Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2010

01.12.2010 | NON-THEMATIC REVIEW

The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network

verfasst von: Lakshmanane Boominathan

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians—p53, p73, and p63—of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.
Literatur
1.
Zurück zum Zitat Boominathan, L. (2007). Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Molecular Cancer, 6, 27.PubMedCrossRef Boominathan, L. (2007). Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Molecular Cancer, 6, 27.PubMedCrossRef
2.
Zurück zum Zitat Chen, H. Z., Tsai, S. Y., & Leone, G. (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer, 9(11), 785–97.PubMedCrossRef Chen, H. Z., Tsai, S. Y., & Leone, G. (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer, 9(11), 785–97.PubMedCrossRef
3.
Zurück zum Zitat Puig, P., Capodieci, P., Drobnjak, M., Verbel, D., Prives, C., Cordon-Cardo, C., et al. (2003). p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clinical Cancer Research, 9(15), 5642–5651.PubMed Puig, P., Capodieci, P., Drobnjak, M., Verbel, D., Prives, C., Cordon-Cardo, C., et al. (2003). p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clinical Cancer Research, 9(15), 5642–5651.PubMed
4.
Zurück zum Zitat Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMed Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMed
5.
Zurück zum Zitat Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMed Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMed
6.
Zurück zum Zitat Oya, M., & Schulz, W. A. (2000). Decreased expression of p57(KIP2)mRNA in human bladder cancer. British Journal of Cancer, 83(5), 626–631.PubMedCrossRef Oya, M., & Schulz, W. A. (2000). Decreased expression of p57(KIP2)mRNA in human bladder cancer. British Journal of Cancer, 83(5), 626–631.PubMedCrossRef
7.
Zurück zum Zitat Kunze, E., Wendt, M., & Schlott, T. (2006). Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas. International Journal of Molecular Medicine, 18(4), 547–557.PubMed Kunze, E., Wendt, M., & Schlott, T. (2006). Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas. International Journal of Molecular Medicine, 18(4), 547–557.PubMed
8.
Zurück zum Zitat Moreira, J. M., Gromov, P., & Celis, J. E. (2004). Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & Cellular Proteomics, 3(4), 410–419.CrossRef Moreira, J. M., Gromov, P., & Celis, J. E. (2004). Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & Cellular Proteomics, 3(4), 410–419.CrossRef
9.
Zurück zum Zitat Le Frère-Belda, M. A., Cappellen, D., Daher, A., Gil-Diez-de-Medina, S., Besse, F., Abbou, C. C., et al. (2001). p15(INK4b) in bladder carcinomas: decreased expression in superficial tumours. British Journal of Cancer, 85(10), 1515–1521.PubMedCrossRef Le Frère-Belda, M. A., Cappellen, D., Daher, A., Gil-Diez-de-Medina, S., Besse, F., Abbou, C. C., et al. (2001). p15(INK4b) in bladder carcinomas: decreased expression in superficial tumours. British Journal of Cancer, 85(10), 1515–1521.PubMedCrossRef
10.
Zurück zum Zitat Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17(13), 2006–2017.PubMedCrossRef Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17(13), 2006–2017.PubMedCrossRef
11.
Zurück zum Zitat Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., et al. (2002). FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. The American Journal of Pathology, 160(4), 1345–1352.PubMed Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., et al. (2002). FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. The American Journal of Pathology, 160(4), 1345–1352.PubMed
12.
Zurück zum Zitat Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in PTEN-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66(17), 8389–8396.PubMedCrossRef Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in PTEN-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66(17), 8389–8396.PubMedCrossRef
13.
Zurück zum Zitat Kim, E. J., Kim, Y. J., Jeong, P., Ha, Y. S., Bae, S. C., & Kim, W. J. (2008). Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. Urology, 180(3), 1141–1145.CrossRef Kim, E. J., Kim, Y. J., Jeong, P., Ha, Y. S., Bae, S. C., & Kim, W. J. (2008). Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. Urology, 180(3), 1141–1145.CrossRef
14.
Zurück zum Zitat Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., et al. (2010). miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29(7), 1073–1084.PubMedCrossRef Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., et al. (2010). miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29(7), 1073–1084.PubMedCrossRef
15.
Zurück zum Zitat Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer (in press) Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer (in press)
16.
Zurück zum Zitat Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMedCrossRef Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMedCrossRef
17.
Zurück zum Zitat Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. The Journal of Clinical Investigation, 117(2), 314–325.PubMedCrossRef Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. The Journal of Clinical Investigation, 117(2), 314–325.PubMedCrossRef
18.
Zurück zum Zitat Knowles, M. A., Platt, F. M., Ross, R. L., & Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 28(3–4), 305–316. Review.PubMedCrossRef Knowles, M. A., Platt, F. M., Ross, R. L., & Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 28(3–4), 305–316. Review.PubMedCrossRef
19.
Zurück zum Zitat Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22(19), 2677–2691.CrossRef Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22(19), 2677–2691.CrossRef
20.
Zurück zum Zitat He, L., Fan, C., Ning, X., Feng, X., Liu, Y., Chen, B., et al. (2008). Interaction of p14ARF with Brca1 in cancer cell lines and primary breast cancer. Cell Biology International, 32(10), 1302–1309.PubMedCrossRef He, L., Fan, C., Ning, X., Feng, X., Liu, Y., Chen, B., et al. (2008). Interaction of p14ARF with Brca1 in cancer cell lines and primary breast cancer. Cell Biology International, 32(10), 1302–1309.PubMedCrossRef
21.
Zurück zum Zitat Zhu, J. W., Field, S. J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Molecular and Cellular Biology, 2001(24), 8547–8564.CrossRef Zhu, J. W., Field, S. J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Molecular and Cellular Biology, 2001(24), 8547–8564.CrossRef
22.
Zurück zum Zitat Opavsky, R., Tsai, S. Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., et al. (2007). Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15400–15405.PubMedCrossRef Opavsky, R., Tsai, S. Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., et al. (2007). Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15400–15405.PubMedCrossRef
23.
Zurück zum Zitat Friedman, L. S., Thistlethwaite, F. C., Patel, K. J., Yu, V. P., Lee, H., Venkitaraman, A. R., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Research, 58(7), 1338–1343.PubMed Friedman, L. S., Thistlethwaite, F. C., Patel, K. J., Yu, V. P., Lee, H., Venkitaraman, A. R., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Research, 58(7), 1338–1343.PubMed
24.
Zurück zum Zitat Szremska, A. P., Kenner, L., Weisz, E., Ott, R. G., Passegué, E., Artwohl, M., et al. (2003). JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102(12), 4159–4165.PubMedCrossRef Szremska, A. P., Kenner, L., Weisz, E., Ott, R. G., Passegué, E., Artwohl, M., et al. (2003). JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102(12), 4159–4165.PubMedCrossRef
25.
Zurück zum Zitat Passegué, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMedCrossRef Passegué, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMedCrossRef
26.
Zurück zum Zitat Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U., & Wagner, E. F. (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell, 104(1), 21–32.PubMedCrossRef Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U., & Wagner, E. F. (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell, 104(1), 21–32.PubMedCrossRef
27.
Zurück zum Zitat Passegué, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMedCrossRef Passegué, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMedCrossRef
28.
Zurück zum Zitat Corn, P. G., Kuerbitz, S. J., van Noesel, M. M., Esteller, M., Compitello, N., Baylin, S. B., et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Research, 59(14), 3352–3356.PubMed Corn, P. G., Kuerbitz, S. J., van Noesel, M. M., Esteller, M., Compitello, N., Baylin, S. B., et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Research, 59(14), 3352–3356.PubMed
29.
