Skip to main content
Erschienen in: Inflammation 5/2016

15.08.2016 | ORIGINAL ARTICLE

The Influence of Radiotherapy on AIM2 Inflammasome in Radiation Pneumonitis

verfasst von: Qianyu Zhang, Qinyong Hu, Yuxin Chu, Bin Xu, Qibin Song

Erschienen in: Inflammation | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

This study aims to investigate the influence of radiotherapy on absent in melanoma 2 (AIM2) inflammasome in radiation pneumonitis (RP). A rat model of RP was established. H&E staining was used to test radiation-induced lung tissue injury. Immunohistochemistry (IHC) was used to detect the expression of AIM2 and IL-1β in rat lung tissues. Milliplex assay was used to test cytokine levels in rat serum. Comet assay was adopted to examine DNA breaks in THP1 cells. RT-PCR was used to detect the messenger RNA (mRNA) expression of AIM2, caspase-1, and IL-1β in THP1 cells. As a result, the rat model indicated that irradiation induced obvious lung injury. A large amount of inflammatory cells infiltrated to the irradiated lung tissues. The structure of lung tissues collapsed. IHC revealed that AIM2 and IL-1β expressions were significantly higher in irradiated lung tissues than in the control. IL-1β level in rat serum significantly elevated on the 7th day post-irradiation, gradually decreased on the 15th day, and became minimal on the 30th day. Irradiation induced dsDNA break in a dose-dependent manner at 24 h after irradiation. Radiotherapy increased the mRNA expression level of AIM2 and IL-1β in a time-dependent manner. In conclusion, radiotherapy triggered some critical components of AIM2 inflammasome in RP. The activation of AIM2 inflammasome by radiotherapy may contribute to the pathogenesis of RP.
Literatur
1.
Zurück zum Zitat Li, J., S. Mu, L. Mu, et al. 2015. Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study. Oncology Targets Therapy 8: 1129–1136.CrossRef Li, J., S. Mu, L. Mu, et al. 2015. Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study. Oncology Targets Therapy 8: 1129–1136.CrossRef
2.
Zurück zum Zitat Can, Demirel, C.K. Sevil, G. Serkan, et al. 2016. Inhibition of radiation-induced oxidative damage in the lung tissue: may acetylsalicylic acid have a positive role? Inflammation 39: 158–165.CrossRef Can, Demirel, C.K. Sevil, G. Serkan, et al. 2016. Inhibition of radiation-induced oxidative damage in the lung tissue: may acetylsalicylic acid have a positive role? Inflammation 39: 158–165.CrossRef
3.
Zurück zum Zitat Rodrigues, G., M. Lock, D. D’Souza, et al. 2004. Prediction of radiation pneumonitis by dose -volume histogram parameters in lung cancer-a systematic review. Radiotherapy and Oncology 71: 127–138.CrossRefPubMed Rodrigues, G., M. Lock, D. D’Souza, et al. 2004. Prediction of radiation pneumonitis by dose -volume histogram parameters in lung cancer-a systematic review. Radiotherapy and Oncology 71: 127–138.CrossRefPubMed
4.
Zurück zum Zitat Ding, N.H., J.J. Li, and L.Q. Sun. 2013. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets 14: 1347–1356.CrossRefPubMedPubMedCentral Ding, N.H., J.J. Li, and L.Q. Sun. 2013. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets 14: 1347–1356.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Sohn, S.H., J.M. Lee, S. Park, et al. 2015. The inflammasome accelerates radiation-induced lung inflammation and fibrosis in mice. Environmental Toxicology and Pharmacology 39: 917–926.CrossRefPubMed Sohn, S.H., J.M. Lee, S. Park, et al. 2015. The inflammasome accelerates radiation-induced lung inflammation and fibrosis in mice. Environmental Toxicology and Pharmacology 39: 917–926.CrossRefPubMed
6.
Zurück zum Zitat Chen, L.C., L.J. Wang, N.M. Tsang, et al. 2012. Tumor inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Molecular Medicine 4: 1276–1293.CrossRefPubMedPubMedCentral Chen, L.C., L.J. Wang, N.M. Tsang, et al. 2012. Tumor inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Molecular Medicine 4: 1276–1293.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Latz, Eicke, T.S. Xiao, and Andrea Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews Immunology 13: 397–411.CrossRefPubMed Latz, Eicke, T.S. Xiao, and Andrea Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews Immunology 13: 397–411.CrossRefPubMed
