Skip to main content
Erschienen in: Pediatric Nephrology 8/2016

22.10.2015 | Review

The multifaceted role of the renal microvasculature during acute kidney injury

verfasst von: Katherine Maringer, Sunder Sims-Lucas

Erschienen in: Pediatric Nephrology | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell–cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair.
Literatur
1.
Zurück zum Zitat Ricci Z, Cruz DN, Ronco C (2011) Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat Rev Nephrol 7:201–208PubMedCrossRef Ricci Z, Cruz DN, Ronco C (2011) Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat Rev Nephrol 7:201–208PubMedCrossRef
2.
Zurück zum Zitat Korkeila M, Ruokonen E, Takala J (2000) Costs of care, long-term prognosis and quality of life in patients requiring renal replacement therapy during intensive care. Intensive Care Med 26:1824–1831PubMedCrossRef Korkeila M, Ruokonen E, Takala J (2000) Costs of care, long-term prognosis and quality of life in patients requiring renal replacement therapy during intensive care. Intensive Care Med 26:1824–1831PubMedCrossRef
3.
Zurück zum Zitat Bagshaw SM (2006) The long-term outcome after acute renal failure. Curr Opin Crit Care 12:561–566PubMedCrossRef Bagshaw SM (2006) The long-term outcome after acute renal failure. Curr Opin Crit Care 12:561–566PubMedCrossRef
4.
Zurück zum Zitat Chan JC, Williams DM, Roth KS (2002) Kidney failure in infants and children. Pediatr Rev 23:47–60PubMedCrossRef Chan JC, Williams DM, Roth KS (2002) Kidney failure in infants and children. Pediatr Rev 23:47–60PubMedCrossRef
5.
Zurück zum Zitat Patzer L (2008) Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol 23:2159–2173PubMedCrossRef Patzer L (2008) Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol 23:2159–2173PubMedCrossRef
6.
Zurück zum Zitat Faught LN, Greff MJ, Rieder MJ, Koren G (2015) Drug-induced acute kidney injury in children. Br J Clin Pharmacol 80(4):901–909 Faught LN, Greff MJ, Rieder MJ, Koren G (2015) Drug-induced acute kidney injury in children. Br J Clin Pharmacol 80(4):901–909
8.
Zurück zum Zitat Bentley ML, Corwin HL, Dasta J (2010) Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 38:S169–S174PubMedCrossRef Bentley ML, Corwin HL, Dasta J (2010) Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 38:S169–S174PubMedCrossRef
9.
Zurück zum Zitat Ashraf M, Shahzad N, Irshad M, Hussain SQ, Ahmed P (2014) Pediatric acute kidney injury: a syndrome under paradigm shift. Indian J Crit Care Med 18:518–526PubMedPubMedCentralCrossRef Ashraf M, Shahzad N, Irshad M, Hussain SQ, Ahmed P (2014) Pediatric acute kidney injury: a syndrome under paradigm shift. Indian J Crit Care Med 18:518–526PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A (2005) Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr 51:295–299PubMedCrossRef Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A (2005) Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr 51:295–299PubMedCrossRef
11.
Zurück zum Zitat Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S (2014) Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9, e88400PubMedPubMedCentralCrossRef Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S (2014) Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9, e88400PubMedPubMedCentralCrossRef
13.
14.
Zurück zum Zitat Kanwar YS, Carone FA, Kumar A, Wada J, Ota K, Wallner EI (1997) Role of extracellular matrix, growth factors and proto-oncogenes in metanephric development. Kidney Int 52:589–606PubMedCrossRef Kanwar YS, Carone FA, Kumar A, Wada J, Ota K, Wallner EI (1997) Role of extracellular matrix, growth factors and proto-oncogenes in metanephric development. Kidney Int 52:589–606PubMedCrossRef
15.
Zurück zum Zitat Alcorn D, Maric C, McCausland J (1999) Development of the renal interstitium. Pediatr Nephrol 13:347–354PubMedCrossRef Alcorn D, Maric C, McCausland J (1999) Development of the renal interstitium. Pediatr Nephrol 13:347–354PubMedCrossRef
16.
