Skip to main content
Erschienen in: Clinical and Translational Oncology 2/2019

27.06.2018 | Review Article

The microRNA signatures: aberrantly expressed miRNAs in prostate cancer

verfasst von: N. Sharma, M. M. Baruah

Erschienen in: Clinical and Translational Oncology | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs (miRNAs) are short, non-coding, conserved, oligonucleotides that are regulatory in nature and are often dysregulated in many cancers including prostate cancer. Depending on the level of complementarity between the miRNA and mRNA target, they can either inhibit translation or degrade the target mRNA. MiRNAs expression is specific to the type of cancer, its stage and level of metastasis, making miRNAs potential stage-specific biomarkers of cancer. Recent research has shown that these miRNAs have the potential to be a diagnostic and prognostic non-invasive biomarker for various cancers including prostate cancer. Various miRNAs have been reported as novel biomarkers for prostate cancer therapy. However, there is inconsistency in the data reported and no overlapping expression pattern could be found. In this review, we have highlighted the most consistently reported dysregulated miRNAs in prostate cancer from the existing literature and discussed the currently available data on their role in regulating the hallmarks of prostate cancer. These four most consistently reported dysregulated miRNAs viz. miRNA-141, miRNA-375, miRNA-221 and miRNA-21 need to be further validated in terms of their regulatory potential in regulating various pathways important for prostate cancer management.
Literatur
1.
2.
Zurück zum Zitat George GP, Gangwar R. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep. 2011;38:1609–15.CrossRefPubMed George GP, Gangwar R. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep. 2011;38:1609–15.CrossRefPubMed
3.
Zurück zum Zitat Agnihotri S, Mittal RD, Ahmad S, Mandhani A. Free to total serum prostate specific antigen ratio in symptomatic men does not help in differentiating benign from malignant disease of the prostate. Indian J Urol. 2014;30:28–32.CrossRefPubMedPubMedCentral Agnihotri S, Mittal RD, Ahmad S, Mandhani A. Free to total serum prostate specific antigen ratio in symptomatic men does not help in differentiating benign from malignant disease of the prostate. Indian J Urol. 2014;30:28–32.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Greene KL, Meng MV, Elkin EP, Cooperberg MR, Pasta DJ, Kattan MW, et al. Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). J Urol. 2004;171:2255–9.CrossRefPubMed Greene KL, Meng MV, Elkin EP, Cooperberg MR, Pasta DJ, Kattan MW, et al. Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). J Urol. 2004;171:2255–9.CrossRefPubMed
6.
Zurück zum Zitat Van Rooij E. The art of microRNA research. Circ Res. 2011;108:219–34.CrossRef Van Rooij E. The art of microRNA research. Circ Res. 2011;108:219–34.CrossRef
7.
Zurück zum Zitat Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res. 2010;1803:1231–43.CrossRef Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res. 2010;1803:1231–43.CrossRef
8.
Zurück zum Zitat Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMed Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMed
9.
Zurück zum Zitat Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.CrossRefPubMed Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.CrossRefPubMed
11.
Zurück zum Zitat Mao L, Oh Y. Does marijuana or crack cocaine cause cancer? J Natl Cancer Inst. 1998;90:1182–4.CrossRefPubMed Mao L, Oh Y. Does marijuana or crack cocaine cause cancer? J Natl Cancer Inst. 1998;90:1182–4.CrossRefPubMed
12.
Zurück zum Zitat Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMed Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMed
13.
Zurück zum Zitat Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.CrossRefPubMed Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.CrossRefPubMed
16.
Zurück zum Zitat Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108:1925–30.CrossRefPubMedPubMedCentral Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108:1925–30.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.CrossRefPubMed Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.CrossRefPubMed
18.
19.
Zurück zum Zitat Wang L, Liu C, Li C, Xue J, Zhao S, Zhan P, et al. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene. 1015;572:252–8.CrossRef Wang L, Liu C, Li C, Xue J, Zhao S, Zhan P, et al. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene. 1015;572:252–8.CrossRef
20.
Zurück zum Zitat Sun T, Yang M, Chen S, Balk S, Pomerantz M, Brown M, et al. The altered expression of miR-221/-222 and miR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2013;2:1093–103. Sun T, Yang M, Chen S, Balk S, Pomerantz M, Brown M, et al. The altered expression of miR-221/-222 and miR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2013;2:1093–103.
21.
22.
Zurück zum Zitat Su A, He S, Tian B, Hu W, Zhang Z. MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One. 2013;8:e71309.CrossRefPubMedPubMedCentral Su A, He S, Tian B, Hu W, Zhang Z. MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One. 2013;8:e71309.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Gregory RI, Yan K, Amuthan G. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.CrossRefPubMed Gregory RI, Yan K, Amuthan G. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.CrossRefPubMed
25.
Zurück zum Zitat Bohnsack MT, Czaplinski K, Go D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.CrossRefPubMedPubMedCentral Bohnsack MT, Czaplinski K, Go D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Bohrer LR, Chen S, Hallstrom TC, Huang H. A potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology. 2015;151:5136–45.CrossRef Bohrer LR, Chen S, Hallstrom TC, Huang H. A potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology. 2015;151:5136–45.CrossRef
27.