8.
Zurück zum Zitat Dombrowski, Y., M. Peric, S. Koglin, et al. 2011. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Science Translational Medicine 3: 82ra38.CrossRefPubMedPubMedCentral Dombrowski, Y., M. Peric, S. Koglin, et al. 2011. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Science Translational Medicine 3: 82ra38.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Derer, A., L. Deloch, Y. Rubner, et al. 2015. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses- pre-clinical evidence and ongoing clinical applications. Frontiers in Immunology 6: 505.CrossRefPubMedPubMedCentral Derer, A., L. Deloch, Y. Rubner, et al. 2015. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses- pre-clinical evidence and ongoing clinical applications. Frontiers in Immunology 6: 505.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Fernandes-Alnemri, T., J.W. Yu, P. Datta, et al. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509–513.CrossRefPubMedPubMedCentral Fernandes-Alnemri, T., J.W. Yu, P. Datta, et al. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509–513.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Xiang, F., Z. Ni, Y. Zhan, et al. 2016. Increased expression of MyD88 and association with paclitaxel resistance in breast cancer. Tumor Biology 37: 6017–6025.CrossRefPubMed Xiang, F., Z. Ni, Y. Zhan, et al. 2016. Increased expression of MyD88 and association with paclitaxel resistance in breast cancer. Tumor Biology 37: 6017–6025.CrossRefPubMed
12.
Zurück zum Zitat Henry, C.J., R.L. Sedjo, A. Rozhok, et al. 2015. Lack of significant association between serum inflammatory cytokine profiles and the presence of colorectal adenoma. BMC Cancer 15: 123.CrossRefPubMedPubMedCentral Henry, C.J., R.L. Sedjo, A. Rozhok, et al. 2015. Lack of significant association between serum inflammatory cytokine profiles and the presence of colorectal adenoma. BMC Cancer 15: 123.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Zheng, H., S. Wang, P. Zhou, et al. 2013. Effects of ligustrazine on DNA damage and apoptosis induced by irradiation. Environmental Toxicology and Pharmacology 36: 1197–1206.CrossRefPubMed Zheng, H., S. Wang, P. Zhou, et al. 2013. Effects of ligustrazine on DNA damage and apoptosis induced by irradiation. Environmental Toxicology and Pharmacology 36: 1197–1206.CrossRefPubMed
14.
Zurück zum Zitat Zaidi, A., S. Jelveh, J. Mahmood, et al. 2012. Effects of lipopolysaccharide on the response of C57BL/6J mice to whole thorax irradiation. Radiotherapy and Oncology 105: 341–349.CrossRefPubMedPubMedCentral Zaidi, A., S. Jelveh, J. Mahmood, et al. 2012. Effects of lipopolysaccharide on the response of C57BL/6J mice to whole thorax irradiation. Radiotherapy and Oncology 105: 341–349.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Han, Y., Z. Chen, R. Hou, et al. 2015. Expression of AIM2 is correlated with increased inflammation in chronic hepatitis B patients. Virology Journal 12: 129.CrossRefPubMedPubMedCentral Han, Y., Z. Chen, R. Hou, et al. 2015. Expression of AIM2 is correlated with increased inflammation in chronic hepatitis B patients. Virology Journal 12: 129.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Liu, G.D., L. Xia, J.W. Zhu, et al. 2014. Genistein alleviates radiation-induced pneumonitis by depressing Ape1/Ref-1 expression to down-regulate inflammatory cytokines. Cell Biochemistry and Biophysics 69: 725–733.CrossRefPubMed Liu, G.D., L. Xia, J.W. Zhu, et al. 2014. Genistein alleviates radiation-induced pneumonitis by depressing Ape1/Ref-1 expression to down-regulate inflammatory cytokines. Cell Biochemistry and Biophysics 69: 725–733.CrossRefPubMed
17.
