Skip to main content
Erschienen in:

13.10.2022 | Original Article

The Influenza-Induced Pulmonary Inflammatory Exudate in Susceptible Tpl2-Deficient Mice Is Dictated by Type I IFN Signaling

verfasst von: Krishna Latha, Yesha Patel, Sanjana Rao, Wendy T. Watford

Erschienen in: Inflammation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

The most prominent host response to viral infection is the production of type 1 interferons (T1 IFNs). One host regulator of the T1 IFNs is the serine-threonine kinase, tumor progression locus 2 (TPL2). We have previously demonstrated that Tpl2−/− mice succumb to infection with a low-pathogenicity influenza A strain (x31), in association with with increased pulmonary levels of interferon-β (IFN-β), chemokine CCL2, and excessive monocyte and neutrophil pulmonary infiltration. TPL2-dependent overexpression of IFN-β has been implicated in enhanced susceptibility to Mycobacterium tuberculosis; therefore, we examined the role of T1 IFNs in susceptibility of Tpl2−/− mice to influenza. CCL2 overexpression and monocyte recruitment were normalized in Ifnar1−/−Tpl2−/− mice, confirming that TPL2 constrains inflammatory monocyte recruitment via inhibition of the T1 IFN/CCL2 axis. Unexpectedly, excessive neutrophil recruitment in Ifnar1−/− strains was further exacerbated by simultaneous TPL2 genetic ablation in Ifnar1−/−Tpl2−/− by 7 dpi, accompanied by overexpression of neutrophil-regulating cytokines, CXCL1 and IFN-λ. Collectively, our data suggest that TPL2 and T1 IFNs synergize to inhibit neutrophil recruitment. However, treatment with the neutrophil-depleting anti-Ly6G antibody showed only a modest improvement in disease. Analysis of sorted innate immune populations revealed redundant expression of inflammatory mediators among neutrophils, inflammatory monocytes and alveolar macrophages. These findings suggest that targeting a single cell type or mediator may be inadequate to control severe disease characterized by a mixed inflammatory exudate. Future studies will consider TPL2-regulated pathways as potential predictors of severe influenza progression as well as investigate novel methods to modulate TPL2 function during viral infection.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
4.
Zurück zum Zitat Walker, Tiffany A, Ben Waite, Mark G Thompson, Colin McArthur, Conroy Wong, Michael G Baker, Tim Wood, et al. 2020. Risk of severe influenza among adults with chronic medical conditions. The Journal of infectious diseases 221. United States: 183–190. https://doi.org/10.1093/infdis/jiz570. Walker, Tiffany A, Ben Waite, Mark G Thompson, Colin McArthur, Conroy Wong, Michael G Baker, Tim Wood, et al. 2020. Risk of severe influenza among adults with chronic medical conditions. The Journal of infectious diseases 221. United States: 183–190. https://​doi.​org/​10.​1093/​infdis/​jiz570.
5.
Zurück zum Zitat Mertz, Dominik, Calvin Ka Fung Lo, Lyubov Lytvyn, Justin R. Ortiz, Mark Loeb, Li Wei Ang, Mehta Asmita Anlikumar, et al. 2019. Pregnancy as a risk factor for severe influenza infection: An individual participant data meta-analysis. BMC Infectious Diseases 19. BMC Infectious Diseases: 1–10. https://doi.org/10.1186/s12879-019-4318-3. Mertz, Dominik, Calvin Ka Fung Lo, Lyubov Lytvyn, Justin R. Ortiz, Mark Loeb, Li Wei Ang, Mehta Asmita Anlikumar, et al. 2019. Pregnancy as a risk factor for severe influenza infection: An individual participant data meta-analysis. BMC Infectious Diseases 19. BMC Infectious Diseases: 1–10. https://​doi.​org/​10.​1186/​s12879-019-4318-3.
6.