Zurück zum Zitat Russell PJ, Kingsley EA. Human prostate cancer cell lines. Prostate Cancer Methods Protoc. 2003;81:21–39.CrossRef Russell PJ, Kingsley EA. Human prostate cancer cell lines. Prostate Cancer Methods Protoc. 2003;81:21–39.CrossRef
29.
Zurück zum Zitat Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–40.CrossRefPubMed Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–40.CrossRefPubMed
30.
Zurück zum Zitat Cho WC. Molecular diagnostics for monitoring and predicting therapeutic effect in cancer. Expert Rev Mol Diagn. 2011;11:9–12.CrossRefPubMed Cho WC. Molecular diagnostics for monitoring and predicting therapeutic effect in cancer. Expert Rev Mol Diagn. 2011;11:9–12.CrossRefPubMed
31.
Zurück zum Zitat Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67:6130–5.CrossRefPubMed Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67:6130–5.CrossRefPubMed
32.
Zurück zum Zitat Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8.CrossRefPubMedPubMedCentral Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32:583–8.CrossRef Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32:583–8.CrossRef
34.
Zurück zum Zitat Brase JC, Johannes M, Schlomm T, Haese A, Steuber T, Beissbarth T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128:608–16.CrossRefPubMed Brase JC, Johannes M, Schlomm T, Haese A, Steuber T, Beissbarth T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128:608–16.CrossRefPubMed
35.
Zurück zum Zitat Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 2012;131:652–61.CrossRefPubMed Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 2012;131:652–61.CrossRefPubMed
36.
Zurück zum Zitat Nguyen HCN, Xie W, Yang M, Hsieh C-L, Drouin S, Lee G-SM, et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73:346–54.CrossRefPubMed Nguyen HCN, Xie W, Yang M, Hsieh C-L, Drouin S, Lee G-SM, et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73:346–54.CrossRefPubMed
37.
Zurück zum Zitat Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.CrossRefPubMed Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.CrossRefPubMed
38.
Zurück zum Zitat He X, Chang Y, Meng F, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–69.CrossRefPubMed He X, Chang Y, Meng F, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–69.CrossRefPubMed
39.
Zurück zum Zitat Ding L, Xu Y, Zhang W, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010;20:784–93.CrossRefPubMed Ding L, Xu Y, Zhang W, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010;20:784–93.CrossRefPubMed
40.
Zurück zum Zitat Avissar M, Christensen BC, Kelsey KT, Marsit CJ. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15:2850–6.CrossRefPubMedPubMedCentral Avissar M, Christensen BC, Kelsey KT, Marsit CJ. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15:2850–6.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Mathé EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res. 2009;15:6192–200.CrossRefPubMedPubMedCentral Mathé EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res. 2009;15:6192–200.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Chang C, Shi H, Wang C, et al. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett. 2012;531:204–8.CrossRefPubMed Chang C, Shi H, Wang C, et al. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett. 2012;531:204–8.CrossRefPubMed
43.
Zurück zum Zitat Bryant RJ, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.CrossRefPubMedPubMedCentral Bryant RJ, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.CrossRefPubMed Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.CrossRefPubMed
45.
Zurück zum Zitat Galardi S, Mercatelli N, Giorda E, et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines. J Biol Chem. 2007;282:23716–24.CrossRefPubMed Galardi S, Mercatelli N, Giorda E, et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines. J Biol Chem. 2007;282:23716–24.CrossRefPubMed
46.
Zurück zum Zitat Zhang C, Han LEI, Zhang A, et al. Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol. 2010;36:1503–12.PubMed Zhang C, Han LEI, Zhang A, et al. Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol. 2010;36:1503–12.PubMed
47.
Zurück zum Zitat Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15:5073–82.CrossRefPubMedPubMedCentral Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15:5073–82.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Zhao J, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283:31079–86.CrossRefPubMedPubMedCentral Zhao J, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283:31079–86.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Miele F, Costantini A, Spagnoli G, et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One. 2008;3:e4029.CrossRefPubMedPubMedCentral Miele F, Costantini A, Spagnoli G, et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One. 2008;3:e4029.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Ivan GEM, Krichevsky AM, Gabriely G. MiR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53. Ivan GEM, Krichevsky AM, Gabriely G. MiR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.
51.
52.
Zurück zum Zitat Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358–66.CrossRefPubMed Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358–66.CrossRefPubMed
53.
Zurück zum Zitat Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.CrossRefPubMed Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.CrossRefPubMed
54.
Zurück zum Zitat Yang B, Liu Z, Ning H, Zhang K, Pan D, Ding K, et al. MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer Biomark. 2016;17:223–30.CrossRefPubMed Yang B, Liu Z, Ning H, Zhang K, Pan D, Ding K, et al. MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer Biomark. 2016;17:223–30.CrossRefPubMed
55.
Zurück zum Zitat Yang Y, Guo JX, Shao ZQ. MiR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Dis. 2017;10:87–91.CrossRef Yang Y, Guo JX, Shao ZQ. MiR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Dis. 2017;10:87–91.CrossRef
56.
Zurück zum Zitat Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71:326–31.CrossRefPubMed Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71:326–31.CrossRefPubMed
57.
Zurück zum Zitat Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72:1469–77.CrossRefPubMedPubMedCentral Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72:1469–77.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.CrossRefPubMedPubMedCentral Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stöppler H, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 2011;71:550–60.CrossRefPubMed Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stöppler H, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 2011;71:550–60.CrossRefPubMed
60.