Zurück zum Zitat Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One 8:e65993PubMedPubMedCentralCrossRef Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One 8:e65993PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sequeira-Lopez ML, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA (2015) The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Physiol Regul Integr Comp Physiol 308:R138–R149PubMedCrossRef Sequeira-Lopez ML, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA (2015) The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Physiol Regul Integr Comp Physiol 308:R138–R149PubMedCrossRef
19.
Zurück zum Zitat Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132:529–539PubMedCrossRef Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132:529–539PubMedCrossRef
20.
Zurück zum Zitat Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478PubMedCrossRef Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478PubMedCrossRef
21.
Zurück zum Zitat Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRef Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Smadja DM, d’Audigier C, Bieche I, Evrard S, Mauge L, Dias JV, Labreuche J, Laurendeau I, Marsac B, Dizier B, Wagner-Ballon O, Boisson-Vidal C, Morandi V, Duong-Van-Huyen JP, Bruneval P, Dignat-George F, Emmerich J, Gaussem P (2011) Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arterioscler Thromb Vasc Biol 31:551–559PubMedCrossRef Smadja DM, d’Audigier C, Bieche I, Evrard S, Mauge L, Dias JV, Labreuche J, Laurendeau I, Marsac B, Dizier B, Wagner-Ballon O, Boisson-Vidal C, Morandi V, Duong-Van-Huyen JP, Bruneval P, Dignat-George F, Emmerich J, Gaussem P (2011) Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arterioscler Thromb Vasc Biol 31:551–559PubMedCrossRef
23.
Zurück zum Zitat Roberts DD, Miller TW, Rogers NM, Yao M, Isenberg JS (2012) The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 31:162–169PubMedPubMedCentralCrossRef Roberts DD, Miller TW, Rogers NM, Yao M, Isenberg JS (2012) The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 31:162–169PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Kramann R, Tanaka M, Humphreys BD (2014) Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol 25:1924–1931PubMedPubMedCentralCrossRef Kramann R, Tanaka M, Humphreys BD (2014) Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol 25:1924–1931PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Lubbers DW, Baumgartl H (1997) Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 51:372–380PubMedCrossRef Lubbers DW, Baumgartl H (1997) Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 51:372–380PubMedCrossRef
26.
Zurück zum Zitat Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, Willam C (2005) Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl (99):S46–51 Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, Willam C (2005) Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl (99):S46–51
27.
Zurück zum Zitat Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 4:20–27PubMedPubMedCentral Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 4:20–27PubMedPubMedCentral
28.
Zurück zum Zitat Kimura N, Kimura H, Takahashi N, Hamada T, Maegawa H, Mori M, Imamura Y, Kusaka Y, Yoshida H, Iwano M (2015) Renal resistive index correlates with peritubular capillary loss and arteriosclerosis in biopsy tissues from patients with chronic kidney disease. Clin Exp Nephrol. doi:10.1007/s10157-015-1116-0 Kimura N, Kimura H, Takahashi N, Hamada T, Maegawa H, Mori M, Imamura Y, Kusaka Y, Yoshida H, Iwano M (2015) Renal resistive index correlates with peritubular capillary loss and arteriosclerosis in biopsy tissues from patients with chronic kidney disease. Clin Exp Nephrol. doi:10.​1007/​s10157-015-1116-0
29.
Zurück zum Zitat Isenberg JS, Hyodo F, Matsumoto K, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD (2007) Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109:1945–1952PubMedPubMedCentralCrossRef Isenberg JS, Hyodo F, Matsumoto K, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD (2007) Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109:1945–1952PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156PubMedCrossRef Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156PubMedCrossRef
31.
Zurück zum Zitat Basile DP (2004) Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens 13:1–7PubMedCrossRef Basile DP (2004) Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens 13:1–7PubMedCrossRef
32.
Zurück zum Zitat Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69:184–189PubMedCrossRef Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69:184–189PubMedCrossRef
33.