Zurück zum Zitat Miyashita, Koichi, Eiji Nakatani, Hironao Hozumi, Yoko Sato, Yoshiki Miyachi, and Takafumi Suda. 2021. Risk factors for pneumonia and death in adult patients with seasonal influenza and establishment of prediction scores: A population-based study. Open Forum Infectious Diseases 8: 1–8. https://doi.org/10.1093/ofid/ofab068.CrossRef Miyashita, Koichi, Eiji Nakatani, Hironao Hozumi, Yoko Sato, Yoshiki Miyachi, and Takafumi Suda. 2021. Risk factors for pneumonia and death in adult patients with seasonal influenza and establishment of prediction scores: A population-based study. Open Forum Infectious Diseases 8: 1–8. https://​doi.​org/​10.​1093/​ofid/​ofab068.CrossRef
9.
Zurück zum Zitat Kotenko, Sergei V., Grant Gallagher, Vitaliy V. Baurin, Anita Lewis-Antes, Meiling Shen, Nital K. Shah, Jerome A. Langer, Faruk Sheikh, Harold Dickensheets, and Raymond P. Donnelly. 2003. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology 4: 69–77. https://doi.org/10.1038/ni875.CrossRefPubMed Kotenko, Sergei V., Grant Gallagher, Vitaliy V. Baurin, Anita Lewis-Antes, Meiling Shen, Nital K. Shah, Jerome A. Langer, Faruk Sheikh, Harold Dickensheets, and Raymond P. Donnelly. 2003. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology 4: 69–77. https://​doi.​org/​10.​1038/​ni875.CrossRefPubMed
10.
11.
Zurück zum Zitat Davidson, Sophia, Teresa M McCabe, Stefania Crotta, Hans Henrik Gad, Edith M Hessel, Soren Beinke, Rune Hartmann, and Andreas Wack. 2016. IFN λ is a potent anti‐influenza therapeutic without the inflammatory side effects of IFN α treatment . EMBO Molecular Medicine 8: 1099–1112. https://doi.org/10.15252/emmm.201606413. Davidson, Sophia, Teresa M McCabe, Stefania Crotta, Hans Henrik Gad, Edith M Hessel, Soren Beinke, Rune Hartmann, and Andreas Wack. 2016. IFN λ is a potent anti‐influenza therapeutic without the inflammatory side effects of IFN α treatment . EMBO Molecular Medicine 8: 1099–1112. https://​doi.​org/​10.​15252/​emmm.​201606413.
12.
Zurück zum Zitat Crotta, Stefania, Sophia Davidson, Tanel Mahlakoiv, Christophe J. Desmet, Matthew R. Buckwalter, Matthew L. Albert, Peter Staeheli, and Andreas Wack. 2013. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathogens 9. https://doi.org/10.1371/journal.ppat.1003773 Crotta, Stefania, Sophia Davidson, Tanel Mahlakoiv, Christophe J. Desmet, Matthew R. Buckwalter, Matthew L. Albert, Peter Staeheli, and Andreas Wack. 2013. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathogens 9. https://​doi.​org/​10.​1371/​journal.​ppat.​1003773
14.
Zurück zum Zitat Goffic, Le., Julien Pothlichet Ronan, Damien Vitour, Takashi Fujita, Eliane Meurs, Michel Chignard, and Mustapha Si-Tahar. 2007. Cutting edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. The Journal of Immunology 178: 3368–3372. https://doi.org/10.4049/jimmunol.178.6.3368.CrossRefPubMed Goffic, Le., Julien Pothlichet Ronan, Damien Vitour, Takashi Fujita, Eliane Meurs, Michel Chignard, and Mustapha Si-Tahar. 2007. Cutting edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. The Journal of Immunology 178: 3368–3372. https://​doi.​org/​10.​4049/​jimmunol.​178.​6.​3368.CrossRefPubMed
15.
Zurück zum Zitat Pommerenke, Claudia, Esther Wilk, Barkha Srivastava, Annika Schulze, Natalia Novoselova, Robert Geffers, and Klaus Schughart. 2012. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0041169 Pommerenke, Claudia, Esther Wilk, Barkha Srivastava, Annika Schulze, Natalia Novoselova, Robert Geffers, and Klaus Schughart. 2012. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS ONE 7. https://​doi.​org/​10.​1371/​journal.​pone.​0041169
17.
Zurück zum Zitat Soto, Jorge A., Nicolas M.S.. Gálvez, Catalina A. Andrade, Gaspar A. Pacheco, Karen Bohmwald, Roslye V. Berrios, Susan M. Bueno, and Alexis M. Kalergis. 2020. The role of dendritic cells during infections caused by highly prevalent viruses. Frontiers in Immunology 11: 1–22. https://doi.org/10.3389/fimmu.2020.01513.CrossRef Soto, Jorge A., Nicolas M.S.. Gálvez, Catalina A. Andrade, Gaspar A. Pacheco, Karen Bohmwald, Roslye V. Berrios, Susan M. Bueno, and Alexis M. Kalergis. 2020. The role of dendritic cells during infections caused by highly prevalent viruses. Frontiers in Immunology 11: 1–22. https://​doi.​org/​10.​3389/​fimmu.​2020.​01513.CrossRef