Zurück zum Zitat Mahn R, Heukamp LC, Rogenhofer S, Von Ruecker A, Miller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77:1265.e9–16.CrossRef Mahn R, Heukamp LC, Rogenhofer S, Von Ruecker A, Miller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77:1265.e9–16.CrossRef
61.
Zurück zum Zitat Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72:1443–52.CrossRefPubMed Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72:1443–52.CrossRefPubMed
62.
Zurück zum Zitat Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci. 2006;103:9136–41.CrossRefPubMedPubMedCentral Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci. 2006;103:9136–41.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Rouhi A, Mager DL, Humphries RK. MiRNAs, epigenetics, and cancer. Mamm Genome. 2008;19:517–25.CrossRefPubMed Rouhi A, Mager DL, Humphries RK. MiRNAs, epigenetics, and cancer. Mamm Genome. 2008;19:517–25.CrossRefPubMed
64.
Zurück zum Zitat Chiosea S, Jelezcova E, Chandran U, Acquafondata M, Mchale T, Sobol RW, et al. Up-regulation of dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006;169:1812–20.CrossRefPubMedPubMedCentral Chiosea S, Jelezcova E, Chandran U, Acquafondata M, Mchale T, Sobol RW, et al. Up-regulation of dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006;169:1812–20.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Cimmino A, Ph D, Di Leva G, Ph D, Shimizu M, Wojcik SE, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.CrossRefPubMed Cimmino A, Ph D, Di Leva G, Ph D, Shimizu M, Wojcik SE, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.CrossRefPubMed
67.
Zurück zum Zitat Sikand K, Barik S, Shukla GC. MicroRNAs and androgen receptor 3′ untranslated region: a missing link in castration-resistant prostate cancer. Mol Cell Pharmacol. 2012;3:107–13. Sikand K, Barik S, Shukla GC. MicroRNAs and androgen receptor 3′ untranslated region: a missing link in castration-resistant prostate cancer. Mol Cell Pharmacol. 2012;3:107–13.
68.
Zurück zum Zitat Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim Y, Tsuchiya KD, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008;27:3880–8.CrossRefPubMed Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim Y, Tsuchiya KD, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008;27:3880–8.CrossRefPubMed
70.
Zurück zum Zitat Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5:e8697.CrossRefPubMedPubMedCentral Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5:e8697.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104:15805–10.CrossRefPubMedPubMedCentral Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104:15805–10.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.CrossRefPubMedPubMedCentral Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Thomson JM, Newman M, Parker JS, Morin-kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20:2202–7.CrossRefPubMedPubMedCentral Thomson JM, Newman M, Parker JS, Morin-kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20:2202–7.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Lagos-quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMed Lagos-quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMed
75.
Zurück zum Zitat Manikandan M, Munirajan AK. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. OMICS. 2014;18:142–54.CrossRefPubMedPubMedCentral Manikandan M, Munirajan AK. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. OMICS. 2014;18:142–54.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci. 2016;105:7269–74.CrossRef Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci. 2016;105:7269–74.CrossRef
77.
78.
Zurück zum Zitat Isaacs JT, Isaacs WB. Androgen receptor outwits prostate cancer drugs. Nat Med. 2004;10:26–7.CrossRefPubMed Isaacs JT, Isaacs WB. Androgen receptor outwits prostate cancer drugs. Nat Med. 2004;10:26–7.CrossRefPubMed
79.
Zurück zum Zitat Stricker HJ. Luteinizing Hormone-releasing hormone antagonists in prostate cancer. Urology. 2001;58:24–7.CrossRefPubMed Stricker HJ. Luteinizing Hormone-releasing hormone antagonists in prostate cancer. Urology. 2001;58:24–7.CrossRefPubMed
80.
Zurück zum Zitat Griend DJV, Antonio JD, Gurel B, Antony L, DeMArzo AM, Isaacs JT. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells. Prostate. 2011;70:90–9.CrossRef Griend DJV, Antonio JD, Gurel B, Antony L, DeMArzo AM, Isaacs JT. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells. Prostate. 2011;70:90–9.CrossRef
81.
Zurück zum Zitat Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Ja OA, et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 2009;69:8141–9.CrossRefPubMed Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Ja OA, et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 2009;69:8141–9.CrossRefPubMed
82.
Zurück zum Zitat Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med. 1999;5:280–5.CrossRefPubMed Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med. 1999;5:280–5.CrossRefPubMed
83.
Zurück zum Zitat Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.CrossRefPubMed Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.CrossRefPubMed
84.
Zurück zum Zitat Raffo AJ, Perlman H, Chen M, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995;55:4438–45.PubMed Raffo AJ, Perlman H, Chen M, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995;55:4438–45.PubMed
85.
Zurück zum Zitat Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang C, Choon A, et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 2000;60:3623–30.PubMed Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang C, Choon A, et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 2000;60:3623–30.PubMed
86.
Zurück zum Zitat Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of microRNAs in prostate cancer. Prostate. 2011;71:604–14.CrossRefPubMed Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of microRNAs in prostate cancer. Prostate. 2011;71:604–14.CrossRefPubMed
87.