Zurück zum Zitat Yamaguchi, H., Inokuchi, K., Sakuma, Y., & Dan, K. (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia, 11, 1729–1734. Yamaguchi, H., Inokuchi, K., Sakuma, Y., & Dan, K. (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia, 11, 1729–1734.
30.
Zurück zum Zitat Marreiros, A., Dudgeon, K., Dao, V., Grimm, M. O., Czolij, R., Crossley, M., et al. (2005). KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene, 24(4), 637–649.PubMedCrossRef Marreiros, A., Dudgeon, K., Dao, V., Grimm, M. O., Czolij, R., Crossley, M., et al. (2005). KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene, 24(4), 637–649.PubMedCrossRef
31.
Zurück zum Zitat Koster, M. I., Kim, S., Huang, J., Williams, T., & Roop, D. R. (2006). TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Developmental Biology, 289(1), 253–261.PubMedCrossRef Koster, M. I., Kim, S., Huang, J., Williams, T., & Roop, D. R. (2006). TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Developmental Biology, 289(1), 253–261.PubMedCrossRef
32.
Zurück zum Zitat Li, H., Watts, G. S., Oshiro, M. M., Futscher, B. W., & Domann, F. E. (2006). AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 25(39), 5405–5415.PubMedCrossRef Li, H., Watts, G. S., Oshiro, M. M., Futscher, B. W., & Domann, F. E. (2006). AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 25(39), 5405–5415.PubMedCrossRef
33.
Zurück zum Zitat Mitchell, D. C., Abdelrahim, M., Weng, J., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. The Journal of Biological Chemistry, 281(1), 51–58.PubMedCrossRef Mitchell, D. C., Abdelrahim, M., Weng, J., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. The Journal of Biological Chemistry, 281(1), 51–58.PubMedCrossRef
34.
Zurück zum Zitat Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. The American Journal of Pathology, 162(2), 609–617.PubMed Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. The American Journal of Pathology, 162(2), 609–617.PubMed
35.
Zurück zum Zitat Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated miRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMedCrossRef Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated miRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMedCrossRef
36.
Zurück zum Zitat Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 6, 694–704.CrossRef Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 6, 694–704.CrossRef
37.
Zurück zum Zitat Lim, S. O., Kim, H., & Jung, G. (2010). p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Letters, 584(11), 2231–2236.PubMedCrossRef Lim, S. O., Kim, H., & Jung, G. (2010). p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Letters, 584(11), 2231–2236.PubMedCrossRef
38.
Zurück zum Zitat Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMedCrossRef Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMedCrossRef
39.
Zurück zum Zitat Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27(15), 2243–2248.PubMedCrossRef Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27(15), 2243–2248.PubMedCrossRef
40.
Zurück zum Zitat Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111. Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111.
41.
Zurück zum Zitat Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMedCrossRef Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMedCrossRef
42.
Zurück zum Zitat Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell, 103(2), 321–330.PubMedCrossRef Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell, 103(2), 321–330.PubMedCrossRef
43.
Zurück zum Zitat Ozaki, T., Okoshi, R., Sang, M., Kubo, N., & Nakagawara, A. (2009). Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochemical and Biophysical Research Communications, 386(1), 207–211.PubMedCrossRef Ozaki, T., Okoshi, R., Sang, M., Kubo, N., & Nakagawara, A. (2009). Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochemical and Biophysical Research Communications, 386(1), 207–211.PubMedCrossRef
44.
Zurück zum Zitat Sayan, B. S., Sayan, A. E., Yang, A. L., Aqeilan, R. I., Candi, E., Cohen, G. M., et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10871–10876.PubMedCrossRef Sayan, B. S., Sayan, A. E., Yang, A. L., Aqeilan, R. I., Candi, E., Cohen, G. M., et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10871–10876.PubMedCrossRef
45.
Zurück zum Zitat Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275(1), 44–53.PubMedCrossRef Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275(1), 44–53.PubMedCrossRef
46.
Zurück zum Zitat Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. The FEBS Journal, 276(11), 2966–2982.PubMedCrossRef Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. The FEBS Journal, 276(11), 2966–2982.PubMedCrossRef
47.
Zurück zum Zitat Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). p53- induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339.PubMedCrossRef Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). p53- induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339.PubMedCrossRef
48.
Zurück zum Zitat Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMedCrossRef Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMedCrossRef
49.
Zurück zum Zitat Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., et al. (2010). MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Research, 70(7), 2728–2738.PubMedCrossRef Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., et al. (2010). MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Research, 70(7), 2728–2738.PubMedCrossRef
50.
Zurück zum Zitat Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedCrossRef Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedCrossRef
51.
Zurück zum Zitat Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., Chiyomaru, T., Enokida, H., Nakagawa, M., Matsubara, H. (2010). miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer (in press) Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., Chiyomaru, T., Enokida, H., Nakagawa, M., Matsubara, H. (2010). miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer (in press)
52.
Zurück zum Zitat Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597.PubMedCrossRef Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597.PubMedCrossRef
55.
Zurück zum Zitat Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., Pollet, I., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.PubMedCrossRef Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., Pollet, I., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.PubMedCrossRef
56.
Zurück zum Zitat Hooper, C., Tavassoli, M., Chapple, J. P., Uwanogho, D., Goodyear, R., Melino, G., et al. (2006). TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. Journal of Neurochemistry, 99(3), 989–999.PubMedCrossRef Hooper, C., Tavassoli, M., Chapple, J. P., Uwanogho, D., Goodyear, R., Melino, G., et al. (2006). TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. Journal of Neurochemistry, 99(3), 989–999.PubMedCrossRef
57.
Zurück zum Zitat Chu, W. K., Dai, P. M., Li, H. L., & Chen, J. K. (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. The Journal of Biological Chemistry, 283(12), 7328–7337.PubMedCrossRef Chu, W. K., Dai, P. M., Li, H. L., & Chen, J. K. (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. The Journal of Biological Chemistry, 283(12), 7328–7337.PubMedCrossRef
58.
Zurück zum Zitat Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., et al. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. The Journal of Biological Chemistry, 276(45), 41717–41724.PubMedCrossRef Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., et al. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. The Journal of Biological Chemistry, 276(45), 41717–41724.PubMedCrossRef
59.
Zurück zum Zitat Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRef Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRef
60.
Zurück zum Zitat Cho, M. S., Chan, I. L., & Flores, E. R. (2010). DeltaNp63 transcriptionally regulates brachyury, a gene with diverse roles in limb development, tumorigenesis and metastasis. Cell Cycle, 9(12). Cho, M. S., Chan, I. L., & Flores, E. R. (2010). DeltaNp63 transcriptionally regulates brachyury, a gene with diverse roles in limb development, tumorigenesis and metastasis. Cell Cycle, 9(12).
61.
Zurück zum Zitat Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedCrossRef Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedCrossRef
62.
Zurück zum Zitat Senoo, M., Matsumura, Y., & Habu, S. (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 21(16), 2455–2465.PubMedCrossRef Senoo, M., Matsumura, Y., & Habu, S. (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 21(16), 2455–2465.PubMedCrossRef
63.
Zurück zum Zitat Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66(1), 46–51.PubMedCrossRef Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66(1), 46–51.PubMedCrossRef
64.
Zurück zum Zitat Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMedCrossRef Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMedCrossRef
65.
Zurück zum Zitat Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.PubMedCrossRef Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.PubMedCrossRef
66.
Zurück zum Zitat Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.PubMedCrossRef Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.PubMedCrossRef
67.
Zurück zum Zitat Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6(10), 931–940.PubMedCrossRef Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6(10), 931–940.PubMedCrossRef
68.
