Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 3/2019

12.11.2018 | Review

The model of “genetic compartments”: a new insight into reproductive genetics

verfasst von: X. Vendrell, M. J. Escribà

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Currently, we are witnessing revolutionary advances in the analytical power of genetic tools. An enormous quantity of data can now be obtained from samples; however, the translation of genetic findings to the general status of individuals, or their offspring, should be done with caution. This is especially relevant in the reproductive context, where the concepts of “transmission” and “inheritability” of a trait are crucial. Against this background, we offer new insight based on a systemic view of genetic constitution in the compartmentalized organism, that is, the human body. This model considers the coexistence of “different” genomes in the same individual and the repercussion of this on reproductive efficacy and offspring. Herein, we review the major differences between somatic, germinal, embryonic, and fetal/placental genomes and their contribution to the next generation and its reproductive efficacy. The major novelty of our approach is the holistic interaction between microsystems within a macrosystem (i.e., the reproductive system). This panoramic model allows us to sketch the future implications of genetic results in function of the origin (compartment) of the sample: peripheral blood or other somatic tissues, gametes, zygotes, preimplantation embryos, fetus, or placenta. We believe this perspective can be of great use in the context of reproductive genetic counseling.
Literatur
1.
Zurück zum Zitat Von Bertalanffy L. General system theory; foundations, development, applications. 1968, George Braziller Ed, Nueva York. Von Bertalanffy L. General system theory; foundations, development, applications. 1968, George Braziller Ed, Nueva York.
2.
Zurück zum Zitat Stotz K, Griffiths P. Epigenetics: ambiguities and implications. HPLS. 2016;38:22.CrossRef Stotz K, Griffiths P. Epigenetics: ambiguities and implications. HPLS. 2016;38:22.CrossRef
3.
Zurück zum Zitat Cooper D, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132:1077–130.CrossRefPubMedPubMedCentral Cooper D, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132:1077–130.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Chen R, Shi L, Hakenberg J, Naughton B, Sklar P, Zhang J, et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34(5):531–8.CrossRefPubMed Chen R, Shi L, Hakenberg J, Naughton B, Sklar P, Zhang J, et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34(5):531–8.CrossRefPubMed
5.
Zurück zum Zitat Bryois J, Buil A, Evans DM, Kemp JP, Montgomery SB, Conrad DF, et al. Cis and trans effects of human genomic variants on gene expression. PLoS Genet. 2014;10(7):e1004461.CrossRefPubMedPubMedCentral Bryois J, Buil A, Evans DM, Kemp JP, Montgomery SB, Conrad DF, et al. Cis and trans effects of human genomic variants on gene expression. PLoS Genet. 2014;10(7):e1004461.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, et al. Dynamic role of trans regulation of gene expression in relation to complex traits. Am J Hum Genet. 2017;100(4):571–80.CrossRefPubMedPubMedCentral Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, et al. Dynamic role of trans regulation of gene expression in relation to complex traits. Am J Hum Genet. 2017;100(4):571–80.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Kousi M, Katsanis N. Genetic modifiers and oligogenic inheritance. Cold Spring Harb Perspect Med. 2015;1(6):5. Kousi M, Katsanis N. Genetic modifiers and oligogenic inheritance. Cold Spring Harb Perspect Med. 2015;1(6):5.
9.
Zurück zum Zitat Smith E, Shilatifard A. Enhancer biology and enhanceropathies. Nat Struct Mol Biol. 2014;21(3):210–9.CrossRefPubMed Smith E, Shilatifard A. Enhancer biology and enhanceropathies. Nat Struct Mol Biol. 2014;21(3):210–9.CrossRefPubMed
10.
Zurück zum Zitat Vendrell X, Ferrer M, García-Mengual E, Muñoz P, Triviño J, Calatayud C, et al. Correlation between aneuploidy, apoptotic markers and DNA fragmentation in spermatozoa from normozoospermic patients. RBM Online. 2014;28:492–502.PubMed Vendrell X, Ferrer M, García-Mengual E, Muñoz P, Triviño J, Calatayud C, et al. Correlation between aneuploidy, apoptotic markers and DNA fragmentation in spermatozoa from normozoospermic patients. RBM Online. 2014;28:492–502.PubMed
11.