Zurück zum Zitat Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, Goligorsky MS (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282:F1140–F1149PubMedCrossRef Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, Goligorsky MS (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282:F1140–F1149PubMedCrossRef
34.
Zurück zum Zitat Basile DP, Yoder MC (2014) Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 14:3–14PubMedPubMedCentralCrossRef Basile DP, Yoder MC (2014) Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 14:3–14PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Arriero M, Brodsky SV, Gealekman O, Lucas PA, Goligorsky MS (2004) Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol 287:F621–F627PubMedCrossRef Arriero M, Brodsky SV, Gealekman O, Lucas PA, Goligorsky MS (2004) Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol 287:F621–F627PubMedCrossRef
36.
Zurück zum Zitat Choong FX, Sandoval RM, Molitoris BA, Richter-Dahlfors A (2012) Multiphoton microscopy applied for real-time intravital imaging of bacterial infections in vivo. Methods Enzymol 506:35–61PubMedPubMedCentralCrossRef Choong FX, Sandoval RM, Molitoris BA, Richter-Dahlfors A (2012) Multiphoton microscopy applied for real-time intravital imaging of bacterial infections in vivo. Methods Enzymol 506:35–61PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Grenz A, Bauerle JD, Dalton JH, Ridyard D, Badulak A, Tak E, McNamee EN, Clambey E, Moldovan R, Reyes G, Klawitter J, Ambler K, Magee K, Christians U, Brodsky KS, Ravid K, Choi DS, Wen J, Lukashev D, Blackburn MR, Osswald H, Coe IR, Nurnberg B, Haase VH, Xia Y, Sitkovsky M, Eltzschig HK (2012) Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest 122:693–710PubMedPubMedCentralCrossRef Grenz A, Bauerle JD, Dalton JH, Ridyard D, Badulak A, Tak E, McNamee EN, Clambey E, Moldovan R, Reyes G, Klawitter J, Ambler K, Magee K, Christians U, Brodsky KS, Ravid K, Choi DS, Wen J, Lukashev D, Blackburn MR, Osswald H, Coe IR, Nurnberg B, Haase VH, Xia Y, Sitkovsky M, Eltzschig HK (2012) Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest 122:693–710PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Mattson DL, Lu S, Cowley AW Jr (1997) Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharmacol Physiol 24:587–590PubMedCrossRef Mattson DL, Lu S, Cowley AW Jr (1997) Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharmacol Physiol 24:587–590PubMedCrossRef
40.
Zurück zum Zitat Kang DH, Joly AH, Oh SW, Hugo C, Kerjaschki D, Gordon KL, Mazzali M, Jefferson JA, Hughes J, Madsen KM, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 12:1434–1447PubMed Kang DH, Joly AH, Oh SW, Hugo C, Kerjaschki D, Gordon KL, Mazzali M, Jefferson JA, Hughes J, Madsen KM, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 12:1434–1447PubMed
41.
Zurück zum Zitat O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, Chander P, Goligorsky MS (2007) Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol 292:H285–H294PubMedCrossRef O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, Chander P, Goligorsky MS (2007) Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol 292:H285–H294PubMedCrossRef
42.
Zurück zum Zitat Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, Wu KD, Tsai TJ, Duffield JS (2011) Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol 178:911–923PubMedPubMedCentralCrossRef Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, Wu KD, Tsai TJ, Duffield JS (2011) Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol 178:911–923PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Sharfuddin AA, Molitoris BA (2011) Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 7:189–200PubMedCrossRef Sharfuddin AA, Molitoris BA (2011) Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 7:189–200PubMedCrossRef
44.
Zurück zum Zitat Weinberg JM, Venkatachalam MA (2012) Preserving postischemic reperfusion in the kidney: a role for extracellular adenosine. J Clin Invest 122:493–496PubMedPubMedCentralCrossRef Weinberg JM, Venkatachalam MA (2012) Preserving postischemic reperfusion in the kidney: a role for extracellular adenosine. J Clin Invest 122:493–496PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL (2003) Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278:46750–46759PubMedCrossRef Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL (2003) Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278:46750–46759PubMedCrossRef
46.
47.