19.
Zurück zum Zitat Lee, SangJoon, Akari Ishitsuka, Masayuki Noguchi, Mikako Hirohama, Yuji Fujiyasu, Philipp P Petric, Martin Schwemmle, Peter Staeheli, Kyosuke Nagata, and Atsushi Kawaguchi. 2019. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science immunology 4. Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.: American Association for the Advancement of Science. https://doi.org/10.1126/sciimmunol.aau4643. Lee, SangJoon, Akari Ishitsuka, Masayuki Noguchi, Mikako Hirohama, Yuji Fujiyasu, Philipp P Petric, Martin Schwemmle, Peter Staeheli, Kyosuke Nagata, and Atsushi Kawaguchi. 2019. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science immunology 4. Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.: American Association for the Advancement of Science. https://​doi.​org/​10.​1126/​sciimmunol.​aau4643.
22.
Zurück zum Zitat Lenschow, Deborah J., Caroline Lai, Natalia Frias-Staheli, Nadia V. Giannakopoulos, Andrew Lutz, Thorsten Wolff, Anna Osiak, et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proceedings of the National Academy of Sciences of the United States of America 104: 1371–1376. https://doi.org/10.1073/pnas.0607038104.CrossRefPubMedPubMedCentral Lenschow, Deborah J., Caroline Lai, Natalia Frias-Staheli, Nadia V. Giannakopoulos, Andrew Lutz, Thorsten Wolff, Anna Osiak, et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proceedings of the National Academy of Sciences of the United States of America 104: 1371–1376. https://​doi.​org/​10.​1073/​pnas.​0607038104.CrossRefPubMedPubMedCentral
24.
26.
Zurück zum Zitat Kate, Senger, Pham Victoria C., Varfolomeev Eugene, Hackney Jason A., Corzo Cesar A., Collier Jenna, Lau Vivian W C., et al. 2017. The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Science Signaling 10. American Association for the Advancement of Science: eaah4273. https://doi.org/10.1126/scisignal.aah4273. Kate, Senger, Pham Victoria C., Varfolomeev Eugene, Hackney Jason A., Corzo Cesar A., Collier Jenna, Lau Vivian W C., et al. 2017. The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Science Signaling 10. American Association for the Advancement of Science: eaah4273. https://​doi.​org/​10.​1126/​scisignal.​aah4273.
27.
Zurück zum Zitat Pattison, Michael J., Olivia Mitchell, Helen R. Flynn, Chao Sheng Chen, Huei Ting Yang, Ben Addi Hakem, Stefan Boeing, Ambrosius P. Snijders, and Steven C. Ley. 2016. TLR and TNF-R1 activation of the MKK3/MKK6-p38α axis in macrophages is mediated by TPL-2 kinase. Biochemical Journal 473: 2845–2861. https://doi.org/10.1042/BCJ20160502.CrossRefPubMed Pattison, Michael J., Olivia Mitchell, Helen R. Flynn, Chao Sheng Chen, Huei Ting Yang, Ben Addi Hakem, Stefan Boeing, Ambrosius P. Snijders, and Steven C. Ley. 2016. TLR and TNF-R1 activation of the MKK3/MKK6-p38α axis in macrophages is mediated by TPL-2 kinase. Biochemical Journal 473: 2845–2861. https://​doi.​org/​10.​1042/​BCJ20160502.CrossRefPubMed
30.
Zurück zum Zitat Maria, Hatziapostolou, Koukos Georgios, Polytarchou Christos, Kottakis Filippos, Serebrennikova Oksana, Kuliopulos Athan, and Tsichlis Philip N. 2011. Tumor progression locus 2 mediates signal-induced increases in cytoplasmic calcium and cell migration. Science Signaling 4. American Association for the Advancement of Science: ra55–ra55. https://doi.org/10.1126/scisignal.2002006. Maria, Hatziapostolou, Koukos Georgios, Polytarchou Christos, Kottakis Filippos, Serebrennikova Oksana, Kuliopulos Athan, and Tsichlis Philip N. 2011. Tumor progression locus 2 mediates signal-induced increases in cytoplasmic calcium and cell migration. Science Signaling 4. American Association for the Advancement of Science: ra55–ra55. https://​doi.​org/​10.​1126/​scisignal.​2002006.