Zurück zum Zitat Fukushima, H., Koga, F., Kawakami, S., Fujii, Y., Yoshida, S., Ratovitski, E., et al. (2009). Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Research, 69(24), 9263–9270.PubMedCrossRef Fukushima, H., Koga, F., Kawakami, S., Fujii, Y., Yoshida, S., Ratovitski, E., et al. (2009). Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Research, 69(24), 9263–9270.PubMedCrossRef
69.
Zurück zum Zitat Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., & Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Molecular Cell, 38(1), 114–127.PubMedCrossRef Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., & Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Molecular Cell, 38(1), 114–127.PubMedCrossRef
70.
Zurück zum Zitat Higashikawa, K., Yoneda, S., Tobiume, K., Saitoh, M., Taki, M., et al. (2009). DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. International Journal of Cancer, 124(12), 2837–2844.CrossRef Higashikawa, K., Yoneda, S., Tobiume, K., Saitoh, M., Taki, M., et al. (2009). DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. International Journal of Cancer, 124(12), 2837–2844.CrossRef
71.
Zurück zum Zitat Kommagani, R., Leonard, M. K., Lewis, S., Romano, R. A., Sinha, S., & Kadakia, M. P. (2009). Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. Journal of Cell Science, 122(Pt 16), 2828–2835.PubMedCrossRef Kommagani, R., Leonard, M. K., Lewis, S., Romano, R. A., Sinha, S., & Kadakia, M. P. (2009). Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. Journal of Cell Science, 122(Pt 16), 2828–2835.PubMedCrossRef
72.
Zurück zum Zitat Kommagani, R., Payal, V., & Kadakia, M. P. (2007). Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. The Journal of Biological Chemistry, 282(41), 29847–29854.PubMedCrossRef Kommagani, R., Payal, V., & Kadakia, M. P. (2007). Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. The Journal of Biological Chemistry, 282(41), 29847–29854.PubMedCrossRef
73.
Zurück zum Zitat Pálmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedCrossRef Pálmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedCrossRef
74.
Zurück zum Zitat Pálmer, H. G., Larriba, M. J., García, J. M., Ordóñez-Morán, P., Peña, C., Peiró, S., et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Natural Medicines, 10(9), 917–919.CrossRef Pálmer, H. G., Larriba, M. J., García, J. M., Ordóñez-Morán, P., Peña, C., Peiró, S., et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Natural Medicines, 10(9), 917–919.CrossRef
75.
Zurück zum Zitat Peña, C., García, J. M., Silva, J., García, V., Rodríguez, R., Alonso, I., et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 14(22), 3361–3370.PubMedCrossRef Peña, C., García, J. M., Silva, J., García, V., Rodríguez, R., Alonso, I., et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 14(22), 3361–3370.PubMedCrossRef
76.
Zurück zum Zitat Higashikawa, K., Yoneda, S., Tobiume, K., Taki, M., & Shigeishi, H. (2007). Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Research, 67(19), 9207–9213.PubMedCrossRef Higashikawa, K., Yoneda, S., Tobiume, K., Taki, M., & Shigeishi, H. (2007). Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Research, 67(19), 9207–9213.PubMedCrossRef
77.
Zurück zum Zitat Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 6(3), 291–294.PubMed Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 6(3), 291–294.PubMed
78.
Zurück zum Zitat Chikh, A., Sayan, E., Thibaut, S., Lena, A. M., DiGiorgi, S., Bernard, B. A., et al. (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochemical and Biophysical Research Communications, 361(1), 1–6.PubMedCrossRef Chikh, A., Sayan, E., Thibaut, S., Lena, A. M., DiGiorgi, S., Bernard, B. A., et al. (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochemical and Biophysical Research Communications, 361(1), 1–6.PubMedCrossRef
79.
Zurück zum Zitat Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., & Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. The Journal of Biological Chemistry, 285(18), 14042–14051.PubMedCrossRef Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., & Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. The Journal of Biological Chemistry, 285(18), 14042–14051.PubMedCrossRef
80.
Zurück zum Zitat Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13(2), 141–152.PubMedCrossRef Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13(2), 141–152.PubMedCrossRef
81.
Zurück zum Zitat Dydensborg, A. B., Rose, A. A., Wilson, B. J., Grote, D., Paquet, M., Giguère, V., et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 28(29), 2634–2642.PubMedCrossRef Dydensborg, A. B., Rose, A. A., Wilson, B. J., Grote, D., Paquet, M., Giguère, V., et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 28(29), 2634–2642.PubMedCrossRef
82.
Zurück zum Zitat Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., et al. (2006). p63 is upstream of IKK alpha in epidermal development. Journal of Cell Science, 119(Pt 22), 4617–4622.PubMedCrossRef Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., et al. (2006). p63 is upstream of IKK alpha in epidermal development. Journal of Cell Science, 119(Pt 22), 4617–4622.PubMedCrossRef
83.
Zurück zum Zitat Descargues, P., Sil, A. K., & Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. The EMBO Journal, 27(20), 2639–2647.PubMedCrossRef Descargues, P., Sil, A. K., & Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. The EMBO Journal, 27(20), 2639–2647.PubMedCrossRef
84.
Zurück zum Zitat Marinari, B., Ballaro, C., Koster, M. I., Giustizieri, M. L., Moretti, F., Crosti, F., et al. (2009). IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. The Journal of Investigative Dermatology, 129(1), 60–69.PubMedCrossRef Marinari, B., Ballaro, C., Koster, M. I., Giustizieri, M. L., Moretti, F., Crosti, F., et al. (2009). IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. The Journal of Investigative Dermatology, 129(1), 60–69.PubMedCrossRef
85.
Zurück zum Zitat Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). p63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRef Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). p63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRef
86.
Zurück zum Zitat Beretta, C., Chiarelli, A., Testoni, B., Mantovani, R., & Guerrini, L. (2005). Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle, 11, 1625–1631. Beretta, C., Chiarelli, A., Testoni, B., Mantovani, R., & Guerrini, L. (2005). Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle, 11, 1625–1631.
87.
Zurück zum Zitat Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 6, 551–561.CrossRef Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 6, 551–561.CrossRef
88.
Zurück zum Zitat Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.PubMed Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.PubMed
89.
Zurück zum Zitat Zamisch, M., Tian, L., Grenningloh, R., Xiong, Y., Wildt, K. F., Ehlers, M., et al. (2009). The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of Experimental Medicine, 206(12), 2685–2699.PubMedCrossRef Zamisch, M., Tian, L., Grenningloh, R., Xiong, Y., Wildt, K. F., Ehlers, M., et al. (2009). The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of Experimental Medicine, 206(12), 2685–2699.PubMedCrossRef
90.
Zurück zum Zitat Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361.PubMedCrossRef Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361.PubMedCrossRef
91.
Zurück zum Zitat Chang, T. L., Ito, K., Ko, T. K., Liu, Q., Salto-Tellez, M., Yeoh, K. G., et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology, 138(1), 255–265. e1–3.PubMedCrossRef Chang, T. L., Ito, K., Ko, T. K., Liu, Q., Salto-Tellez, M., Yeoh, K. G., et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology, 138(1), 255–265. e1–3.PubMedCrossRef
92.
Zurück zum Zitat Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M. L., Cyr, D. G., Merlo, G., et al. (2008). Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE, 3(7), e2715.PubMedCrossRef Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M. L., Cyr, D. G., Merlo, G., et al. (2008). Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE, 3(7), e2715.PubMedCrossRef
93.
Zurück zum Zitat Chao, Y. C., Pan, S. H., Yang, S. C., Yu, S. L., Che, T. F., Lin, C. W., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 179(2), 123–133.PubMedCrossRef Chao, Y. C., Pan, S. H., Yang, S. C., Yu, S. L., Che, T. F., Lin, C. W., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 179(2), 123–133.PubMedCrossRef
94.