Zurück zum Zitat Ling H, Edelstein C, Gengaro P, Meng X, Lucia S, Knotek M, Wangsiripaisan A, Shi Y, Schrier R (1999) Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol 277:F383–F390PubMed Ling H, Edelstein C, Gengaro P, Meng X, Lucia S, Knotek M, Wangsiripaisan A, Shi Y, Schrier R (1999) Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol 277:F383–F390PubMed
48.
Zurück zum Zitat Thakar CV, Zahedi K, Revelo MP, Wang Z, Burnham CE, Barone S, Bevans S, Lentsch AB, Rabb H, Soleimani M (2005) Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest 115:3451–3459PubMedPubMedCentralCrossRef Thakar CV, Zahedi K, Revelo MP, Wang Z, Burnham CE, Barone S, Bevans S, Lentsch AB, Rabb H, Soleimani M (2005) Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest 115:3451–3459PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Rogers NM, Thomson AW, Isenberg JS (2012) Activation of parenchymal CD47 promotes renal ischemia–reperfusion injury. J Am Soc Nephrol 23:1538–1550 Rogers NM, Thomson AW, Isenberg JS (2012) Activation of parenchymal CD47 promotes renal ischemia–reperfusion injury. J Am Soc Nephrol 23:1538–1550
50.
Zurück zum Zitat Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD (2005) Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA 102:13141–13146 Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD (2005) Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA 102:13141–13146
51.
Zurück zum Zitat Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD (2006) CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281:26069–26080PubMedCrossRef Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD (2006) CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281:26069–26080PubMedCrossRef
52.
Zurück zum Zitat Martinez-Mier G, Toledo-Pereyra LH, Bussell S, Gauvin J, Vercruysse G, Arab A, Harkema JR, Jordan JA, Ward PA (2000) Nitric oxide diminishes apoptosis and p53 gene expression after renal ischemia and reperfusion injury. Transplantation 70:1431–1437PubMedCrossRef Martinez-Mier G, Toledo-Pereyra LH, Bussell S, Gauvin J, Vercruysse G, Arab A, Harkema JR, Jordan JA, Ward PA (2000) Nitric oxide diminishes apoptosis and p53 gene expression after renal ischemia and reperfusion injury. Transplantation 70:1431–1437PubMedCrossRef
53.
Zurück zum Zitat Rodriguez-Pena A, Garcia-Criado FJ, Eleno N, Arevalo M, Lopez-Novoa JM (2004) Intrarenal administration of molsidomine, a molecule releasing nitric oxide, reduces renal ischemia–reperfusion injury in rats. Am J Transplant 4:1605–1613 Rodriguez-Pena A, Garcia-Criado FJ, Eleno N, Arevalo M, Lopez-Novoa JM (2004) Intrarenal administration of molsidomine, a molecule releasing nitric oxide, reduces renal ischemia–reperfusion injury in rats. Am J Transplant 4:1605–1613
54.
Zurück zum Zitat Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S (2007) Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 50:808–817PubMedCrossRef Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S (2007) Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 50:808–817PubMedCrossRef
55.
Zurück zum Zitat Lang JD Jr, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP (2007) Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 117:2583–2591PubMedPubMedCentralCrossRef Lang JD Jr, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP (2007) Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 117:2583–2591PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRef Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRef
57.
Zurück zum Zitat Perez Fontan M, Rodriguez-Carmona A, Bouza P, Valdes F (1998) The prognostic significance of acute renal failure after renal transplantation in patients treated with cyclosporin. QJM 91:27–40PubMedCrossRef Perez Fontan M, Rodriguez-Carmona A, Bouza P, Valdes F (1998) The prognostic significance of acute renal failure after renal transplantation in patients treated with cyclosporin. QJM 91:27–40PubMedCrossRef
58.
Zurück zum Zitat Verma SK, Molitoris BA (2015) Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 35:96–107PubMedCrossRef Verma SK, Molitoris BA (2015) Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 35:96–107PubMedCrossRef
59.
Zurück zum Zitat Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887–F899PubMedCrossRef Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887–F899PubMedCrossRef
60.
