Skip to main content
Erschienen in: Diabetologia 12/2017

27.09.2017 | Article

The MST3/STK24 kinase mediates impaired fasting blood glucose after a high-fat diet

verfasst von: Cristina Iglesias, Ebel Floridia, Miriam Sartages, Begoña Porteiro, María Fraile, Ana Guerrero, Diana Santos, Juan Cuñarro, Sulay Tovar, Rubén Nogueiras, Celia M. Pombo, Juan Zalvide

Erschienen in: Diabetologia | Ausgabe 12/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The identification of mediators in the pathogenesis of type 2 diabetes mellitus is essential for the full understanding of this disease. Protein kinases are especially important because of their potential as pharmacological targets. The goal of this study was to investigate whether mammalian sterile-20 3 (MST3/STK24), a stress-regulated kinase, is involved in metabolic alterations in obesity.

Methods

Glucose regulation of Mst3 (also known as Stk24)-knockout mice was analysed both in 129;C57 mixed background mice and in C57/BL6J mice fed normally or with a high-fat diet (HFD). This work was complemented with an analysis of the insulin signalling pathway in cultured human liver cells made deficient in MST3 using RNA interference.

Results

MST3 is phosphorylated in the livers of mice subject to an obesity-promoting HFD, and its deficiency lowers the hyperglycaemia, hyperinsulinaemia and insulin resistance that the animals develop with this diet, an effect that is seen even without complete inactivation of the kinase. Lack of MST3 results in activation of the insulin signalling pathway downstream of IRS1, in both cultured liver cells and the liver of animals after HFD. This effect increases the inhibition of forkhead box (FOX)O1, with subsequent downregulation of the expression of gluconeogenic enzymes.