Zurück zum Zitat Xiao J, Gong A, Eischeid AN, Chen D, Deng C, Young CYF, et al. MiR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate. 2012;72:1514–22.CrossRefPubMed Xiao J, Gong A, Eischeid AN, Chen D, Deng C, Young CYF, et al. MiR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate. 2012;72:1514–22.CrossRefPubMed
88.
Zurück zum Zitat Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H, et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2011;105:104–11.CrossRefPubMedPubMedCentral Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H, et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2011;105:104–11.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Lajer CB, Nielsen FC, Norrild B, Borup R, Garnæs E, Rossing M, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104:830–40.CrossRefPubMedPubMedCentral Lajer CB, Nielsen FC, Norrild B, Borup R, Garnæs E, Rossing M, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104:830–40.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Basu A, Alder H, Khiyami A, Leahy P, Croce CM, Haldar S. MicroRNA-375 and microRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer. 2011;2:108–19.CrossRefPubMedPubMedCentral Basu A, Alder H, Khiyami A, Leahy P, Croce CM, Haldar S. MicroRNA-375 and microRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer. 2011;2:108–19.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Wang F, Li Y, Zhou J. MiR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 2011;179:2580–8.CrossRefPubMedPubMedCentral Wang F, Li Y, Zhou J. MiR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 2011;179:2580–8.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Sakurai D, Fujimura L, et al. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet. 2011;56:595–601.CrossRefPubMed Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Sakurai D, Fujimura L, et al. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet. 2011;56:595–601.CrossRefPubMed
93.
Zurück zum Zitat Mazar J, Khaitan D, Deblasio D, Zhong C, Govindarajan SS, Kopanathi S, et al. Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One. 2011;6:e24922.CrossRefPubMedPubMedCentral Mazar J, Khaitan D, Deblasio D, Zhong C, Govindarajan SS, Kopanathi S, et al. Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One. 2011;6:e24922.CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Szczyrba J, Nolte E, Wach S, Kremmer E, Hartmann A, Wieland W, et al. Downregulation of sec23a protein by miRNA-375 in prostate carcinoma. Mol Cancer Res. 2011;9:791–801.CrossRefPubMed Szczyrba J, Nolte E, Wach S, Kremmer E, Hartmann A, Wieland W, et al. Downregulation of sec23a protein by miRNA-375 in prostate carcinoma. Mol Cancer Res. 2011;9:791–801.CrossRefPubMed
95.
Zurück zum Zitat De Souza P, Simonini R, Breiling A, Gupta N, Malekpour M, Youns M, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res. 2010;70:9175–85.CrossRef De Souza P, Simonini R, Breiling A, Gupta N, Malekpour M, Youns M, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res. 2010;70:9175–85.CrossRef
96.
Zurück zum Zitat Chu M, Chang Y, Li P, Guo Y. Androgen receptor is negatively correlated with the methylation-mediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol Rep. 2014;31:34–40.CrossRefPubMed Chu M, Chang Y, Li P, Guo Y. Androgen receptor is negatively correlated with the methylation-mediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol Rep. 2014;31:34–40.CrossRefPubMed
97.
Zurück zum Zitat Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Gonçalves CS, et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenetics. 2015;7:42.CrossRefPubMedPubMedCentral Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Gonçalves CS, et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenetics. 2015;7:42.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Guichet A, Ephrussi A, Casanova J. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 2000;14:224–31.PubMedPubMedCentral Guichet A, Ephrussi A, Casanova J. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 2000;14:224–31.PubMedPubMedCentral
99.
Zurück zum Zitat Choi N, Park J, Lee J, Yoe J, Park GY, Kim E, et al. MiR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget. 2015;6:23533–47.PubMedPubMedCentral Choi N, Park J, Lee J, Yoe J, Park GY, Kim E, et al. MiR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget. 2015;6:23533–47.PubMedPubMedCentral
100.
Zurück zum Zitat Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle. 2014;13:1530–9.CrossRefPubMedPubMedCentral Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle. 2014;13:1530–9.CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Russell PJ, Kingsley EA. Human prostate cancer cell lines. Methods Mol Med. 2003;81:21–39.PubMed Russell PJ, Kingsley EA. Human prostate cancer cell lines. Methods Mol Med. 2003;81:21–39.PubMed
102.
Zurück zum Zitat Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004;41:150–63.CrossRefPubMed Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004;41:150–63.CrossRefPubMed
103.
Zurück zum Zitat Sun T, Wang Q, Balk S, Sun T, Wang Q, Balk S, et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009;69:3356–63.CrossRefPubMedPubMedCentral Sun T, Wang Q, Balk S, Sun T, Wang Q, Balk S, et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009;69:3356–63.CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Zheng C, Yinghao S, Li J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol. 2012;29:815–22.CrossRefPubMed Zheng C, Yinghao S, Li J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol. 2012;29:815–22.CrossRefPubMed
105.
Zurück zum Zitat Hu C, Choo R, Huang J, Ned T. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol. 2015;5:1–10.CrossRef Hu C, Choo R, Huang J, Ned T. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol. 2015;5:1–10.CrossRef
106.
Zurück zum Zitat Xing N, Qian J, Bostwick D, Bergstralh E, Young CYF. Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate. 2001;48:7–15.CrossRefPubMed Xing N, Qian J, Bostwick D, Bergstralh E, Young CYF. Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate. 2001;48:7–15.CrossRefPubMed
107.