Zurück zum Zitat Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F, Goligorsky MS (2002) Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol 282:F1150–F1155PubMedCrossRef Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F, Goligorsky MS (2002) Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol 282:F1150–F1155PubMedCrossRef
61.
Zurück zum Zitat Dimke H, Sparks MA, Thomson BR, Frische S, Coffman TM, Quaggin SE (2015) Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J Am Soc Nephrol 26:1027–1038PubMedCrossRef Dimke H, Sparks MA, Thomson BR, Frische S, Coffman TM, Quaggin SE (2015) Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J Am Soc Nephrol 26:1027–1038PubMedCrossRef
62.
Zurück zum Zitat Mansson LE, Melican K, Boekel J, Sandoval RM, Hautefort I, Tanner GA, Molitoris BA, Richter-Dahlfors A (2007) Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9:413–424PubMedCrossRef Mansson LE, Melican K, Boekel J, Sandoval RM, Hautefort I, Tanner GA, Molitoris BA, Richter-Dahlfors A (2007) Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9:413–424PubMedCrossRef
63.
Zurück zum Zitat Melican K, Boekel J, Mansson LE, Sandoval RM, Tanner GA, Kallskog O, Palm F, Molitoris BA, Richter-Dahlfors A (2008) Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 10:1987–1998PubMedCrossRef Melican K, Boekel J, Mansson LE, Sandoval RM, Tanner GA, Kallskog O, Palm F, Molitoris BA, Richter-Dahlfors A (2008) Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 10:1987–1998PubMedCrossRef
64.
Zurück zum Zitat Vallon V, Osswald H (2009) Adenosine receptors and the kidney. Handb Exp Pharmacol 2009:443–470 Vallon V, Osswald H (2009) Adenosine receptors and the kidney. Handb Exp Pharmacol 2009:443–470
66.
Zurück zum Zitat Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86:901–940PubMedCrossRef Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86:901–940PubMedCrossRef
67.
Zurück zum Zitat Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82:516–524PubMedCrossRef Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82:516–524PubMedCrossRef
68.
Zurück zum Zitat Tanaka T, Nangaku M (2013) Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol 9:211–222PubMedCrossRef Tanaka T, Nangaku M (2013) Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol 9:211–222PubMedCrossRef
69.
Zurück zum Zitat Ergin B, Kapucu A, Demirci-Tansel C, Ince C (2015) The renal microcirculation in sepsis. Nephrol Dial Transplant 30:169–177PubMedCrossRef Ergin B, Kapucu A, Demirci-Tansel C, Ince C (2015) The renal microcirculation in sepsis. Nephrol Dial Transplant 30:169–177PubMedCrossRef
70.
Zurück zum Zitat Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH (2014) Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest 124:2396–2409PubMedPubMedCentralCrossRef Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH (2014) Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest 124:2396–2409PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Advani A, Connelly KA, Yuen DA, Zhang Y, Advani SL, Trogadis J, Kabir MG, Shachar E, Kuliszewski MA, Leong-Poi H, Stewart DJ, Gilbert RE (2011) Fluorescent microangiography is a novel and widely applicable technique for delineating the renal microvasculature. PLoS One 6, e24695PubMedPubMedCentralCrossRef Advani A, Connelly KA, Yuen DA, Zhang Y, Advani SL, Trogadis J, Kabir MG, Shachar E, Kuliszewski MA, Leong-Poi H, Stewart DJ, Gilbert RE (2011) Fluorescent microangiography is a novel and widely applicable technique for delineating the renal microvasculature. PLoS One 6, e24695PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198PubMedCrossRef Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198PubMedCrossRef
73.
Zurück zum Zitat Kwon O, Phillips CL, Molitoris BA (2002) Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282:F1012–F1019PubMedCrossRef Kwon O, Phillips CL, Molitoris BA (2002) Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282:F1012–F1019PubMedCrossRef
74.