Zurück zum Zitat Vendrell X. New genetic point mutations in male infertility. Reproductomics. In: Horcajadas JA, Gosálvez J, editors. The omics revolution and its impact on human reproductive medicine. New York: Academic Press. Elsevier; 2018. p. 464. Vendrell X. New genetic point mutations in male infertility. Reproductomics. In: Horcajadas JA, Gosálvez J, editors. The omics revolution and its impact on human reproductive medicine. New York: Academic Press. Elsevier; 2018. p. 464.
12.
Zurück zum Zitat Stindl R. The paradox of longer sperm telomeres in older men's testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol Cytogenet. 2016;8(9):12.CrossRef Stindl R. The paradox of longer sperm telomeres in older men's testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol Cytogenet. 2016;8(9):12.CrossRef
13.
Zurück zum Zitat Carrell DT, Aston KI, Oliva R, Emery BR, De Jonge CJ. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363(1):295–312.CrossRefPubMed Carrell DT, Aston KI, Oliva R, Emery BR, De Jonge CJ. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363(1):295–312.CrossRefPubMed
14.
Zurück zum Zitat Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017 Apr;63(2):69–76.CrossRefPubMed Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017 Apr;63(2):69–76.CrossRefPubMed
15.
Zurück zum Zitat Marlow FL. Maternal control of development in vertebrates: my mother made me do it! San Rafael (CA): Morgan & Claypool Life Sciences; 2010.CrossRef Marlow FL. Maternal control of development in vertebrates: my mother made me do it! San Rafael (CA): Morgan & Claypool Life Sciences; 2010.CrossRef
16.
Zurück zum Zitat Vendrell X. Maternal effect genes. In: Molecular basis of human fertilization. Editorial Médica. 2013, pp: 47–75. Vendrell X. Maternal effect genes. In: Molecular basis of human fertilization. Editorial Médica. 2013, pp: 47–75.
17.
Zurück zum Zitat Lynn A, Ashley T, Hassold T. Variation in human meiotic recombination. Annu Rev Genomics Hum Genet. 2004;5:317–49.CrossRefPubMed Lynn A, Ashley T, Hassold T. Variation in human meiotic recombination. Annu Rev Genomics Hum Genet. 2004;5:317–49.CrossRefPubMed
18.
Zurück zum Zitat Coop G, Przeworski M. An evolutionary view of human recombination. Nat Rev Genet. 2007;8(1):23–34.CrossRefPubMed Coop G, Przeworski M. An evolutionary view of human recombination. Nat Rev Genet. 2007;8(1):23–34.CrossRefPubMed
19.
Zurück zum Zitat Ottolini C, Newnham L, Capalbo A, Natesan S, Joshi H, Cimadomo D, et al. Genome-wide recombination and chromosome segregation in human oocytes and embryos reveal selection for maternal recombination rates. Nat Genet. 2015;47(7):727–35.CrossRefPubMedPubMedCentral Ottolini C, Newnham L, Capalbo A, Natesan S, Joshi H, Cimadomo D, et al. Genome-wide recombination and chromosome segregation in human oocytes and embryos reveal selection for maternal recombination rates. Nat Genet. 2015;47(7):727–35.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Vassena R, Boué S, González-Roca E, Aran B, Auer H, Veiga A, et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138(17):3699–709.CrossRefPubMedPubMedCentral Vassena R, Boué S, González-Roca E, Aran B, Auer H, Veiga A, et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138(17):3699–709.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Schultz R. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update. 2002;8(4):323–31.CrossRefPubMed Schultz R. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update. 2002;8(4):323–31.CrossRefPubMed
22.
Zurück zum Zitat Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033–42.CrossRefPubMed Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033–42.CrossRefPubMed
24.
Zurück zum Zitat De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. Mol Hum Reprod. 2014;20(7):599–618.CrossRefPubMed De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. Mol Hum Reprod. 2014;20(7):599–618.CrossRefPubMed
25.