33.
Zurück zum Zitat Tsatsanis, Christos, Katerina Vaporidi, Vassiliki Zacharioudaki, Ariadne Androulidaki, Yuri Sykulev, Andrew N. Margioris, and Philip N. Tsichlis. 2008. Tpl2 and ERK transduce antiproliferative T cell receptor signals and inhibit transformation of chronically stimulated T cells. Proceedings of the National Academy of Sciences of the United States of America 105: 2987–2992. https://doi.org/10.1073/pnas.0708381104.CrossRefPubMedPubMedCentral Tsatsanis, Christos, Katerina Vaporidi, Vassiliki Zacharioudaki, Ariadne Androulidaki, Yuri Sykulev, Andrew N. Margioris, and Philip N. Tsichlis. 2008. Tpl2 and ERK transduce antiproliferative T cell receptor signals and inhibit transformation of chronically stimulated T cells. Proceedings of the National Academy of Sciences of the United States of America 105: 2987–2992. https://​doi.​org/​10.​1073/​pnas.​0708381104.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat McNab, Finlay W., John Ewbank, Ricardo Rajsbaum, Evangelos Stavropoulos, Anna Martirosyan, Paul S. Redford, Wu. Xuemei, et al. 2013. TPL-2–ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. The Journal of Immunology 191: 1732–1743. https://doi.org/10.4049/jimmunol.1300146.CrossRefPubMed McNab, Finlay W., John Ewbank, Ricardo Rajsbaum, Evangelos Stavropoulos, Anna Martirosyan, Paul S. Redford, Wu. Xuemei, et al. 2013. TPL-2–ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. The Journal of Immunology 191: 1732–1743. https://​doi.​org/​10.​4049/​jimmunol.​1300146.CrossRefPubMed
37.
Zurück zum Zitat Xiao, Nengming, Celine Eidenschenk, Philippe Krebs, Katharina Brandl, Amanda L. Blasius, Yu. Xia, Kevin Khovananth, Nora G. Smart, and Bruce Beutler. 2009. The Tpl2 mutation sluggish impairs type I IFN production and increases susceptibility to group B streptococcal disease. The Journal of Immunology 183: 7975–7983. https://doi.org/10.4049/jimmunol.0902718.CrossRefPubMed Xiao, Nengming, Celine Eidenschenk, Philippe Krebs, Katharina Brandl, Amanda L. Blasius, Yu. Xia, Kevin Khovananth, Nora G. Smart, and Bruce Beutler. 2009. The Tpl2 mutation sluggish impairs type I IFN production and increases susceptibility to group B streptococcal disease. The Journal of Immunology 183: 7975–7983. https://​doi.​org/​10.​4049/​jimmunol.​0902718.CrossRefPubMed
38.
Zurück zum Zitat Latha, Krishna, Katelyn F Jamison, and Wendy T Watford. 2021. Tpl2 ablation leads to hypercytokinemia and excessive cellular infiltration to the lungs during late stages of influenza infection . Frontiers in Immunology . Latha, Krishna, Katelyn F Jamison, and Wendy T Watford. 2021. Tpl2 ablation leads to hypercytokinemia and excessive cellular infiltration to the lungs during late stages of influenza infection . Frontiers in Immunology .
39.
Zurück zum Zitat Seo, Sang Uk, Hyung Joon Kwon, Hyun Jeong Ko, Young Ho Byun, Baik Lin Seong, Satoshi Uematsu, Shizuo Akira, and Mi Na Kweon. 2011. Type I interferon signaling regulates Ly6Chi monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathogens 7. https://doi.org/10.1371/journal.ppat.1001304 Seo, Sang Uk, Hyung Joon Kwon, Hyun Jeong Ko, Young Ho Byun, Baik Lin Seong, Satoshi Uematsu, Shizuo Akira, and Mi Na Kweon. 2011. Type I interferon signaling regulates Ly6Chi monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathogens 7. https://​doi.​org/​10.​1371/​journal.​ppat.​1001304
40.
41.