Zurück zum Zitat Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al. (2010). Identification of DOK genes as lung tumor suppressors. Nature Genetics, 42(3), 216–223.PubMedCrossRef Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al. (2010). Identification of DOK genes as lung tumor suppressors. Nature Genetics, 42(3), 216–223.PubMedCrossRef
95.
Zurück zum Zitat Niki, M., Di Cristofano, A., Zhao, M., Honda, H., Hirai, H., Van Aelst, L., et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. The Journal of Experimental Medicine, 200(12), 1689–1695.PubMedCrossRef Niki, M., Di Cristofano, A., Zhao, M., Honda, H., Hirai, H., Van Aelst, L., et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. The Journal of Experimental Medicine, 200(12), 1689–1695.PubMedCrossRef
96.
Zurück zum Zitat Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Research, 63(10), 2351–2357.PubMed Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Research, 63(10), 2351–2357.PubMed
97.
Zurück zum Zitat Zamò, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., & Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Modern Pathology, 18(11), 1448–1453.PubMedCrossRef Zamò, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., & Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Modern Pathology, 18(11), 1448–1453.PubMedCrossRef
98.
Zurück zum Zitat Pruneri, G., Fabris, S., Dell’Orto, P., Biasi, M. O., Valentini, S., Del Curto, B., et al. (2005). The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. The Journal of Pathology, 206(3), 337–345.PubMedCrossRef Pruneri, G., Fabris, S., Dell’Orto, P., Biasi, M. O., Valentini, S., Del Curto, B., et al. (2005). The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. The Journal of Pathology, 206(3), 337–345.PubMedCrossRef
99.
Zurück zum Zitat Nicolas, M., Koster, M. I., Lu, S. L., White, L. D., Wang, X. J., & Roop, D. R. (2006). Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Research, 66(8), 3981–3986.CrossRef Nicolas, M., Koster, M. I., Lu, S. L., White, L. D., Wang, X. J., & Roop, D. R. (2006). Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Research, 66(8), 3981–3986.CrossRef
100.
Zurück zum Zitat Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., et al. (2002). The p53 family member genes are involved in the Notch signal pathway. The Journal of Biological Chemistry, 277(1), 719–724.PubMedCrossRef Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., et al. (2002). The p53 family member genes are involved in the Notch signal pathway. The Journal of Biological Chemistry, 277(1), 719–724.PubMedCrossRef
101.
Zurück zum Zitat Shimomura, Y., Wajid, M., Shapiro, L., & Christiano, A. M. (2008). P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development, 135(4), 743–753.PubMedCrossRef Shimomura, Y., Wajid, M., Shapiro, L., & Christiano, A. M. (2008). P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development, 135(4), 743–753.PubMedCrossRef
102.
Zurück zum Zitat Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., et al. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65(8), 3092–3099.PubMed Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., et al. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65(8), 3092–3099.PubMed
103.
Zurück zum Zitat Bui, T., Sequeira, J., Wen, T. C., Sola, A., Higashi, Y., Kondoh, H., et al. (2009). ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE, 4(2), e4373. PLoS One. 4(8):e6816.PubMedCrossRef Bui, T., Sequeira, J., Wen, T. C., Sola, A., Higashi, Y., Kondoh, H., et al. (2009). ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE, 4(2), e4373. PLoS One. 4(8):e6816.PubMedCrossRef
104.
Zurück zum Zitat Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.PubMedCrossRef Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.PubMedCrossRef
105.
Zurück zum Zitat Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., 4th, Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.PubMedCrossRef Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., 4th, Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.PubMedCrossRef
106.
Zurück zum Zitat Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., et al. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21(5), 562–577.CrossRef Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., et al. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21(5), 562–577.CrossRef
107.
Zurück zum Zitat Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE, 4(8), e6816.PubMedCrossRef Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE, 4(8), e6816.PubMedCrossRef
108.
Zurück zum Zitat Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., et al. (2010). DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Research, 70(10), 4034–4044.PubMedCrossRef Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., et al. (2010). DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Research, 70(10), 4034–4044.PubMedCrossRef
109.
Zurück zum Zitat Dotto, G. P. (2009). Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews. Cancer, 8, 587–595.CrossRef Dotto, G. P. (2009). Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews. Cancer, 8, 587–595.CrossRef
110.
Zurück zum Zitat Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates miRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.PubMedCrossRef Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates miRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.PubMedCrossRef
111.
Zurück zum Zitat Loedige, I., & Filipowicz, W. (2009). TRIM-NHL proteins take on miRNA regulation. Cell, 136(5), 818–820.PubMedCrossRef Loedige, I., & Filipowicz, W. (2009). TRIM-NHL proteins take on miRNA regulation. Cell, 136(5), 818–820.PubMedCrossRef
113.
Zurück zum Zitat Boominathan, L. (2010). The tumor suppressors p53, p63 and p73 are regulators of miRNA processing complex. PLoS ONE, 5(5), e10615.PubMedCrossRef Boominathan, L. (2010). The tumor suppressors p53, p63 and p73 are regulators of miRNA processing complex. PLoS ONE, 5(5), e10615.PubMedCrossRef
114.
Zurück zum Zitat Viganò, M. A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., et al. (2006). New p63 targets in keratinocytes identified by a genome-wide approach. The EMBO Journal, 25(21), 5105–5116.PubMedCrossRef Viganò, M. A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., et al. (2006). New p63 targets in keratinocytes identified by a genome-wide approach. The EMBO Journal, 25(21), 5105–5116.PubMedCrossRef
115.
Zurück zum Zitat Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. Journal of Cell Science, 121(Pt 8), 1141–1150.PubMedCrossRef Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. Journal of Cell Science, 121(Pt 8), 1141–1150.PubMedCrossRef
116.
Zurück zum Zitat Wodarz, A., & Gonzalez, C. (2006). Connecting cancer to the asymmetric division of stem cells. Cell, 124(6), 1121–1123.PubMedCrossRef Wodarz, A., & Gonzalez, C. (2006). Connecting cancer to the asymmetric division of stem cells. Cell, 124(6), 1121–1123.PubMedCrossRef
118.
Zurück zum Zitat Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., et al. (2007). Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586–1593.PubMedCrossRef Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., et al. (2007). Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586–1593.PubMedCrossRef
119.
Zurück zum Zitat Rosenbluth, J. M., Mays, D. J., Pino, M. F., Tang, L. J., & Pietenpol, J. A. (2008). A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology, 19, 5951–5964.CrossRef Rosenbluth, J. M., Mays, D. J., Pino, M. F., Tang, L. J., & Pietenpol, J. A. (2008). A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology, 19, 5951–5964.CrossRef
120.
Zurück zum Zitat Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 miRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.PubMedCrossRef Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 miRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.PubMedCrossRef
121.
Zurück zum Zitat Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 miRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.PubMedCrossRef Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 miRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.PubMedCrossRef
122.
Zurück zum Zitat Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative surviva. Cancer Research, 64(11), 3753–3756.PubMedCrossRef Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative surviva. Cancer Research, 64(11), 3753–3756.PubMedCrossRef
123.
Zurück zum Zitat Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., & Kelnar, K. (2007). The let-7 miRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.PubMedCrossRef Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., & Kelnar, K. (2007). The let-7 miRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.PubMedCrossRef
124.
Zurück zum Zitat Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N. J., et al. (2008). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 10(7), 825–836.PubMedCrossRef Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N. J., et al. (2008). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 10(7), 825–836.PubMedCrossRef
125.
Zurück zum Zitat Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., et al. (2002). p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clinical Cancer Research, 8(12), 3782–3787.PubMed Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., et al. (2002). p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clinical Cancer Research, 8(12), 3782–3787.PubMed
126.