Zurück zum Zitat Yoshino, H., T. Kiminarita, Y. Matsushita, et al. 2012. Response of the Nrf2 protection system in human monocytic cells after ionising irradiation. Radiation Protection Dosimetry 152: 104–108.CrossRefPubMed Yoshino, H., T. Kiminarita, Y. Matsushita, et al. 2012. Response of the Nrf2 protection system in human monocytic cells after ionising irradiation. Radiation Protection Dosimetry 152: 104–108.CrossRefPubMed
18.
Zurück zum Zitat Rall, M., D. Kraft, M. Volcic, et al. 2015. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells. Frontiers Oncology 5: 250.CrossRef Rall, M., D. Kraft, M. Volcic, et al. 2015. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells. Frontiers Oncology 5: 250.CrossRef
19.
Zurück zum Zitat Nakahira, K., J.A. Haspel, V.A. Rathinam, et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12: 222–230.CrossRefPubMed Nakahira, K., J.A. Haspel, V.A. Rathinam, et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12: 222–230.CrossRefPubMed
20.
Zurück zum Zitat Shimada, K., T.R. Crother, J. Karlin, et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36: 401–414.CrossRefPubMedPubMedCentral Shimada, K., T.R. Crother, J. Karlin, et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36: 401–414.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Santoro, R., M. Ferraiuolo, G.P. Morgano, et al. 2016. Comet assay in cancer chemoprevention. Methods in Molecular Biology 1379: 99–105.CrossRefPubMed Santoro, R., M. Ferraiuolo, G.P. Morgano, et al. 2016. Comet assay in cancer chemoprevention. Methods in Molecular Biology 1379: 99–105.CrossRefPubMed
22.
Zurück zum Zitat Chen, Y., J. Williams, I. Ding, et al. 2002. Radiation pneumonitis and early circulatory cytokine markers. Seminars in Radiation Oncology 12: 26–33.CrossRefPubMed Chen, Y., J. Williams, I. Ding, et al. 2002. Radiation pneumonitis and early circulatory cytokine markers. Seminars in Radiation Oncology 12: 26–33.CrossRefPubMed
23.
Zurück zum Zitat Rajeshwari, H. Patil, R.L. Babu, M. Naveen Kumar, et al. 2016. Anti-inflammatory effect of apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation 39: 138–147.CrossRef Rajeshwari, H. Patil, R.L. Babu, M. Naveen Kumar, et al. 2016. Anti-inflammatory effect of apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation 39: 138–147.CrossRef
24.
Zurück zum Zitat Man, S.M., and T.D. Kanneganti. 2015. Regulation of inflammasome activation. Immunology Reviews 265: 6–21.CrossRef Man, S.M., and T.D. Kanneganti. 2015. Regulation of inflammasome activation. Immunology Reviews 265: 6–21.CrossRef
25.
Zurück zum Zitat Christo, Susan, Akash Bachhuka, Kerrilyn R. Diener, et al. 2016. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Science Reports 6: 26207.CrossRef Christo, Susan, Akash Bachhuka, Kerrilyn R. Diener, et al. 2016. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Science Reports 6: 26207.CrossRef
26.
Zurück zum Zitat Johnston, C.J., J.P. Williams, A. Elder, et al. 2004. Inflammatory cell recruitment following thoracic irradiation. Experimental Lung Research 30: 369–382.CrossRefPubMed Johnston, C.J., J.P. Williams, A. Elder, et al. 2004. Inflammatory cell recruitment following thoracic irradiation. Experimental Lung Research 30: 369–382.CrossRefPubMed
27.
Zurück zum Zitat Man, S.M., R. Karki, and T.D. Kanneganti. 2016. AIM2 inflammasome in infection, cancer and autoimmunity: role in DNA sensing, inflammation and innate immunity. European Journal of Immunology 46: 269–280.CrossRefPubMed Man, S.M., R. Karki, and T.D. Kanneganti. 2016. AIM2 inflammasome in infection, cancer and autoimmunity: role in DNA sensing, inflammation and innate immunity. European Journal of Immunology 46: 269–280.CrossRefPubMed
Metadaten
Titel
The Influence of Radiotherapy on AIM2 Inflammasome in Radiation Pneumonitis
verfasst von
Qianyu Zhang
Qinyong Hu
Yuxin Chu
Bin Xu
Qibin Song
Publikationsdatum
15.08.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0419-y

Weitere Artikel der Ausgabe 5/2016

Inflammation 5/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.