Zurück zum Zitat Cadden IS, Johnston BT, Connolly R, Gates D, Tsujimoto Y, Eguchi Y, et al. An investigation into the role of Bcl-2 in neuroendocrine differentiation. Biochem Biophys Res Commun. 2005;326:442–8.CrossRefPubMed Cadden IS, Johnston BT, Connolly R, Gates D, Tsujimoto Y, Eguchi Y, et al. An investigation into the role of Bcl-2 in neuroendocrine differentiation. Biochem Biophys Res Commun. 2005;326:442–8.CrossRefPubMed
108.
Zurück zum Zitat Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GS, Kantoff PW. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014;33:2790–800.CrossRefPubMed Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GS, Kantoff PW. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014;33:2790–800.CrossRefPubMed
109.
Zurück zum Zitat Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245–56.CrossRefPubMedPubMedCentral Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245–56.CrossRefPubMedPubMedCentral
110.
Zurück zum Zitat Feng Jiang, Zhou Wang. Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate. 2004;59:426–35.CrossRef Feng Jiang, Zhou Wang. Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate. 2004;59:426–35.CrossRef
111.
Zurück zum Zitat Ribas J, Ni X, Haffner M, Wentzel EA, Hassanzadeh A, Chowdhury WH, et al. MiR-21: an androgen receptor regulated microRNA which promotes hormone dependent and independent prostate cancer growth. Cancer Res. 2010;69:7165–9.CrossRef Ribas J, Ni X, Haffner M, Wentzel EA, Hassanzadeh A, Chowdhury WH, et al. MiR-21: an androgen receptor regulated microRNA which promotes hormone dependent and independent prostate cancer growth. Cancer Res. 2010;69:7165–9.CrossRef
112.
113.
Zurück zum Zitat Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–54.CrossRefPubMedPubMedCentral Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–54.CrossRefPubMedPubMedCentral
114.
Zurück zum Zitat Farber E. Cell proliferation as a major risk factor for cancer: a concept of doubtful. Cancer Res. 1995;55:3759–62.PubMed Farber E. Cell proliferation as a major risk factor for cancer: a concept of doubtful. Cancer Res. 1995;55:3759–62.PubMed
115.
Zurück zum Zitat Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinform. 2016;14:42–54.CrossRef Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinform. 2016;14:42–54.CrossRef
116.
Zurück zum Zitat Qiao D, Yang J, Lei X, Mi G, Li S, Li K. Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features. Eur Rev Med Pharmacol. 2017;21:742–7. Qiao D, Yang J, Lei X, Mi G, Li S, Li K. Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features. Eur Rev Med Pharmacol. 2017;21:742–7.
117.
Zurück zum Zitat Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. MiR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53.CrossRefPubMedPubMedCentral Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. MiR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53.CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Sun J, Shi R, Zhao S, Li X, Lu S, Bu H, et al. E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J Exp Clin Cancer Res. 2017;36:40.CrossRefPubMedPubMedCentral Sun J, Shi R, Zhao S, Li X, Lu S, Bu H, et al. E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J Exp Clin Cancer Res. 2017;36:40.CrossRefPubMedPubMedCentral
119.
Zurück zum Zitat Yunhui Q. Effect of microRNA - 373 on proliferation and invasion of breast cancer cells and its mechanism. Chin J Med Sci. 2017;97:603–7. Yunhui Q. Effect of microRNA - 373 on proliferation and invasion of breast cancer cells and its mechanism. Chin J Med Sci. 2017;97:603–7.
120.
Zurück zum Zitat Su Z, Zhang M, Xu M, et al. MicroRNA181c inhibits prostate cancer cell growth and invasion by targeting multiple ERK signaling pathway components. Prostate. 2018;78:343–52.CrossRefPubMed Su Z, Zhang M, Xu M, et al. MicroRNA181c inhibits prostate cancer cell growth and invasion by targeting multiple ERK signaling pathway components. Prostate. 2018;78:343–52.CrossRefPubMed
121.
Zurück zum Zitat Liu Y, Xu XIN, Xu X, et al. MicroRNA—193a–3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol Lett. 2017;14:5121–8.PubMedPubMedCentral Liu Y, Xu XIN, Xu X, et al. MicroRNA—193a–3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol Lett. 2017;14:5121–8.PubMedPubMedCentral
122.
Zurück zum Zitat Hao P, Kang BO, Yao G, et al. MicroRNA-211 suppresses prostate cancer proliferation by targeting SPARC. Oncol Lett. 2018;15:4323–9.PubMedPubMedCentral Hao P, Kang BO, Yao G, et al. MicroRNA-211 suppresses prostate cancer proliferation by targeting SPARC. Oncol Lett. 2018;15:4323–9.PubMedPubMedCentral
123.
Zurück zum Zitat Shin M, Mizokami A, Kim J, et al. Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin β1. Prostate. 2013;73:1159–70.CrossRefPubMed Shin M, Mizokami A, Kim J, et al. Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin β1. Prostate. 2013;73:1159–70.CrossRefPubMed
124.
Zurück zum Zitat Dai H, Wang C. MiR-17 regulates prostate cancer cell proliferation. Cancer Biother Radiopharm. 2018;33:103–9.CrossRefPubMed Dai H, Wang C. MiR-17 regulates prostate cancer cell proliferation. Cancer Biother Radiopharm. 2018;33:103–9.CrossRefPubMed
126.