Zurück zum Zitat Seike, M., Gemma, A., Hosoya, Y., Hemmi, S., Taniguchi, Y., et al. (2000). Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clinical Cancer Research, 6(11), 4307–4313.PubMed Seike, M., Gemma, A., Hosoya, Y., Hemmi, S., Taniguchi, Y., et al. (2000). Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clinical Cancer Research, 6(11), 4307–4313.PubMed
127.
Zurück zum Zitat Lee, H. (2003). Impaired phosphorylation and mis-localization of Bub1 and BubR1 are responsible for the defective mitotic checkpoint function in Brca2-mutant thymic lymphomas. Experimental & Molecular Medicine, 35(5), 448–453. Lee, H. (2003). Impaired phosphorylation and mis-localization of Bub1 and BubR1 are responsible for the defective mitotic checkpoint function in Brca2-mutant thymic lymphomas. Experimental & Molecular Medicine, 35(5), 448–453.
128.
Zurück zum Zitat Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.PubMedCrossRef Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.PubMedCrossRef
129.
Zurück zum Zitat Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G. M., Gingeras, T. R., et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Molecular Cell, 24(4), 593–602.PubMedCrossRef Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G. M., Gingeras, T. R., et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Molecular Cell, 24(4), 593–602.PubMedCrossRef
130.
Zurück zum Zitat Zhang, J., Jun Cho, S., & Chen, X. (2010). RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9614–9619.PubMedCrossRef Zhang, J., Jun Cho, S., & Chen, X. (2010). RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9614–9619.PubMedCrossRef
132.
Zurück zum Zitat Lena, A. M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R. A., Melino, G., et al. (2008). miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 15(7), 1187–1195.PubMedCrossRef Lena, A. M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R. A., Melino, G., et al. (2008). miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 15(7), 1187–1195.PubMedCrossRef
133.
Zurück zum Zitat Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 464(7287), 374–379.PubMedCrossRef Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 464(7287), 374–379.PubMedCrossRef
134.
Zurück zum Zitat Chan, C. H., Lee, S. W., Li, C. F., Wang, J., Yang, W. L., Wu, C. Y., et al. (2010). Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 12(5), 457–467.PubMedCrossRef Chan, C. H., Lee, S. W., Li, C. F., Wang, J., Yang, W. L., Wu, C. Y., et al. (2010). Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 12(5), 457–467.PubMedCrossRef
135.
Zurück zum Zitat Zhang, S., Tang, Q., Xu, F., Xue, Y., Zhen, Z., Deng, Y., et al. (2009). RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Molecular Cancer Research, 7(4), 570–580.PubMedCrossRef Zhang, S., Tang, Q., Xu, F., Xue, Y., Zhen, Z., Deng, Y., et al. (2009). RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Molecular Cancer Research, 7(4), 570–580.PubMedCrossRef
136.
Zurück zum Zitat Tedesco, D., Lukas, J., & Reed, S. I. (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes & Development, 16(22), 2946–2957.CrossRef Tedesco, D., Lukas, J., & Reed, S. I. (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes & Development, 16(22), 2946–2957.CrossRef
137.
Zurück zum Zitat Kitagawa, M., Lee, S. H., & McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Molecular Cell, 29(2), 217–231.PubMedCrossRef Kitagawa, M., Lee, S. H., & McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Molecular Cell, 29(2), 217–231.PubMedCrossRef
138.
Zurück zum Zitat Belletti, B., Nicoloso, M. S., Schiappacassi, M., Berton, S., Lovat, F., Wolf, K., et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Molecular Biology of the Cell, 19(5), 2003–2013.PubMedCrossRef Belletti, B., Nicoloso, M. S., Schiappacassi, M., Berton, S., Lovat, F., Wolf, K., et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Molecular Biology of the Cell, 19(5), 2003–2013.PubMedCrossRef
139.
Zurück zum Zitat Keller, U. B., Old, J. B., Dorsey, F. C., Nilsson, J. A., Nilsson, L., MacLean, K. H., et al. (2007). Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. The EMBO Journal, 26(10), 2562–2574.PubMedCrossRef Keller, U. B., Old, J. B., Dorsey, F. C., Nilsson, J. A., Nilsson, L., MacLean, K. H., et al. (2007). Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. The EMBO Journal, 26(10), 2562–2574.PubMedCrossRef
140.
Zurück zum Zitat Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., et al. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70(10), 3877–3883.PubMedCrossRef Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., et al. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70(10), 3877–3883.PubMedCrossRef
141.
Zurück zum Zitat Gonzalez, S., Klatt, P., Delgado, S., Conde, E., Lopez-Rios, F., Sanchez-Cespedes, M., et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 440(7084), 702–706.PubMedCrossRef Gonzalez, S., Klatt, P., Delgado, S., Conde, E., Lopez-Rios, F., Sanchez-Cespedes, M., et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 440(7084), 702–706.PubMedCrossRef
142.
Zurück zum Zitat Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137(1), 87–98.PubMedCrossRef Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137(1), 87–98.PubMedCrossRef
143.
Zurück zum Zitat Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T., Toffanin, S., et al. (2009). Lin28 enhances tumorigenesis and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMedCrossRef Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T., Toffanin, S., et al. (2009). Lin28 enhances tumorigenesis and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMedCrossRef
144.
Zurück zum Zitat Lee, Y. S., & Dutta, A. (2007). The tumor suppressor miRNA let-7 represses the HMGA2 oncogene. Genes & Development, 21(9), 1025–1030.CrossRef Lee, Y. S., & Dutta, A. (2007). The tumor suppressor miRNA let-7 represses the HMGA2 oncogene. Genes & Development, 21(9), 1025–1030.CrossRef
145.
Zurück zum Zitat Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239.PubMedCrossRef Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239.PubMedCrossRef
146.
Zurück zum Zitat Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., & Moustakas, A. (2008). HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. The Journal of Biological Chemistry, 283(48), 33437–33446.PubMedCrossRef Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., & Moustakas, A. (2008). HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. The Journal of Biological Chemistry, 283(48), 33437–33446.PubMedCrossRef
147.
Zurück zum Zitat Klanrit, P., Taebunpakul, P., Flinterman, M. B., Odell, E. W., Riaz, M. A., Melino, G., et al. (2009). PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene, 28(39), 3499–3512.PubMedCrossRef Klanrit, P., Taebunpakul, P., Flinterman, M. B., Odell, E. W., Riaz, M. A., Melino, G., et al. (2009). PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene, 28(39), 3499–3512.PubMedCrossRef
148.
Zurück zum Zitat Peter, M. E. (2009). Let-7 and miR-200 miRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843–852.PubMed Peter, M. E. (2009). Let-7 and miR-200 miRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843–852.PubMed
149.
Zurück zum Zitat Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., et al. (2008). Identification of let-7-regulated oncofetal genes. Cancer Research, 68(8), 2587–2591.PubMedCrossRef Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., et al. (2008). Identification of let-7-regulated oncofetal genes. Cancer Research, 68(8), 2587–2591.PubMedCrossRef
150.
Zurück zum Zitat Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRef Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRef
151.
Zurück zum Zitat Mao, H. J., Perez-losada, J., Wu, J., DelRosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRef Mao, H. J., Perez-losada, J., Wu, J., DelRosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRef
152.
Zurück zum Zitat Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., & Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle, 3(10), 1296–1304.PubMed Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., & Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle, 3(10), 1296–1304.PubMed
153.
Zurück zum Zitat Welcker, W., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090.PubMedCrossRef Welcker, W., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090.PubMedCrossRef
154.