Zurück zum Zitat Seydoux G, Braun RE. Pathway to totipotency: lessons from germ cells. Cell. 2006;127(5):891–904.CrossRefPubMed Seydoux G, Braun RE. Pathway to totipotency: lessons from germ cells. Cell. 2006;127(5):891–904.CrossRefPubMed
26.
Zurück zum Zitat Zhou L, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol. 2015;25(2):82–91.CrossRefPubMed Zhou L, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol. 2015;25(2):82–91.CrossRefPubMed
27.
Zurück zum Zitat Østrup O, Andersen IS, Collas P. Chromatin-linked determinants of zygotic genome activation. Cell Mol Life Sci. 2013;70(8):1425–37.CrossRefPubMed Østrup O, Andersen IS, Collas P. Chromatin-linked determinants of zygotic genome activation. Cell Mol Life Sci. 2013;70(8):1425–37.CrossRefPubMed
28.
Zurück zum Zitat Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol. 2017;11:S1084–9521. Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol. 2017;11:S1084–9521.
29.
Zurück zum Zitat Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403:501–2.CrossRefPubMed Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403:501–2.CrossRefPubMed
30.
Zurück zum Zitat Barton SC, Arney KL, Shi W, Niveleau A, Fundele R, Surani MA, et al. Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet. 2001;10:2983–7.CrossRefPubMed Barton SC, Arney KL, Shi W, Niveleau A, Fundele R, Surani MA, et al. Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet. 2001;10:2983–7.CrossRefPubMed
31.
Zurück zum Zitat Beaujean N, Taylor JE, McGarry M, Gardner JO, Wilmut I, Loi P, et al. The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci U S A. 2004;101:7636–40.CrossRefPubMedPubMedCentral Beaujean N, Taylor JE, McGarry M, Gardner JO, Wilmut I, Loi P, et al. The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci U S A. 2004;101:7636–40.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.CrossRefPubMed Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.CrossRefPubMed
33.
Zurück zum Zitat Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Noninvasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.CrossRefPubMed Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Noninvasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.CrossRefPubMed
34.
Zurück zum Zitat Dobson AT, Raja R, Abeyta MJ, Taylor T, Shen S, Haqq C, et al. The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet. 2004;13:1461–70.CrossRefPubMed Dobson AT, Raja R, Abeyta MJ, Taylor T, Shen S, Haqq C, et al. The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet. 2004;13:1461–70.CrossRefPubMed
35.
Zurück zum Zitat Assou S, Boumela I, Haouzi D, Anahory T, Dechaud H, De Vos J, et al. Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Hum Reprod Update. 2011;17:272–90.CrossRefPubMed Assou S, Boumela I, Haouzi D, Anahory T, Dechaud H, De Vos J, et al. Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Hum Reprod Update. 2011;17:272–90.CrossRefPubMed
36.
Zurück zum Zitat Bebbere D, Masala L, Albertini D, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet. 2016;33(11):1431–8.CrossRefPubMedPubMedCentral Bebbere D, Masala L, Albertini D, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet. 2016;33(11):1431–8.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Escribá MJ, Escrich L, Galiana Y, Grau N, Galán A, Pellicer A. Kinetics of the early development of uniparental human haploid embryos. Fertil Steril. 2016;105(5):1360–8.CrossRefPubMed Escribá MJ, Escrich L, Galiana Y, Grau N, Galán A, Pellicer A. Kinetics of the early development of uniparental human haploid embryos. Fertil Steril. 2016;105(5):1360–8.CrossRefPubMed
38.
39.
Zurück zum Zitat Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83.CrossRefPubMed Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83.CrossRefPubMed
40.
Zurück zum Zitat Escribá MJ, Vendrell X, Peinado V. Segmental aneuploidy in human blastocysts: a qualitative and quantitative overview. Human Reprod. 2018. Submitted. Escribá MJ, Vendrell X, Peinado V. Segmental aneuploidy in human blastocysts: a qualitative and quantitative overview. Human Reprod. 2018. Submitted.