Zurück zum Zitat Stifter, Sebastian A., Nayan Bhattacharyya, Roman Pillay, Manuela Flórido, James A. Triccas, Warwick J. Britton, and Carl G. Feng. 2016. Functional interplay between type I and II interferons is essential to limit influenza A virus-induced tissue inflammation. PLoS Pathogens 12: 1–20. https://doi.org/10.1371/journal.ppat.1005378.CrossRef Stifter, Sebastian A., Nayan Bhattacharyya, Roman Pillay, Manuela Flórido, James A. Triccas, Warwick J. Britton, and Carl G. Feng. 2016. Functional interplay between type I and II interferons is essential to limit influenza A virus-induced tissue inflammation. PLoS Pathogens 12: 1–20. https://​doi.​org/​10.​1371/​journal.​ppat.​1005378.CrossRef
43.
Zurück zum Zitat Rodriguez, Angeline E., Christopher Bogart, Christopher M. Gilbert, Jonathan A. McCullers, Amber M. Smith, Thirumala Devi Kanneganti, and Christopher R. Lupfer. 2019. Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae. PLoS ONE 14: 10–13. https://doi.org/10.1371/journal.pone.0212236.CrossRef Rodriguez, Angeline E., Christopher Bogart, Christopher M. Gilbert, Jonathan A. McCullers, Amber M. Smith, Thirumala Devi Kanneganti, and Christopher R. Lupfer. 2019. Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae. PLoS ONE 14: 10–13. https://​doi.​org/​10.​1371/​journal.​pone.​0212236.CrossRef
44.
Zurück zum Zitat Ishikawa, Hiroki, Toshie Fukui, Satoshi Ino, Hiraku Sasaki, Naoki Awano, Chikara Kohda, and Kazuo Tanaka. 2016. Influenza virus infection causes neutrophil dysfunction through reduced G-CSF production and an increased risk of secondary bacteria infection in the lung. Virology 499. Elsevier: 23–29. https://doi.org/10.1016/j.virol.2016.08.025. Ishikawa, Hiroki, Toshie Fukui, Satoshi Ino, Hiraku Sasaki, Naoki Awano, Chikara Kohda, and Kazuo Tanaka. 2016. Influenza virus infection causes neutrophil dysfunction through reduced G-CSF production and an increased risk of secondary bacteria infection in the lung. Virology 499. Elsevier: 23–29. https://​doi.​org/​10.​1016/​j.​virol.​2016.​08.​025.
45.
47.
48.
Zurück zum Zitat Yamamoto, K, T Miyoshi-Koshio, Y Utsuki, S Mizuno, and K Suzuki. 1991. Virucidal activity and viral protein modification by myeloperoxidase: A candidate for defense factor of human polymorphonuclear leukocytes against influenza virus infection. The Journal of infectious diseases 164. United States: 8–14. https://doi.org/10.1093/infdis/164.1.8. Yamamoto, K, T Miyoshi-Koshio, Y Utsuki, S Mizuno, and K Suzuki. 1991. Virucidal activity and viral protein modification by myeloperoxidase: A candidate for defense factor of human polymorphonuclear leukocytes against influenza virus infection. The Journal of infectious diseases 164. United States: 8–14. https://​doi.​org/​10.​1093/​infdis/​164.​1.​8.
50.
54.
Zurück zum Zitat Coates, Bria M., Kelly L. Staricha, Clarissa M. Koch, Yuan Cheng, Dale K. Shumaker, G.R. Scott Budinger, Harris Perlman, Alexander V. Misharin, and Karen M. Ridge. 2018. Inflammatory monocytes drive influenza A virus–Mediated lung injury in juvenile mice. The Journal of Immunology 200: 2391–2404. https://doi.org/10.4049/jimmunol.1701543.CrossRefPubMed Coates, Bria M., Kelly L. Staricha, Clarissa M. Koch, Yuan Cheng, Dale K. Shumaker, G.R. Scott Budinger, Harris Perlman, Alexander V. Misharin, and Karen M. Ridge. 2018. Inflammatory monocytes drive influenza A virus–Mediated lung injury in juvenile mice. The Journal of Immunology 200: 2391–2404. https://​doi.​org/​10.​4049/​jimmunol.​1701543.CrossRefPubMed
56.
Zurück zum Zitat Mielke, Lisa A, Karen L Elkins, Lai Wei, Robyn Starr, Philip N Tsichlis, John J O'Shea, and Wendy T Watford. 2009. Tumor progression locus 2 (Map3k8) is critical for host defense against Listeria monocytogenes and IL-1β production. The Journal of Immunology 183: 7984 LP – 7993. https://doi.org/10.4049/jimmunol.0901336. Mielke, Lisa A, Karen L Elkins, Lai Wei, Robyn Starr, Philip N Tsichlis, John J O'Shea, and Wendy T Watford. 2009. Tumor progression locus 2 (Map3k8) is critical for host defense against Listeria monocytogenes and IL-1β production. The Journal of Immunology 183: 7984 LP – 7993. https://​doi.​org/​10.​4049/​jimmunol.​0901336.