Zurück zum Zitat Becherucci F, Mazzinghi B, Ronconi E, Peired A, Lazzeri E, Sagrinati C, Romagnani P, Lasagni L (2009) The role of endothelial progenitor cells in acute kidney injury. Blood Purif 27:261–270PubMedCrossRef Becherucci F, Mazzinghi B, Ronconi E, Peired A, Lazzeri E, Sagrinati C, Romagnani P, Lasagni L (2009) The role of endothelial progenitor cells in acute kidney injury. Blood Purif 27:261–270PubMedCrossRef
75.
76.
Zurück zum Zitat Jang HR, Rabb H (2009) The innate immune response in ischemic acute kidney injury. Clin Immunol 130:41–50PubMedCrossRef Jang HR, Rabb H (2009) The innate immune response in ischemic acute kidney injury. Clin Immunol 130:41–50PubMedCrossRef
77.
Zurück zum Zitat Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485PubMedCrossRef Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485PubMedCrossRef
78.
Zurück zum Zitat Goncalves GM, Zamboni DS, Camara NO (2010) The role of innate immunity in septic acute kidney injuries. Shock 34[Suppl 1]:22–26PubMedCrossRef Goncalves GM, Zamboni DS, Camara NO (2010) The role of innate immunity in septic acute kidney injuries. Shock 34[Suppl 1]:22–26PubMedCrossRef
79.
Zurück zum Zitat Jang HR, Rabb H (2015) Immune cells in experimental acute kidney injury. Nat Rev Nephrol 11:88–101PubMedCrossRef Jang HR, Rabb H (2015) Immune cells in experimental acute kidney injury. Nat Rev Nephrol 11:88–101PubMedCrossRef
80.
Zurück zum Zitat Jang HR, Ko GJ, Wasowska BA, Rabb H (2009) The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med (Berl) 87:859–864CrossRef Jang HR, Ko GJ, Wasowska BA, Rabb H (2009) The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med (Berl) 87:859–864CrossRef
81.
Zurück zum Zitat Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574PubMedCrossRef Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574PubMedCrossRef
82.
Zurück zum Zitat Celie JW, Rutjes NW, Keuning ED, Soininen R, Heljasvaara R, Pihlajaniemi T, Drager AM, Zweegman S, Kessler FL, Beelen RH, Florquin S, Aten J, van den Born J (2007) Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. Am J Pathol 170:1865–1878PubMedPubMedCentralCrossRef Celie JW, Rutjes NW, Keuning ED, Soininen R, Heljasvaara R, Pihlajaniemi T, Drager AM, Zweegman S, Kessler FL, Beelen RH, Florquin S, Aten J, van den Born J (2007) Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. Am J Pathol 170:1865–1878PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Anders HJ, Vielhauer V, Schlondorff D (2003) Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int 63:401–415PubMedCrossRef Anders HJ, Vielhauer V, Schlondorff D (2003) Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int 63:401–415PubMedCrossRef
84.
Zurück zum Zitat Swaminathan S, Griffin MD (2008) First responders: understanding monocyte-lineage traffic in the acutely injured kidney. Kidney Int 74:1509–1511PubMedCrossRef Swaminathan S, Griffin MD (2008) First responders: understanding monocyte-lineage traffic in the acutely injured kidney. Kidney Int 74:1509–1511PubMedCrossRef
86.
Zurück zum Zitat Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP (2015) Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J Am Soc Nephrol [Epub ahead of print] Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP (2015) Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J Am Soc Nephrol [Epub ahead of print]
87.
Zurück zum Zitat Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345PubMedCrossRef Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345PubMedCrossRef
88.
Zurück zum Zitat Chiao H, Kohda Y, McLeroy P, Craig L, Housini I, Star RA (1997) Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest 99:1165–1172PubMedPubMedCentralCrossRef Chiao H, Kohda Y, McLeroy P, Craig L, Housini I, Star RA (1997) Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest 99:1165–1172PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Nemoto T, Burne MJ, Daniels F, O’Donnell MP, Crosson J, Berens K, Issekutz A, Kasiske BL, Keane WF, Rabb H (2001) Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int 60:2205–2214PubMedCrossRef Nemoto T, Burne MJ, Daniels F, O’Donnell MP, Crosson J, Berens K, Issekutz A, Kasiske BL, Keane WF, Rabb H (2001) Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int 60:2205–2214PubMedCrossRef
90.