42.
Zurück zum Zitat Van Echten-Arends J, Mastenbroek S, Sikkema-Raddatz B, Korevaar JC, Heineman MJ, van der Veen F, et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update. 2011;17:620–7.CrossRefPubMed Van Echten-Arends J, Mastenbroek S, Sikkema-Raddatz B, Korevaar JC, Heineman MJ, van der Veen F, et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update. 2011;17:620–7.CrossRefPubMed
43.
Zurück zum Zitat Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;29(7):11165.CrossRef Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;29(7):11165.CrossRef
44.
Zurück zum Zitat Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol 2017;15:33.CrossRefPubMedPubMedCentral Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol 2017;15:33.CrossRefPubMedPubMedCentral
45.
46.
Zurück zum Zitat Capalbo A, Hoffmann E, Cimadomo D, Maria Ubaldi F, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23:706–22.CrossRefPubMed Capalbo A, Hoffmann E, Cimadomo D, Maria Ubaldi F, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23:706–22.CrossRefPubMed
47.
Zurück zum Zitat Vázquez-Diez C, FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction. 2018;155:R63–76.CrossRefPubMed Vázquez-Diez C, FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction. 2018;155:R63–76.CrossRefPubMed
48.
Zurück zum Zitat Taylor T, Gitlin S, Patrick J, Crain J, Wilson J, Griffin D. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81.CrossRefPubMed Taylor T, Gitlin S, Patrick J, Crain J, Wilson J, Griffin D. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81.CrossRefPubMed
49.
Zurück zum Zitat McCoy R, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015;11:e1005601.CrossRefPubMedPubMedCentral McCoy R, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015;11:e1005601.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Daughtry B, Chavez S. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res. 2016;363:201–25.CrossRefPubMed Daughtry B, Chavez S. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res. 2016;363:201–25.CrossRefPubMed
51.
Zurück zum Zitat Moore T. Review: parent-offspring conflict and the control of placental function. Placenta. 2012;33:S33–6.CrossRefPubMed Moore T. Review: parent-offspring conflict and the control of placental function. Placenta. 2012;33:S33–6.CrossRefPubMed
52.
Zurück zum Zitat Haig D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb). 2014;113:96–103.CrossRef Haig D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb). 2014;113:96–103.CrossRef
53.
54.
Zurück zum Zitat Deshpande SS, Balasinor NH. Placental defects: an epigenetic perspective. Reprod Sci. 2018;25(8):1143–60.CrossRefPubMed Deshpande SS, Balasinor NH. Placental defects: an epigenetic perspective. Reprod Sci. 2018;25(8):1143–60.CrossRefPubMed
55.
Zurück zum Zitat Novakovic B, Saffery R. The ever growing complexity of placental epigenetics - role in adverse pregnancy outcomes and fetal programming. Placenta. 2012;33(12):959–70.CrossRefPubMed Novakovic B, Saffery R. The ever growing complexity of placental epigenetics - role in adverse pregnancy outcomes and fetal programming. Placenta. 2012;33(12):959–70.CrossRefPubMed
57.
Zurück zum Zitat Keverne E. Genomic imprinting, action, and interaction of maternal and fetal genomes. Proc Natl Acad Sci U S A. 2015;112(22):6834–40.CrossRefPubMed Keverne E. Genomic imprinting, action, and interaction of maternal and fetal genomes. Proc Natl Acad Sci U S A. 2015;112(22):6834–40.CrossRefPubMed
58.
Zurück zum Zitat Nadeau JH. Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet. 2009;15(18(R2)):R202–10.CrossRef Nadeau JH. Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet. 2009;15(18(R2)):R202–10.CrossRef
Metadaten
Titel
The model of “genetic compartments”: a new insight into reproductive genetics
verfasst von
X. Vendrell
M. J. Escribà
Publikationsdatum
12.11.2018
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 3/2019
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-018-1366-3

Weitere Artikel der Ausgabe 3/2019

Journal of Assisted Reproduction and Genetics 3/2019 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.