Skip to main content
Erschienen in: Intensive Care Medicine 9/2018

14.07.2018 | Editorial

The gut microbiota of critically ill patients: first steps in an unexplored world

verfasst von: Étienne Ruppé, Thiago Lisboa, François Barbier

Erschienen in: Intensive Care Medicine | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Excerpt

The gut microbiota is a complex ecosystem encompassing all bacteria, fungi, archaea, viruses, and protozoa that colonize the intestinal tract, reaching in healthy humans an estimated total of 3.1013 microorganisms that roughly equals the number of host cells [1]. Bacterial commensals are divided up into seven main phyla that are physiologically dominated by Firmicutes and Bacteroidetes (Fig. 1), although their richness and diversity may exhibit substantial inter- as intra-individual variations depending on genetic, dietary, and environmental factors [2]. Several host-benefic functions have been linked to a “normal” gut microbiota and its symbiotic relationship with the intestinal mucosa, including contributions to hormonal homeostasis, carbohydrate and biliary acid metabolism, vitamin synthesis, anti-inflammatory pathways, and immune regulation [3]. Of note, most enteric bacteria are unculturable or exclusively grow under strict anaerobic conditions that are very demanding to achieve in experimental laboratories, which justifies the need for non-culture-based assays and bioinformatics to investigate the composition of this microbial community. Two main methods based on nucleic acid sequencing are currently available. The first one is 16S profiling, which relies on PCR-based amplification and sequencing of a fraction of the bacterial ubiquitous 16S rRNA-encoding gene. This approach is simple and cheap—less than 100 USD per sample; however, bacterial identifications are often limited to high taxonomic levels. The second one, referred to as shotgun metagenomics, consists in sequencing the whole DNA of a given sample without prior amplification. This method allows more accurate taxonomic assignments (down to species level, including for non-bacterial components of the microbiota) while providing information on resistance or virulence genes content. Yet, associated costs—more than 300 USD per sample—and the complex data analyses that it requires hamper the use of shotgun metagenomics in large clinical studies.
Literatur
2.
Zurück zum Zitat Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefPubMed Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefPubMed
4.
5.
Zurück zum Zitat Lankelma JM, van Vught LA, Belzer C, Schultz MJ, van der Poll T, de Vos WM, Wiersinga WJ (2017) Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 43(1):59–68CrossRefPubMed Lankelma JM, van Vught LA, Belzer C, Schultz MJ, van der Poll T, de Vos WM, Wiersinga WJ (2017) Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 43(1):59–68CrossRefPubMed
6.
Zurück zum Zitat Yeh A, Rogers MB, Firek B, Neal MD, Zuckerbraun BS, Morowitz MJ (2016) Dysbiosis across multiple body sites in critically ill adult surgical patients. Shock 46(6):649–654CrossRefPubMed Yeh A, Rogers MB, Firek B, Neal MD, Zuckerbraun BS, Morowitz MJ (2016) Dysbiosis across multiple body sites in critically ill adult surgical patients. Shock 46(6):649–654CrossRefPubMed
7.
Zurück zum Zitat Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, Nakamura S, Ogura H, Iida T, Shimazu T (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61(6):1628–1634CrossRefPubMed Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, Nakamura S, Ogura H, Iida T, Shimazu T (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61(6):1628–1634CrossRefPubMed
8.
Zurück zum Zitat Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB (2016) Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol 1(10):16113CrossRefPubMedPubMedCentral Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB (2016) Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol 1(10):16113CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Camara NO (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888CrossRefPubMedPubMedCentral Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Camara NO (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS (2015) Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350(6260):558–563CrossRefPubMed Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS (2015) Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350(6260):558–563CrossRefPubMed
12.
Zurück zum Zitat Caballero S, Kim S, Carter RA, Leiner JM, Susac B, Miller L, Kim GJ, Ling L, Pamer EG (2017) Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592–602CrossRefPubMedPubMedCentral Caballero S, Kim S, Carter RA, Leiner JM, Susac B, Miller L, Kim GJ, Ling L, Pamer EG (2017) Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592–602CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205–208CrossRefPubMed Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205–208CrossRefPubMed
14.
Zurück zum Zitat Gosalbes MJ, Vazquez-Castellanos JF, Angebault C, Woerther PL, Ruppé E, Ferrus ML, Latorre A, Andremont A, Moya A (2015) Carriage of enterobacteria producing extended-spectrum β-lactamases and composition of the gut microbiota in an Amerindian community. Antimicrob Agents Chemother 60:507–514CrossRefPubMedPubMedCentral Gosalbes MJ, Vazquez-Castellanos JF, Angebault C, Woerther PL, Ruppé E, Ferrus ML, Latorre A, Andremont A, Moya A (2015) Carriage of enterobacteria producing extended-spectrum β-lactamases and composition of the gut microbiota in an Amerindian community. Antimicrob Agents Chemother 60:507–514CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Ruppé E, Andremont A (2013) Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 4:129CrossRefPubMedPubMedCentral Ruppé E, Andremont A (2013) Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 4:129CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat de Gunzburg J, Ghozlane A, Ducher A, Le Chatelier E, Duval X, Ruppé E, Armand-Lefevre L, Sablier-Gallis F, Burdet C, Alavoine L, Chachaty E, Augustin V, Varastet M, Levenez F, Kennedy S, Pons N, Mentré F, Andremont A (2018) Protection of the human gut microbiome from antibiotics. J Infect Dis 217:628–636CrossRefPubMed de Gunzburg J, Ghozlane A, Ducher A, Le Chatelier E, Duval X, Ruppé E, Armand-Lefevre L, Sablier-Gallis F, Burdet C, Alavoine L, Chachaty E, Augustin V, Varastet M, Levenez F, Kennedy S, Pons N, Mentré F, Andremont A (2018) Protection of the human gut microbiome from antibiotics. J Infect Dis 217:628–636CrossRefPubMed
18.
Zurück zum Zitat Haak BW, Levi M, Wiersinga WJ (2017) Microbiota-targeted therapies in the intensive care unit. Curr Opin Crit Care 23(2):167–174CrossRefPubMed Haak BW, Levi M, Wiersinga WJ (2017) Microbiota-targeted therapies in the intensive care unit. Curr Opin Crit Care 23(2):167–174CrossRefPubMed
Metadaten
Titel
The gut microbiota of critically ill patients: first steps in an unexplored world
verfasst von
Étienne Ruppé
Thiago Lisboa
François Barbier
Publikationsdatum
14.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 9/2018
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-018-5309-3

Weitere Artikel der Ausgabe 9/2018

Intensive Care Medicine 9/2018 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.