Zurück zum Zitat Yin Y, et al. MiR-671 promotes prostate cancer cell proliferation by targeting tumor suppressor SOX6. Eur J Pharmacol. 2018;823:65–71.CrossRef Yin Y, et al. MiR-671 promotes prostate cancer cell proliferation by targeting tumor suppressor SOX6. Eur J Pharmacol. 2018;823:65–71.CrossRef
127.
Zurück zum Zitat Du Y, Wang L, Wu H, Zhang Y, Wang KAN, Wu D. MicroRNA-141 inhibits migration of gastric cancer by targeting zinc finger E-box-binding homeobox 2. Mol Med Rep. 2015;12:3416–22.CrossRefPubMedPubMedCentral Du Y, Wang L, Wu H, Zhang Y, Wang KAN, Wu D. MicroRNA-141 inhibits migration of gastric cancer by targeting zinc finger E-box-binding homeobox 2. Mol Med Rep. 2015;12:3416–22.CrossRefPubMedPubMedCentral
128.
Zurück zum Zitat Chen CL, Tseng YW, Wu JC, Chen GY, Lin KC, Hwang SM, et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials. 2015;44:71–81.CrossRefPubMed Chen CL, Tseng YW, Wu JC, Chen GY, Lin KC, Hwang SM, et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials. 2015;44:71–81.CrossRefPubMed
129.
Zurück zum Zitat Li J, Li J, Wang H, Li X, Wen B, Wang Y. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun. 2016;482:1381–6.CrossRefPubMed Li J, Li J, Wang H, Li X, Wen B, Wang Y. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun. 2016;482:1381–6.CrossRefPubMed
130.
Zurück zum Zitat Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Schüler J, Reidenbach D, et al. Ago-RIP-Seq identifies polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016;7:59589–603.CrossRefPubMedPubMedCentral Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Schüler J, Reidenbach D, et al. Ago-RIP-Seq identifies polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016;7:59589–603.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Kempkensteffen SHC, Krause FCH, Schostak MSM, Weikert KMS. Expression parameters of the polycomb group urothelial carcinoma of the bladder and their prognostic relevance. Tumor Biol. 2008;29:323–9.CrossRef Kempkensteffen SHC, Krause FCH, Schostak MSM, Weikert KMS. Expression parameters of the polycomb group urothelial carcinoma of the bladder and their prognostic relevance. Tumor Biol. 2008;29:323–9.CrossRef
132.
Zurück zum Zitat Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F, et al. Identification of a new pathway for tumor progression: microRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes Cancer. 2010;46:2304–13. Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F, et al. Identification of a new pathway for tumor progression: microRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes Cancer. 2010;46:2304–13.
133.
Zurück zum Zitat Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, et al. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer. 2010;46:2304–13.CrossRefPubMed Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, et al. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer. 2010;46:2304–13.CrossRefPubMed
134.
Zurück zum Zitat Xiao W, Qu C, Qin J, Xing F, Sun Y, Li Z, Qiu J. CBX8, a novel DNA repair protein, promotes tumorigenesis in human esophageal carcinoma. Int J Clin Exp Pathol. 2014;7:4817.PubMedPubMedCentral Xiao W, Qu C, Qin J, Xing F, Sun Y, Li Z, Qiu J. CBX8, a novel DNA repair protein, promotes tumorigenesis in human esophageal carcinoma. Int J Clin Exp Pathol. 2014;7:4817.PubMedPubMedCentral
135.
Zurück zum Zitat Hyup S, Um S, Kim E. CBX8 suppresses sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett. 2013;335:397–403.CrossRef Hyup S, Um S, Kim E. CBX8 suppresses sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett. 2013;335:397–403.CrossRef
136.
Zurück zum Zitat Yang X, Yang Y, Gan R, Zhao L, Li W, Zhou H, et al. Down-regulation of miR-221 and miR-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1. PLoS One. 2014;9:e98833.CrossRefPubMedPubMedCentral Yang X, Yang Y, Gan R, Zhao L, Li W, Zhou H, et al. Down-regulation of miR-221 and miR-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1. PLoS One. 2014;9:e98833.CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol. 2006;26:8122–35.CrossRefPubMedPubMedCentral Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol. 2006;26:8122–35.CrossRefPubMedPubMedCentral
139.
Zurück zum Zitat Xuan H, Xue W, Pan J, Sha J, Dong B, Huang Y. Downregulation of miR 221, 30d, and 15a contributes to pathogenesis of prostate cancer by targeting Bmi 1. Biochemistry. 2015;80:276–83.PubMed Xuan H, Xue W, Pan J, Sha J, Dong B, Huang Y. Downregulation of miR 221, 30d, and 15a contributes to pathogenesis of prostate cancer by targeting Bmi 1. Biochemistry. 2015;80:276–83.PubMed
140.
Zurück zum Zitat Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res. 2011;4:76–87.CrossRef Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res. 2011;4:76–87.CrossRef
141.
Zurück zum Zitat Yang Y, Guo J, Shao Z. MiR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med. 2016;10:87–91.CrossRefPubMed Yang Y, Guo J, Shao Z. MiR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med. 2016;10:87–91.CrossRefPubMed
142.
Zurück zum Zitat Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.CrossRefPubMed Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.CrossRefPubMed
143.
