A.K. Mahalka, D. Kaloyanova, P.K. Kinnunen, and J. Bernd Helms. 2014. Golgi-associated plant pathogenesis related protein 1 (GAPR-1) forms amyloid-like fibrils by interaction with acidic phospholipids and inhibits Abeta aggregation. Amyloid 21: 88–96.CrossRefPubMed
19.
Zurück zum Zitat Van Galen, J., N.K. Olrichs, A. Schouten, R.L. Serrano, E.N. Nolte-’t Hoen, R. Eerland, et al. 2012. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochimica et Biophysica Acta 1818: 2175–2183.CrossRefPubMed Van Galen, J., N.K. Olrichs, A. Schouten, R.L. Serrano, E.N. Nolte-’t Hoen, R. Eerland, et al. 2012. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochimica et Biophysica Acta 1818: 2175–2183.CrossRefPubMed
20.
Zurück zum Zitat Eberle, H.B., R.L. Serrano, J. Fullekrug, A. Schlosser, W.D. Lehmann, F. Lottspeich, et al. 2002. Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex. Journal of Cell Science 115: 827–838.PubMed Eberle, H.B., R.L. Serrano, J. Fullekrug, A. Schlosser, W.D. Lehmann, F. Lottspeich, et al. 2002. Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex. Journal of Cell Science 115: 827–838.PubMed
21.
Zurück zum Zitat Baxter, R.M., T.P. Crowell, J.A. George, M.E. Getman, and H. Gardner. 2007. The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro. Matrix Biology 26: 20–29.CrossRefPubMed Baxter, R.M., T.P. Crowell, J.A. George, M.E. Getman, and H. Gardner. 2007. The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro. Matrix Biology 26: 20–29.CrossRefPubMed
22.
Zurück zum Zitat Huang, S., F. Liu, Q. Niu, Y. Li, C. Liu, L. Zhang, et al. 2013. GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PloS One 8: e58574.CrossRefPubMedPubMedCentral Huang, S., F. Liu, Q. Niu, Y. Li, C. Liu, L. Zhang, et al. 2013. GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PloS One 8: e58574.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Huang, S.G., L.L. Zhang, Q. Niu, G.M. Xiang, L.L. Liu, D.N. Jiang, et al. 2013. Hypoxia promotes epithelial–mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression. PloS One 8: e77497.CrossRefPubMedPubMedCentral Huang, S.G., L.L. Zhang, Q. Niu, G.M. Xiang, L.L. Liu, D.N. Jiang, et al. 2013. Hypoxia promotes epithelial–mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression. PloS One 8: e77497.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Shoji-Kawata, S., R. Sumpter, M. Leveno, G.R. Campbell, Z. Zou, L. Kinch, et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494: 201–206.CrossRefPubMedPubMedCentral Shoji-Kawata, S., R. Sumpter, M. Leveno, G.R. Campbell, Z. Zou, L. Kinch, et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494: 201–206.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294: 1351–1362.CrossRefPubMed Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294: 1351–1362.CrossRefPubMed
26.
Zurück zum Zitat Cao, Z., W.J. Henzel, and X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128–1131.CrossRefPubMed Cao, Z., W.J. Henzel, and X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128–1131.CrossRefPubMed
27.
Zurück zum Zitat An, H., J. Hou, J. Zhou, W. Zhao, H. Xu, Y. Zheng, et al. 2008. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nature Immunology 9: 542–550.CrossRefPubMed An, H., J. Hou, J. Zhou, W. Zhao, H. Xu, Y. Zheng, et al. 2008. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nature Immunology 9: 542–550.CrossRefPubMed
28.
Zurück zum Zitat Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.CrossRefPubMed Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.CrossRefPubMed
29.
Zurück zum Zitat Xu, L.G., Y.Y. Wang, K.J. Han, L.Y. Li, Z. Zhai, and H.B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular Cell 19: 727–740.CrossRefPubMed Xu, L.G., Y.Y. Wang, K.J. Han, L.Y. Li, Z. Zhai, and H.B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular Cell 19: 727–740.CrossRefPubMed
30.
Zurück zum Zitat Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.CrossRefPubMed Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.CrossRefPubMed
31.
32.
Zurück zum Zitat Brinkmann, M.M., E. Spooner, K. Hoebe, B. Beutler, H.L. Ploegh, and Y.M. Kim. 2007. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. Journal of Cell Biology 177: 265–275.CrossRefPubMedPubMedCentral Brinkmann, M.M., E. Spooner, K. Hoebe, B. Beutler, H.L. Ploegh, and Y.M. Kim. 2007. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. Journal of Cell Biology 177: 265–275.CrossRefPubMedPubMedCentral
34.
35.
Zurück zum Zitat Aksoy, E., S. Taboubi, D. Torres, S. Delbauve, A. Hachani, M.A. Whitehead, et al. 2012. The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nature Immunology 13: 1045–1054.CrossRefPubMedPubMedCentral Aksoy, E., S. Taboubi, D. Torres, S. Delbauve, A. Hachani, M.A. Whitehead, et al. 2012. The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nature Immunology 13: 1045–1054.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Golgi-Associated Plant Pathogenesis-Related Protein GAPR-1 Enhances Type I Interferon Signaling Pathway in Response to Toll-Like Receptor 4
verfasst von
Qing Zhou
Lu Hao
Weiren Huang
Zhiming Cai
Publikationsdatum
17.12.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0297-8

Weitere Artikel der Ausgabe 2/2016

Inflammation 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.