Zurück zum Zitat Solez K, Morel-Maroger L, Sraer JD (1979) The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 58:362–376CrossRef Solez K, Morel-Maroger L, Sraer JD (1979) The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 58:362–376CrossRef
91.
Zurück zum Zitat Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66:486–491PubMedCrossRef Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66:486–491PubMedCrossRef
92.
Zurück zum Zitat Rosenberger C, Griethe W, Gruber G, Wiesener M, Frei U, Bachmann S, Eckardt KU (2003) Cellular responses to hypoxia after renal segmental infarction. Kidney Int 64:874–886PubMedCrossRef Rosenberger C, Griethe W, Gruber G, Wiesener M, Frei U, Bachmann S, Eckardt KU (2003) Cellular responses to hypoxia after renal segmental infarction. Kidney Int 64:874–886PubMedCrossRef
93.
Zurück zum Zitat Lichtnekert J, Kawakami T, Parks WC, Duffield JS (2013) Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol 13:555–564PubMedPubMedCentralCrossRef Lichtnekert J, Kawakami T, Parks WC, Duffield JS (2013) Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol 13:555–564PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4:330–336PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4:330–336PubMedCrossRef
95.
Zurück zum Zitat Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P, Satpute SR, Crow MT, King LS, Rabb H (2009) Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int 76:717–729PubMedCrossRef Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P, Satpute SR, Crow MT, King LS, Rabb H (2009) Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int 76:717–729PubMedCrossRef
96.
Zurück zum Zitat Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H, Ju ST, Okusa MD (2009) Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol 20:1744–1753PubMedPubMedCentralCrossRef Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H, Ju ST, Okusa MD (2009) Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol 20:1744–1753PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Kim MG, Koo TY, Yan JJ, Lee E, Han KH, Jeong JC, Ro H, Kim BS, Jo SK, Oh KH, Surh CD, Ahn C, Yang J (2013) IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells. J Am Soc Nephrol 24:1529–1536PubMedPubMedCentralCrossRef Kim MG, Koo TY, Yan JJ, Lee E, Han KH, Jeong JC, Ro H, Kim BS, Jo SK, Oh KH, Surh CD, Ahn C, Yang J (2013) IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells. J Am Soc Nephrol 24:1529–1536PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Gupta A, Berg DT, Gerlitz B, Sharma GR, Syed S, Richardson MA, Sandusky G, Heuer JG, Galbreath EJ, Grinnell BW (2007) Role of protein C in renal dysfunction after polymicrobial sepsis. J Am Soc Nephrol 18:860–867PubMedCrossRef Gupta A, Berg DT, Gerlitz B, Sharma GR, Syed S, Richardson MA, Sandusky G, Heuer JG, Galbreath EJ, Grinnell BW (2007) Role of protein C in renal dysfunction after polymicrobial sepsis. J Am Soc Nephrol 18:860–867PubMedCrossRef
99.
Zurück zum Zitat Bouchard J, Malhotra R, Shah S, Kao YT, Vaida F, Gupta A, Berg DT, Grinnell BW, Stofan B, Tolwani AJ, Mehta RL (2015) Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study. PLoS One 10:e0120770PubMedPubMedCentralCrossRef Bouchard J, Malhotra R, Shah S, Kao YT, Vaida F, Gupta A, Berg DT, Grinnell BW, Stofan B, Tolwani AJ, Mehta RL (2015) Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study. PLoS One 10:e0120770PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Mizutani A, Okajima K, Uchiba M, Noguchi T (2000) Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood 95:3781–3787PubMed Mizutani A, Okajima K, Uchiba M, Noguchi T (2000) Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood 95:3781–3787PubMed
101.