Zurück zum Zitat Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I. M., Nakayama, K., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204(12), 2875–2888.PubMedCrossRef Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I. M., Nakayama, K., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204(12), 2875–2888.PubMedCrossRef
155.
Zurück zum Zitat Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., & Takubo, K. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22(8), 986–991.CrossRef Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., & Takubo, K. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22(8), 986–991.CrossRef
156.
Zurück zum Zitat Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMedCrossRef Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMedCrossRef
157.
Zurück zum Zitat Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., et al. (2009). Uncovering growth-suppressive MiRNAs in lung cancer. Clinical Cancer Research, 15(4), 1177–1183.PubMedCrossRef Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., et al. (2009). Uncovering growth-suppressive MiRNAs in lung cancer. Clinical Cancer Research, 15(4), 1177–1183.PubMedCrossRef
158.
Zurück zum Zitat Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., & Dyson, N. J. (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell, 85(4), 537–548.PubMedCrossRef Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., & Dyson, N. J. (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell, 85(4), 537–548.PubMedCrossRef
159.
Zurück zum Zitat Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMedCrossRef Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMedCrossRef
160.
Zurück zum Zitat He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A miRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.PubMedCrossRef He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A miRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.PubMedCrossRef
161.
Zurück zum Zitat Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.PubMedCrossRef Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.PubMedCrossRef
162.
Zurück zum Zitat Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. Review.PubMedCrossRef Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. Review.PubMedCrossRef
163.
Zurück zum Zitat Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. The Journal of Clinical Investigation, 120(3), 681–693.PubMedCrossRef Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. The Journal of Clinical Investigation, 120(3), 681–693.PubMedCrossRef
164.
Zurück zum Zitat Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.PubMedCrossRef Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.PubMedCrossRef
165.
Zurück zum Zitat Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455(7212), 552–556.PubMedCrossRef Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455(7212), 552–556.PubMedCrossRef
166.
Zurück zum Zitat Zhao, C., Blum, J., Chen, A., Kwon, H. Y., Jung, S. H., Cook, J. M., et al. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 6, 528–541.CrossRef Zhao, C., Blum, J., Chen, A., Kwon, H. Y., Jung, S. H., Cook, J. M., et al. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 6, 528–541.CrossRef
167.
Zurück zum Zitat Stuart, S. A., Minami, Y., & Wang, J. Y. (2009). The CML stem cell: evolution of the progenitor. Cell Cycle, 8(9), 1338–1343.PubMed Stuart, S. A., Minami, Y., & Wang, J. Y. (2009). The CML stem cell: evolution of the progenitor. Cell Cycle, 8(9), 1338–1343.PubMed
168.
Zurück zum Zitat Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. The EMBO Journal, 28(18), 2719–2732.PubMedCrossRef Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. The EMBO Journal, 28(18), 2719–2732.PubMedCrossRef
169.
Zurück zum Zitat Bueno, M. J., Gomez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signalling. Molecular and Cellular Biology, 12, 2983–2995.CrossRef Bueno, M. J., Gomez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signalling. Molecular and Cellular Biology, 12, 2983–2995.CrossRef
170.
Zurück zum Zitat Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., et al. (2009). Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes & Development, 23(24), 2806–2811.CrossRef Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., et al. (2009). Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes & Development, 23(24), 2806–2811.CrossRef
171.
Zurück zum Zitat Rempel, R. E., Mori, S., Gasparetto, M., Glozak, M. A., Andrechek, E. R., Adler, S. B., et al. (2009). A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genetics, 5(9), e1000640.PubMedCrossRef Rempel, R. E., Mori, S., Gasparetto, M., Glozak, M. A., Andrechek, E. R., Adler, S. B., et al. (2009). A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genetics, 5(9), e1000640.PubMedCrossRef
172.
Zurück zum Zitat Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread miRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMedCrossRef Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread miRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMedCrossRef
173.
Zurück zum Zitat Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRef Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRef
174.
Zurück zum Zitat Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. The Journal of Biological Chemistry, 277(17), 15113–15123.PubMedCrossRef Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. The Journal of Biological Chemistry, 277(17), 15113–15123.PubMedCrossRef
175.
Zurück zum Zitat Horvilleur, E., Bauer, M., Goldschneider, D., Mergui, X., de la Motte, A., et al. (2008). p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Research, 36(13), 4222–4232.PubMedCrossRef Horvilleur, E., Bauer, M., Goldschneider, D., Mergui, X., de la Motte, A., et al. (2008). p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Research, 36(13), 4222–4232.PubMedCrossRef
176.
Zurück zum Zitat Giuriato, S., Ryeom, S., Fan, A. C., Bachireddy, P., Lynch, R. C., Rioth, M. J., et al. (2006). Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16266–16271.PubMedCrossRef Giuriato, S., Ryeom, S., Fan, A. C., Bachireddy, P., Lynch, R. C., Rioth, M. J., et al. (2006). Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16266–16271.PubMedCrossRef
177.
Zurück zum Zitat Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15805–15810.PubMedCrossRef Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15805–15810.PubMedCrossRef
178.
Zurück zum Zitat Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009). MiRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedCrossRef Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009). MiRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedCrossRef
179.
Zurück zum Zitat Deneault, E., Cellot, S., Laverdure, F. A., JP, F. M., Chagraoui, J., et al. (2009). Functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 137(2), 369–379.PubMedCrossRef Deneault, E., Cellot, S., Laverdure, F. A., JP, F. M., Chagraoui, J., et al. (2009). Functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 137(2), 369–379.PubMedCrossRef
180.
Zurück zum Zitat Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369–381.PubMedCrossRef Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369–381.PubMedCrossRef
181.
Zurück zum Zitat Park, Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology, 16(1), 23–29.CrossRef Park, Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology, 16(1), 23–29.CrossRef
182.
Zurück zum Zitat Sinha, A. U., Kaimal, V., Chen, J., & Jegga, A. G. (2008). Dissecting microregulation of a master regulatory network. BMC Genomics, 9, 88.PubMedCrossRef Sinha, A. U., Kaimal, V., Chen, J., & Jegga, A. G. (2008). Dissecting microregulation of a master regulatory network. BMC Genomics, 9, 88.PubMedCrossRef
183.
Zurück zum Zitat Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., et al. (2008). A miRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMedCrossRef Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., et al. (2008). A miRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMedCrossRef
184.
Zurück zum Zitat Duursma, A. M., Kedde, M., Schrier, M., le Sage, C., & Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5), 872–877.PubMedCrossRef Duursma, A. M., Kedde, M., Schrier, M., le Sage, C., & Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5), 872–877.PubMedCrossRef
185.
Zurück zum Zitat Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MiRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3432–3437.PubMedCrossRef Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MiRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3432–3437.PubMedCrossRef
186.
Zurück zum Zitat Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., et al. (2008). p53-Responsive miRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Research, 68(24), 1094–1104.CrossRef Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., et al. (2008). p53-Responsive miRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Research, 68(24), 1094–1104.CrossRef
187.
Zurück zum Zitat Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible miRNAs, miR-192 and miR-215. Cancer Research, 68(24), 10105–10112.PubMedCrossRef Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible miRNAs, miR-192 and miR-215. Cancer Research, 68(24), 10105–10112.PubMedCrossRef
188.
Zurück zum Zitat Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRef Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRef
189.
Zurück zum Zitat Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the miRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.PubMedCrossRef Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the miRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.PubMedCrossRef
190.
Zurück zum Zitat Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMedCrossRef Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMedCrossRef
191.