Zurück zum Zitat Nistico P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:a011908.CrossRefPubMedPubMedCentral Nistico P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:a011908.CrossRefPubMedPubMedCentral
144.
Zurück zum Zitat Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.CrossRefPubMed Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.CrossRefPubMed
145.
Zurück zum Zitat Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24:7443–54.CrossRefPubMed Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24:7443–54.CrossRefPubMed
146.
147.
Zurück zum Zitat Liu Y, Sun X, Cao X, et al. MicroRNA-217 suppressed epithelial-to- mesenchymal transition in gastric cancer metastasis through targeting PTPN14. Eur Rev Med Pharmacol Sci. 2017;21:1759–67.PubMed Liu Y, Sun X, Cao X, et al. MicroRNA-217 suppressed epithelial-to- mesenchymal transition in gastric cancer metastasis through targeting PTPN14. Eur Rev Med Pharmacol Sci. 2017;21:1759–67.PubMed
148.
Zurück zum Zitat Zhang J, Liu D, Feng Z, et al. MicroRNA-138 modulates metastasis and EMT in breast cancer cells by targeting vimentin. Biomed Pharmacother. 2016;77:135–41.CrossRefPubMed Zhang J, Liu D, Feng Z, et al. MicroRNA-138 modulates metastasis and EMT in breast cancer cells by targeting vimentin. Biomed Pharmacother. 2016;77:135–41.CrossRefPubMed
150.
Zurück zum Zitat Zhao X, Wang Y, Deng R, et al. MiR186 suppresses prostate cancer progression by targeting Twist1. Oncotarget. 2016;7:33136–51.PubMedPubMedCentral Zhao X, Wang Y, Deng R, et al. MiR186 suppresses prostate cancer progression by targeting Twist1. Oncotarget. 2016;7:33136–51.PubMedPubMedCentral
151.
Zurück zum Zitat Josson S, Gururajan M, Hu P. MiR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer metastasis of human prostate cancer. Clin Cancer Res. 2014;20:4636–46.CrossRefPubMedPubMedCentral Josson S, Gururajan M, Hu P. MiR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer metastasis of human prostate cancer. Clin Cancer Res. 2014;20:4636–46.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Tang G, et al. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR7/MAPK pathway. J Cell Biochem. 2018;119:3725–31.CrossRefPubMed Tang G, et al. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR7/MAPK pathway. J Cell Biochem. 2018;119:3725–31.CrossRefPubMed
153.
Zurück zum Zitat Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E. Simone spaderna TB. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.CrossRefPubMedPubMedCentral Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E. Simone spaderna TB. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.CrossRefPubMedPubMedCentral
154.
Zurück zum Zitat Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao H, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun. 2017;8:1–14.CrossRef Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao H, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun. 2017;8:1–14.CrossRef
155.
Zurück zum Zitat Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Wallace TA, et al. Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2009;68:6162–70.CrossRef Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Wallace TA, et al. Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2009;68:6162–70.CrossRef
156.
Zurück zum Zitat Martens-uzunova ES, Jalava SE, Dits NF, Van Leenders GJ, Møller S, Trapman J. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91.CrossRefPubMed Martens-uzunova ES, Jalava SE, Dits NF, Van Leenders GJ, Møller S, Trapman J. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91.CrossRefPubMed
157.
Zurück zum Zitat Selth LA, Das R, Townley SL, Coutinho I, Hanson AR, Centenera MM, et al. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene. 2016;36:24–34.CrossRefPubMed Selth LA, Das R, Townley SL, Coutinho I, Hanson AR, Centenera MM, et al. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene. 2016;36:24–34.CrossRefPubMed
158.
Zurück zum Zitat Hong J, Sun J, Huang T. Increased expression of TRPS1 affects tumor progression and correlates with patients’ prognosis of colon cancer. Biomed Res Int. 2013;2013:454085.PubMedPubMedCentral Hong J, Sun J, Huang T. Increased expression of TRPS1 affects tumor progression and correlates with patients’ prognosis of colon cancer. Biomed Res Int. 2013;2013:454085.PubMedPubMedCentral
159.
Zurück zum Zitat Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.CrossRefPubMed Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.CrossRefPubMed
160.
Zurück zum Zitat Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate. 1994;24:114–8.CrossRefPubMed Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate. 1994;24:114–8.CrossRefPubMed
162.
Zurück zum Zitat Mcdonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LWK, Hsieh J, et al. Advances in brief expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52:6940–4.PubMed Mcdonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LWK, Hsieh J, et al. Advances in brief expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52:6940–4.PubMed
163.
Zurück zum Zitat Melamed J, Kernizan S, Walden PD. Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell. 2002;34:28–32.CrossRefPubMed Melamed J, Kernizan S, Walden PD. Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell. 2002;34:28–32.CrossRefPubMed
164.
Zurück zum Zitat Signoretti S, Pires MM, Lindauer M, Horner JW, Grisanzio C, Dhar S, et al. p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci USA. 2005;102:11355–60.CrossRefPubMedPubMedCentral Signoretti S, Pires MM, Lindauer M, Horner JW, Grisanzio C, Dhar S, et al. p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci USA. 2005;102:11355–60.CrossRefPubMedPubMedCentral
165.