Conclusions/interpretation

MST3 inhibits the insulin signalling pathway and is important in the development of insulin resistance and impaired blood glucose levels after an HFD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF (2010) Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics 8:29CrossRef Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF (2010) Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics 8:29CrossRef
2.
Zurück zum Zitat Meigs JB, Muller DC, Nathan DM, Blake DR, Andres R, Baltimore Longitudinal Study of Aging (2003) The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes 52:1475–1484CrossRefPubMed Meigs JB, Muller DC, Nathan DM, Blake DR, Andres R, Baltimore Longitudinal Study of Aging (2003) The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes 52:1475–1484CrossRefPubMed
3.
Zurück zum Zitat Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668CrossRefPubMed Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668CrossRefPubMed
5.
6.
Zurück zum Zitat Basu R, Barosa C, Jones J et al (2013) Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab 98:E409–E417CrossRefPubMedPubMedCentral Basu R, Barosa C, Jones J et al (2013) Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab 98:E409–E417CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefPubMed Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefPubMed
10.
Zurück zum Zitat Gruben N, Shiri-Sverdlov R, Koonen DP, Hofker MH (2014) Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta 1842:2329–2343CrossRefPubMed Gruben N, Shiri-Sverdlov R, Koonen DP, Hofker MH (2014) Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta 1842:2329–2343CrossRefPubMed
11.
Zurück zum Zitat Pombo CM, Force T, Kyriakis J, Nogueira E, Fidalgo M, Zalvide J (2007) The GCK II and III subfamilies of the STE20 group kinases. Front Biosci 12:850–859CrossRefPubMed Pombo CM, Force T, Kyriakis J, Nogueira E, Fidalgo M, Zalvide J (2007) The GCK II and III subfamilies of the STE20 group kinases. Front Biosci 12:850–859CrossRefPubMed
12.
Zurück zum Zitat Ling P, Lu TJ, Yuan CJ, Lai MD (2008) Biosignaling of mammalian Ste20-related kinases. Cell Signal 20:1237–1247CrossRefPubMed Ling P, Lu TJ, Yuan CJ, Lai MD (2008) Biosignaling of mammalian Ste20-related kinases. Cell Signal 20:1237–1247CrossRefPubMed
13.
Zurück zum Zitat Sugden PH, McGuffin LJ, Clerk A (2013) SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 454:13–30CrossRefPubMed Sugden PH, McGuffin LJ, Clerk A (2013) SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 454:13–30CrossRefPubMed
14.
Zurück zum Zitat Madsen CD, Hooper S, Tozluoglu M et al (2015) STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 17:68–80CrossRefPubMed Madsen CD, Hooper S, Tozluoglu M et al (2015) STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 17:68–80CrossRefPubMed
15.
Zurück zum Zitat Lorber B, Howe ML, Benowitz LI, Irwin N (2009) Mst3b, An Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci 12:1407–1414CrossRefPubMedPubMedCentral Lorber B, Howe ML, Benowitz LI, Irwin N (2009) Mst3b, An Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci 12:1407–1414CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Nerstedt A, Cansby E, Andersson CX et al (2012) Serine/threonine protein kinase 25 (STK25): a novel negative regulator of lipid and glucose metabolism in rodent and human skeletal muscle. Diabetologia 55:1797–1807CrossRefPubMed Nerstedt A, Cansby E, Andersson CX et al (2012) Serine/threonine protein kinase 25 (STK25): a novel negative regulator of lipid and glucose metabolism in rodent and human skeletal muscle. Diabetologia 55:1797–1807CrossRefPubMed
17.
Zurück zum Zitat Cansby E, Amrutkar M, Manneras Holm L et al (2013) Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet. FASEB J 27:3660–3671CrossRefPubMed Cansby E, Amrutkar M, Manneras Holm L et al (2013) Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet. FASEB J 27:3660–3671CrossRefPubMed
18.
Zurück zum Zitat Amrutkar M, Cansby E, Chursa U et al (2015) Genetic disruption of protein kinase STK25 ameliorates metabolic defects in a diet-induced type 2 diabetes model. Diabetes 64:2791–2804CrossRefPubMedPubMedCentral Amrutkar M, Cansby E, Chursa U et al (2015) Genetic disruption of protein kinase STK25 ameliorates metabolic defects in a diet-induced type 2 diabetes model. Diabetes 64:2791–2804CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Amrutkar M, Cansby E, Nunez-Duran E et al (2015) Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J 29:1564–1576CrossRefPubMed Amrutkar M, Cansby E, Nunez-Duran E et al (2015) Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J 29:1564–1576CrossRefPubMed
20.
Zurück zum Zitat Amrutkar M, Kern M, Nunez-Duran E et al (2016) Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans. Diabetologia 59:341–353CrossRefPubMed Amrutkar M, Kern M, Nunez-Duran E et al (2016) Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans. Diabetologia 59:341–353CrossRefPubMed
21.
Zurück zum Zitat Ramadoss P, Unger-Smith NE, Lam FS, Hollenberg AN (2009) STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Mol Endocrinol 23:827–837CrossRefPubMedPubMedCentral Ramadoss P, Unger-Smith NE, Lam FS, Hollenberg AN (2009) STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Mol Endocrinol 23:827–837CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Zhang Y, Tang W, Zhang H et al (2013) A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell 27:215–226CrossRefPubMed Zhang Y, Tang W, Zhang H et al (2013) A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell 27:215–226CrossRefPubMed
23.
Zurück zum Zitat Fisher SJ, Kahn CR (2003) Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J Clin Invest 111:463–468CrossRefPubMedPubMedCentral Fisher SJ, Kahn CR (2003) Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J Clin Invest 111:463–468CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Fuller SJ, McGuffin LJ, Marshall AK et al (2012) A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3). Biochem J 442:595–610CrossRefPubMedPubMedCentral Fuller SJ, McGuffin LJ, Marshall AK et al (2012) A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3). Biochem J 442:595–610CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Boj SF, van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMed Boj SF, van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMed
27.
Zurück zum Zitat Wang SR, Pessah M, Infante J, Catala D, Salvat C, Infante R (1988) Lipid and lipoprotein metabolism in Hep G2 cells. Biochim Biophys Acta 961:351–363CrossRefPubMed Wang SR, Pessah M, Infante J, Catala D, Salvat C, Infante R (1988) Lipid and lipoprotein metabolism in Hep G2 cells. Biochim Biophys Acta 961:351–363CrossRefPubMed
28.
Zurück zum Zitat Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385CrossRefPubMed Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385CrossRefPubMed
29.
Zurück zum Zitat Montgomery MK, Hallahan NL, Brown SH et al (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139CrossRefPubMed Montgomery MK, Hallahan NL, Brown SH et al (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139CrossRefPubMed
30.
Zurück zum Zitat Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551PubMedPubMedCentral Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551PubMedPubMedCentral
31.
Zurück zum Zitat Jacinto E, Facchinetti V, Liu D et al (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137CrossRefPubMed Jacinto E, Facchinetti V, Liu D et al (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137CrossRefPubMed
32.
Zurück zum Zitat Facchinetti V, Ouyang W, Wei H et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943CrossRefPubMedPubMedCentral Facchinetti V, Ouyang W, Wei H et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943CrossRefPubMedPubMedCentral
Metadaten
Titel
The MST3/STK24 kinase mediates impaired fasting blood glucose after a high-fat diet
verfasst von
Cristina Iglesias
Ebel Floridia
Miriam Sartages
Begoña Porteiro
María Fraile
Ana Guerrero
Diana Santos
Juan Cuñarro
Sulay Tovar
Rubén Nogueiras
Celia M. Pombo
Juan Zalvide
Publikationsdatum
27.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 12/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4433-x

Weitere Artikel der Ausgabe 12/2017

Diabetologia 12/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.