Zurück zum Zitat Sengupta, S., den Boon, J. A., Chen, I. H., Newton, M. A., Stanhope, S. A., Cheng, Y. J., et al. (2008). MiRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5874–5878.PubMedCrossRef Sengupta, S., den Boon, J. A., Chen, I. H., Newton, M. A., Stanhope, S. A., Cheng, Y. J., et al. (2008). MiRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5874–5878.PubMedCrossRef
192.
Zurück zum Zitat Qin, L., Liao, L., Redmond, A., Young, L., Yuan, Y., Chen, H., et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology, 19, 5937–5950.CrossRef Qin, L., Liao, L., Redmond, A., Young, L., Yuan, Y., Chen, H., et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology, 19, 5937–5950.CrossRef
193.
Zurück zum Zitat Zenz, T., Mohr, J., Eldering, E., Kater, A. P., Buhler, A., Kienle, D., et al. (2009). MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113(16), 3801–3808.PubMedCrossRef Zenz, T., Mohr, J., Eldering, E., Kater, A. P., Buhler, A., Kienle, D., et al. (2009). MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113(16), 3801–3808.PubMedCrossRef
194.
Zurück zum Zitat He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). miRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedCrossRef He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). miRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedCrossRef
195.
Zurück zum Zitat He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). miRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nature Reviews. Cancer, 7(11), 819–822. Review.PubMedCrossRef He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). miRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nature Reviews. Cancer, 7(11), 819–822. Review.PubMedCrossRef
196.
Zurück zum Zitat Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582(10), 1564–1568.PubMedCrossRef Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582(10), 1564–1568.PubMedCrossRef
197.
Zurück zum Zitat Aslanian, A., Iaquinta, P. J., Verona, R., & Lees, J. A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes & Development, 18(12), 1413–1422.CrossRef Aslanian, A., Iaquinta, P. J., Verona, R., & Lees, J. A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes & Development, 18(12), 1413–1422.CrossRef
198.
Zurück zum Zitat Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., et al. (2008). Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 8, 266.PubMedCrossRef Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., et al. (2008). Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 8, 266.PubMedCrossRef
199.
Zurück zum Zitat Wang, S., Yuan, Y., Liao, L., Kuang, S. Q., Tien, J. C., O’Malley, B. W., et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 151–156.PubMedCrossRef Wang, S., Yuan, Y., Liao, L., Kuang, S. Q., Tien, J. C., O’Malley, B. W., et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 151–156.PubMedCrossRef
200.
Zurück zum Zitat Qin, L., Liu, Z., Chen, H., & Xu, J. (2009). The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research, 69(9), 3819–3827.PubMedCrossRef Qin, L., Liu, Z., Chen, H., & Xu, J. (2009). The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research, 69(9), 3819–3827.PubMedCrossRef
201.
Zurück zum Zitat Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62.PubMedCrossRef Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62.PubMedCrossRef
202.
Zurück zum Zitat Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Natural Medicines, 14(11), 1271–1277.CrossRef Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Natural Medicines, 14(11), 1271–1277.CrossRef
203.
Zurück zum Zitat Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMedCrossRef Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMedCrossRef
204.
Zurück zum Zitat Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedCrossRef Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedCrossRef
205.
Zurück zum Zitat Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.PubMedCrossRef Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.PubMedCrossRef
206.
Zurück zum Zitat Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A., & Sidransky, D. (2010). Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Research, 70(4), 1419–1429.PubMedCrossRef Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A., & Sidransky, D. (2010). Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Research, 70(4), 1419–1429.PubMedCrossRef
208.
Zurück zum Zitat Dovey, J. S., Zacharek, S. J., Kim, C. F., & Lees, J. A. (2008). Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11857–11862.PubMedCrossRef Dovey, J. S., Zacharek, S. J., Kim, C. F., & Lees, J. A. (2008). Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11857–11862.PubMedCrossRef
209.
Zurück zum Zitat Bueno, M. J., Gómez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A. M., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology, 30(12), 2983–2995.PubMedCrossRef Bueno, M. J., Gómez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A. M., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology, 30(12), 2983–2995.PubMedCrossRef
210.
Zurück zum Zitat Sander, S., Bullinger, L., Klapproth, K., Fiedler, K., Kestler, H. A., Barth, T. F., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.PubMedCrossRef Sander, S., Bullinger, L., Klapproth, K., Fiedler, K., Kestler, H. A., Barth, T. F., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.PubMedCrossRef
211.
Zurück zum Zitat Sander, S., Bullinger, L., & Wirth, T. (2009). Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle, 8(4), 556–559.PubMed Sander, S., Bullinger, L., & Wirth, T. (2009). Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle, 8(4), 556–559.PubMed
212.
Zurück zum Zitat Fujii, S., & Ochiai, A. (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Science, 99(4), 738–746.PubMedCrossRef Fujii, S., & Ochiai, A. (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Science, 99(4), 738–746.PubMedCrossRef
213.
Zurück zum Zitat Fujii, S., Ito, K., Ito, Y., & Ochiai, A. (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of Biological Chemistry, 283(25), 17324–17332.PubMedCrossRef Fujii, S., Ito, K., Ito, Y., & Ochiai, A. (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of Biological Chemistry, 283(25), 17324–17332.PubMedCrossRef
214.
Zurück zum Zitat Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27(58), 7274–7284.PubMedCrossRef Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27(58), 7274–7284.PubMedCrossRef
215.
Zurück zum Zitat Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., & Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene, 26(31), 4590–4595.PubMedCrossRef Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., & Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene, 26(31), 4590–4595.PubMedCrossRef
216.
Zurück zum Zitat Yang, X., Karuturi, R. K., Sun, F., Aau, M., Yu, K., Shao, R., et al. (2009). CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE, 4(4), e5011.PubMedCrossRef Yang, X., Karuturi, R. K., Sun, F., Aau, M., Yu, K., Shao, R., et al. (2009). CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE, 4(4), e5011.PubMedCrossRef
217.
Zurück zum Zitat Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., et al. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136(6), 1122–1135.PubMedCrossRef Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., et al. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136(6), 1122–1135.PubMedCrossRef
218.
Zurück zum Zitat Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C. L., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.PubMedCrossRef Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C. L., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.PubMedCrossRef
219.
Zurück zum Zitat Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., et al. (2009). The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMedCrossRef Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., et al. (2009). The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMedCrossRef
220.
Zurück zum Zitat Faber, J., Krivtsov, A. V., Stubbs, M. C., Wright, R., Davis, T. N., van den Heuvel-Eibrink, M., et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 113(11), 2375–2385.PubMedCrossRef Faber, J., Krivtsov, A. V., Stubbs, M. C., Wright, R., Davis, T. N., van den Heuvel-Eibrink, M., et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 113(11), 2375–2385.PubMedCrossRef
221.
Zurück zum Zitat Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7(11), 1074–1082.PubMedCrossRef Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7(11), 1074–1082.PubMedCrossRef
222.
Zurück zum Zitat Li, Y., Zhou, Z., & Chen, C. (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death and Differentiation, 15(12), 1941–1951.PubMedCrossRef Li, Y., Zhou, Z., & Chen, C. (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death and Differentiation, 15(12), 1941–1951.PubMedCrossRef
223.
Zurück zum Zitat Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene (in press) Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene (in press)
224.
Zurück zum Zitat Braun, J., Hoang-Vu, C., Dralle, H., Hüttelmaier, S. (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene (in press) Braun, J., Hoang-Vu, C., Dralle, H., Hüttelmaier, S. (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene (in press)
225.
Zurück zum Zitat Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.PubMedCrossRef Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.PubMedCrossRef
226.
Zurück zum Zitat Kim, W. Y., Perera, S., Zhou, B., Carretero, J., Yeh, J. J., Heathcote, S. A., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.PubMedCrossRef Kim, W. Y., Perera, S., Zhou, B., Carretero, J., Yeh, J. J., Heathcote, S. A., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.PubMedCrossRef
227.