57.
Zurück zum Zitat Redford, Paul S., Katrin D. Mayer-Barber, Finlay W. McNab, Evangelos Stavropoulos, Andreas Wack, Alan Sher, and Anne O’Garra. 2014. Influenza A virus impairs control of mycobacterium tuberculosis coinfection through a type i interferon receptor-dependent pathway. Journal of Infectious Diseases 209: 270–274. https://doi.org/10.1093/infdis/jit424.CrossRefPubMed Redford, Paul S., Katrin D. Mayer-Barber, Finlay W. McNab, Evangelos Stavropoulos, Andreas Wack, Alan Sher, and Anne O’Garra. 2014. Influenza A virus impairs control of mycobacterium tuberculosis coinfection through a type i interferon receptor-dependent pathway. Journal of Infectious Diseases 209: 270–274. https://​doi.​org/​10.​1093/​infdis/​jit424.CrossRefPubMed
58.
Zurück zum Zitat Galani, Ioanna E., Vasiliki Triantafyllia, Evridiki Evangelia Eleminiadou, Ourania Koltsida, Athanasios Stavropoulos, Maria Manioudaki, Dimitris Thanos, et al. 2017. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46. Elsevier Inc.: 875–890.e6. https://doi.org/10.1016/j.immuni.2017.04.025. Galani, Ioanna E., Vasiliki Triantafyllia, Evridiki Evangelia Eleminiadou, Ourania Koltsida, Athanasios Stavropoulos, Maria Manioudaki, Dimitris Thanos, et al. 2017. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46. Elsevier Inc.: 875–890.e6. https://​doi.​org/​10.​1016/​j.​immuni.​2017.​04.​025.
62.
Zurück zum Zitat Klinkhammer, Jonas, Daniel Schnepf, Liang Ye, Marilena Schwaderlapp, Hans Henrik Gad, Rune Hartmann, Dominique Garcin, Tanel Mahlakõiv, and Peter Staeheli. 2018. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife 7: 1–18. https://doi.org/10.7554/eLife.33354. Klinkhammer, Jonas, Daniel Schnepf, Liang Ye, Marilena Schwaderlapp, Hans Henrik Gad, Rune Hartmann, Dominique Garcin, Tanel Mahlakõiv, and Peter Staeheli. 2018. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife 7: 1–18. https://​doi.​org/​10.​7554/​eLife.​33354.
64.
Zurück zum Zitat Major, Jack, Stefania Crotta, Miriam Llorian, Teresa M. McCabe, Hans H. Gad, Simon L. Priestnall, Rune Harmann, and Andreas Wack. 2020. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369: 712–717.CrossRefPubMedPubMedCentral Major, Jack, Stefania Crotta, Miriam Llorian, Teresa M. McCabe, Hans H. Gad, Simon L. Priestnall, Rune Harmann, and Andreas Wack. 2020. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369: 712–717.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Högner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, Walmrath HD, Bodner J, Gattenlöhner S, Lewe-Schlosser P, Matrosovich M, Seeger W, Lohmeyer J, Herold S. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog. 2013 Feb;9(2):e1003188. https://doi.org/10.1371/journal.ppat.1003188. Epub 2013 Feb 28. Erratum in: PLoS Pathog. 2016 Jun;12(6):e1005716. PMID: 23468627; PMCID: PMC3585175.  Högner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, Walmrath HD, Bodner J, Gattenlöhner S, Lewe-Schlosser P, Matrosovich M, Seeger W, Lohmeyer J, Herold S. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog. 2013 Feb;9(2):e1003188. https://​doi.​org/​10.​1371/​journal.​ppat.​1003188. Epub 2013 Feb 28. Erratum in: PLoS Pathog. 2016 Jun;12(6):e1005716. PMID: 23468627; PMCID: PMC3585175.
Metadaten
Titel
The Influenza-Induced Pulmonary Inflammatory Exudate in Susceptible Tpl2-Deficient Mice Is Dictated by Type I IFN Signaling
verfasst von
Krishna Latha
Yesha Patel
Sanjana Rao
Wendy T. Watford
Publikationsdatum
13.10.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01736-8