Zurück zum Zitat Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol. 2006;157:1769–75.CrossRef Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol. 2006;157:1769–75.CrossRef
166.
Zurück zum Zitat Barbieri CE, Tang LJ, Brown KA, Pietenpol JA. Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 2006;66:7589–98.CrossRefPubMed Barbieri CE, Tang LJ, Brown KA, Pietenpol JA. Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 2006;66:7589–98.CrossRefPubMed
167.
Zurück zum Zitat Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20:236–52.CrossRefPubMedPubMedCentral Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20:236–52.CrossRefPubMedPubMedCentral
168.
Zurück zum Zitat Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial—mesenchymal transition. Oncogene. 2013;32:1843–53.CrossRefPubMed Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial—mesenchymal transition. Oncogene. 2013;32:1843–53.CrossRefPubMed
171.
172.
Zurück zum Zitat Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X L in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.CrossRefPubMed Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X L in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.CrossRefPubMed
173.
Zurück zum Zitat Ji F, Zhang H, Wang Y, Li M, Xu W, Kang Y, et al. MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1. Bone. 2013;56:220–6.CrossRefPubMed Ji F, Zhang H, Wang Y, Li M, Xu W, Kang Y, et al. MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1. Bone. 2013;56:220–6.CrossRefPubMed
174.
Zurück zum Zitat Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal. 2014;26:179–85.CrossRefPubMed Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal. 2014;26:179–85.CrossRefPubMed
175.
Zurück zum Zitat Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.CrossRefPubMedPubMedCentral Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.CrossRefPubMedPubMedCentral
176.
Zurück zum Zitat Han G, Fan M, Zhang X. MicroRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun. 2014;456:804–9.CrossRefPubMed Han G, Fan M, Zhang X. MicroRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun. 2014;456:804–9.CrossRefPubMed
177.
Zurück zum Zitat Colden M, Dar AA, Saini S, et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 2017;8:e2572.CrossRefPubMedPubMedCentral Colden M, Dar AA, Saini S, et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 2017;8:e2572.CrossRefPubMedPubMedCentral
178.
179.
Zurück zum Zitat Zhu D, Gao W, Zhang Z. MicroRNA-1180 is associated with growth and apoptosis in prostate cancer via TNF receptor associated factor 1 expression regulation and nuclear factor-κB signaling pathway activation. Oncol Lett. 2018;15:4775–80.PubMedPubMedCentral Zhu D, Gao W, Zhang Z. MicroRNA-1180 is associated with growth and apoptosis in prostate cancer via TNF receptor associated factor 1 expression regulation and nuclear factor-κB signaling pathway activation. Oncol Lett. 2018;15:4775–80.PubMedPubMedCentral
180.
Zurück zum Zitat Xu H, Mei Q, Shi L, Lu J, Zhao J, Fu Q. Tumor-suppressing effects of miR451 in human osteosarcoma. Cell Biochem Biophys. 2014;69:163–8.CrossRefPubMed Xu H, Mei Q, Shi L, Lu J, Zhao J, Fu Q. Tumor-suppressing effects of miR451 in human osteosarcoma. Cell Biochem Biophys. 2014;69:163–8.CrossRefPubMed
181.
Zurück zum Zitat Zhao G, Wang B, Liu Y, Zhang J, Deng S, Qin Q, et al. MiRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther. 2013;12:2569–81.CrossRefPubMed Zhao G, Wang B, Liu Y, Zhang J, Deng S, Qin Q, et al. MiRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther. 2013;12:2569–81.CrossRefPubMed
182.
183.
Zurück zum Zitat Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, Van Poppel H, et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 2014;74:2591–604.CrossRefPubMed Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, Van Poppel H, et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 2014;74:2591–604.CrossRefPubMed
184.
Zurück zum Zitat Hatley ME, Patrick DM, Garcia MR, Richardson JA, Duby RB, Van Rooij E, Olson EN. Modulation of K-ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell. 2011;18:282–93.CrossRef Hatley ME, Patrick DM, Garcia MR, Richardson JA, Duby RB, Van Rooij E, Olson EN. Modulation of K-ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell. 2011;18:282–93.CrossRef
185.
Zurück zum Zitat Si M, Zhu S, Wu H, Lu Z, Wu F, Mo Y. MiR-21—mediated tumor growth. Oncogene. 2007;26:2799–803.CrossRefPubMed Si M, Zhu S, Wu H, Lu Z, Wu F, Mo Y. MiR-21—mediated tumor growth. Oncogene. 2007;26:2799–803.CrossRefPubMed
186.
Zurück zum Zitat Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, et al. MiR-21: an oncomir on strike in prostate cancer. Mol Cancer. 2010;9:1–12.CrossRef Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, et al. MiR-21: an oncomir on strike in prostate cancer. Mol Cancer. 2010;9:1–12.CrossRef
187.
Zurück zum Zitat Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG, et al. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015;290:6037–46.CrossRefPubMedPubMedCentral Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG, et al. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015;290:6037–46.CrossRefPubMedPubMedCentral
Metadaten
Titel
The microRNA signatures: aberrantly expressed miRNAs in prostate cancer
verfasst von
N. Sharma
M. M. Baruah
Publikationsdatum
27.06.2018
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 2/2019
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-018-1910-8

Weitere Artikel der Ausgabe 2/2019

Clinical and Translational Oncology 2/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.