Zurück zum Zitat Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMedCrossRef Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMedCrossRef
228.
Zurück zum Zitat Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472. Review.PubMedCrossRef Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472. Review.PubMedCrossRef
229.
Zurück zum Zitat Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17(1), 71–77. Review.CrossRef Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17(1), 71–77. Review.CrossRef
230.
Zurück zum Zitat Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine, 8(1), 60–67. Review.PubMedCrossRef Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine, 8(1), 60–67. Review.PubMedCrossRef
231.
Zurück zum Zitat Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedCrossRef Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedCrossRef
232.
Zurück zum Zitat Jazdzewski, K., Liyanarachchi, S., Swierniak, M., Pachucki, J., Ringel, M. D., Jarzab, B., et al. (2009). Polymorphic mature miRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1502–1505.PubMedCrossRef Jazdzewski, K., Liyanarachchi, S., Swierniak, M., Pachucki, J., Ringel, M. D., Jarzab, B., et al. (2009). Polymorphic mature miRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1502–1505.PubMedCrossRef
233.
Zurück zum Zitat Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMedCrossRef Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMedCrossRef
234.
Zurück zum Zitat Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMedCrossRef Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMedCrossRef
235.
Zurück zum Zitat Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.PubMedCrossRef Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.PubMedCrossRef
236.
Zurück zum Zitat Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef
237.
Zurück zum Zitat Khew-Goodall, Y., & Goodall, G. J. (2010). Myc-modulated miR-9 makes more metastases. Nature Cell Biology, 12(3), 209–211.PubMed Khew-Goodall, Y., & Goodall, G. J. (2010). Myc-modulated miR-9 makes more metastases. Nature Cell Biology, 12(3), 209–211.PubMed
238.
Zurück zum Zitat Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated miRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated miRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed
239.
Zurück zum Zitat Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews. Cancer, 9(4), 253–264.PubMedCrossRef Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews. Cancer, 9(4), 253–264.PubMedCrossRef
240.
Zurück zum Zitat Kim, J. W., Mori, S., & Nevins, J. R. (2010). Myc-induced MicroRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Research, 70(12), 4820–4828.PubMedCrossRef Kim, J. W., Mori, S., & Nevins, J. R. (2010). Myc-induced MicroRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Research, 70(12), 4820–4828.PubMedCrossRef
241.
Zurück zum Zitat Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498–509.PubMedCrossRef Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498–509.PubMedCrossRef
242.
Zurück zum Zitat Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.PubMedCrossRef Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.PubMedCrossRef
243.
Zurück zum Zitat Wu, C. H., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13028–13033.PubMedCrossRef Wu, C. H., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13028–13033.PubMedCrossRef
244.
Zurück zum Zitat Guney, I., Wu, S., & Sedivy, J. M. (2006). Reduced c-Myc signaling triggers telomere independent senescence by regulating Bmi-1 and p16(INK4a). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3645–3650.PubMedCrossRef Guney, I., Wu, S., & Sedivy, J. M. (2006). Reduced c-Myc signaling triggers telomere independent senescence by regulating Bmi-1 and p16(INK4a). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3645–3650.PubMedCrossRef
245.
Zurück zum Zitat Nemajerova, A., Petrenko, O., Trümper, L., Palacios, G., & Moll, U. M. (2010). Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. The Journal of Clinical Investigation, 120(6), 2070–2080.PubMedCrossRef Nemajerova, A., Petrenko, O., Trümper, L., Palacios, G., & Moll, U. M. (2010). Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. The Journal of Clinical Investigation, 120(6), 2070–2080.PubMedCrossRef
246.
Zurück zum Zitat Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455(7216), 1129–1133.PubMedCrossRef Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455(7216), 1129–1133.PubMedCrossRef
247.
Zurück zum Zitat Liu, X., Karnell, JL., Yin, B., Zhang, R., Zhang, J., Li, P., et al. (2010) Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest (in press) Liu, X., Karnell, JL., Yin, B., Zhang, R., Zhang, J., Li, P., et al. (2010) Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest (in press)
248.
Zurück zum Zitat Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.PubMedCrossRef Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.PubMedCrossRef
249.
Zurück zum Zitat Yanagi, S., Kishimoto, H., Kawahara, K., Sasaki, T., Sasaki, M., Nishio, M., et al. (2007). Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. The Journal of Clinical Investigation, 117(10), 2929–2940.PubMedCrossRef Yanagi, S., Kishimoto, H., Kawahara, K., Sasaki, T., Sasaki, M., Nishio, M., et al. (2007). Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. The Journal of Clinical Investigation, 117(10), 2929–2940.PubMedCrossRef
250.
Zurück zum Zitat Du, L., & Pertsemlidis, A. (2010). microRNAs and lung cancer: tumors and 22-mers. Cancer and Metastasis Reviews, 29(1), 109–122. Review.PubMedCrossRef Du, L., & Pertsemlidis, A. (2010). microRNAs and lung cancer: tumors and 22-mers. Cancer and Metastasis Reviews, 29(1), 109–122. Review.PubMedCrossRef
251.
Zurück zum Zitat Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4(2), 24952. Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4(2), 24952.
252.
Zurück zum Zitat Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., et al. (2001). Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Research, 61(14), 5636–5643.PubMed Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., et al. (2001). Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Research, 61(14), 5636–5643.PubMed
253.
Zurück zum Zitat Inoue, K., Mallakin, A., & Frazier, D. P. (2007). Dmp1 and tumor suppression. Oncogene, 26(30), 4329–4335. Review.PubMedCrossRef Inoue, K., Mallakin, A., & Frazier, D. P. (2007). Dmp1 and tumor suppression. Oncogene, 26(30), 4329–4335. Review.PubMedCrossRef
254.
Zurück zum Zitat Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., et al. (2007). Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell, 12(4), 381–394.PubMedCrossRef Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., et al. (2007). Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell, 12(4), 381–394.PubMedCrossRef
255.
Zurück zum Zitat Inoue, K., Sugiyama, T., Taneja, P., Morgan, R. L., & Frazier, D. P. (2008). Emerging roles of DMP1 in lung cancer. Cancer Research, 68(12), 4487–4490. Review.PubMedCrossRef Inoue, K., Sugiyama, T., Taneja, P., Morgan, R. L., & Frazier, D. P. (2008). Emerging roles of DMP1 in lung cancer. Cancer Research, 68(12), 4487–4490. Review.PubMedCrossRef
256.
257.
Zurück zum Zitat Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., & Ju, J. (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clinical Cancer Research, 12(7 Pt 1), 2014–2024.PubMedCrossRef Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., & Ju, J. (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clinical Cancer Research, 12(7 Pt 1), 2014–2024.PubMedCrossRef
258.
Zurück zum Zitat Theurkauf, W. E., Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., & Cook, H. A. (2006). rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harbor Symposia on Quantitative Biology, 71, 171–180.PubMedCrossRef Theurkauf, W. E., Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., & Cook, H. A. (2006). rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harbor Symposia on Quantitative Biology, 71, 171–180.PubMedCrossRef
259.
Zurück zum Zitat Kutter, C., & Svoboda, P. (2008). miRNA, siRNA, piRNA: knowns of the unknown. RNA Biology, 5(4), 181–188.PubMed Kutter, C., & Svoboda, P. (2008). miRNA, siRNA, piRNA: knowns of the unknown. RNA Biology, 5(4), 181–188.PubMed
Metadaten
Titel
The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network
verfasst von
Lakshmanane Boominathan
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9257-9

Weitere Artikel der Ausgabe 4/2010

Cancer and Metastasis Reviews 4/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.