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Schützt das tägliche Glas Milch vor Darmkrebs?

Die Milch machts – sie bietet Frauen nach Daten einer großen Ernährungsanalyse den besten Darmkrebsschutz aller Lebensmittel, was am hohen Kalziumgehalt liegen dürfte. Am anderen Ende des Spektrums steht der Alkoholkonsum: Das Glas Wein am Abend ist eher ungünstig.

Vorsicht mit Glukokortikoiden bei Glomerulopathie

Auch niedrig dosierte Glukokortikoide zur Behandlung einer primären Glomerulopathie lassen offenbar die Infektionsgefahr steigen. In einer US-Studie hing das Risiko vor allem mit der kombinierten Anwendung von Immunsuppressiva zusammen.

Welche Krebserkrankungen bei Zöliakie häufiger auftreten

Eine große Kohortenstudie hat den Zusammenhang zwischen Zöliakie und gastrointestinalen Krebserkrankungen und inflammatorischen Krankheiten untersucht. Neben gastrointestinalen Tumoren ist auch ein nicht solider Krebs häufiger.

Adjuvanter PD-L1-Hemmer verhindert Rezidive bei Hochrisiko-Urothelkarzinom

Sind Menschen mit muskelinvasivem Urothelkarzinom für die neoadjuvante platinbasierte Therapie nicht geeignet oder sprechen sie darauf nicht gut an, ist Pembrolizumab eine adjuvante Alternative: Die krankheitsfreie Lebenszeit wird dadurch mehr als verdoppelt.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.