Zurück zum Zitat Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW, Molitoris BA (2009) Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20:524–534PubMedPubMedCentralCrossRef Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW, Molitoris BA (2009) Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20:524–534PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Ikeguchi H, Maruyama S, Morita Y, Fujita Y, Kato T, Natori Y, Akatsu H, Campbell W, Okada N, Okada H, Yuzawa Y, Matsuo S (2002) Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney Int 61:490–501PubMedCrossRef Ikeguchi H, Maruyama S, Morita Y, Fujita Y, Kato T, Natori Y, Akatsu H, Campbell W, Okada N, Okada H, Yuzawa Y, Matsuo S (2002) Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney Int 61:490–501PubMedCrossRef
103.
Zurück zum Zitat Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577PubMedPubMedCentralCrossRef Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 281:F948–F957PubMedCrossRef Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 281:F948–F957PubMedCrossRef
105.
Zurück zum Zitat Goligorsky MS, Brodsky SV, Noiri E (2004) NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin Nephrol 24:316–323PubMedCrossRef Goligorsky MS, Brodsky SV, Noiri E (2004) NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin Nephrol 24:316–323PubMedCrossRef
106.
Zurück zum Zitat Mattson DL, Wu F (2000) Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. Acta Physiol Scand 168:149–154PubMedCrossRef Mattson DL, Wu F (2000) Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. Acta Physiol Scand 168:149–154PubMedCrossRef
107.
Zurück zum Zitat Chander V, Chopra K (2005) Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats. J Surg Res 128:132–139PubMedCrossRef Chander V, Chopra K (2005) Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats. J Surg Res 128:132–139PubMedCrossRef
108.
Zurück zum Zitat Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRef Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRef
109.
Zurück zum Zitat Leonard EC, Friedrich JL, Basile DP (2008) VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Renal Physiol 295:F1648–F1657PubMedPubMedCentralCrossRef Leonard EC, Friedrich JL, Basile DP (2008) VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Renal Physiol 295:F1648–F1657PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402PubMedPubMedCentralCrossRef Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180PubMedPubMedCentralCrossRef Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, Li L, Zeeh D, Schlatter E, Janke LJ, Ciarimboli G, Sparreboom A (2014) Cisplatin-induced renal injury is independently mediated by OCT2 and p53. Clin Cancer Res 20:4026–4035PubMedPubMedCentralCrossRef Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, Li L, Zeeh D, Schlatter E, Janke LJ, Ciarimboli G, Sparreboom A (2014) Cisplatin-induced renal injury is independently mediated by OCT2 and p53. Clin Cancer Res 20:4026–4035PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Pabla N, Gibson AA, Buege M, Ong SS, Li L, Hu S, Du G, Sprowl JA, Vasilyeva A, Janke LJ, Schlatter E, Chen T, Ciarimboli G, Sparreboom A (2015) Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proc Natl Acad Sci USA 112:5231–5236 Pabla N, Gibson AA, Buege M, Ong SS, Li L, Hu S, Du G, Sprowl JA, Vasilyeva A, Janke LJ, Schlatter E, Chen T, Ciarimboli G, Sparreboom A (2015) Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proc Natl Acad Sci USA 112:5231–5236
114.
Zurück zum Zitat Molitoris BA, Melnikov VY, Okusa MD, Himmelfarb J (2008) Technology Insight: biomarker development in acute kidney injury--what can we anticipate? Nat Clin Pract Nephrol 4:154–165PubMedCrossRef Molitoris BA, Melnikov VY, Okusa MD, Himmelfarb J (2008) Technology Insight: biomarker development in acute kidney injury--what can we anticipate? Nat Clin Pract Nephrol 4:154–165PubMedCrossRef
115.
Zurück zum Zitat Lorenzen JM, Kielstein JT, Hafer C, Gupta SK, Kumpers P, Faulhaber-Walter R, Haller H, Fliser D, Thum T (2011) Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 6:1540–1546PubMedCrossRef Lorenzen JM, Kielstein JT, Hafer C, Gupta SK, Kumpers P, Faulhaber-Walter R, Haller H, Fliser D, Thum T (2011) Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 6:1540–1546PubMedCrossRef
116.
Zurück zum Zitat Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883PubMedPubMedCentralCrossRef Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Molitoris JK, Molitoris BA (2011) Circulating micro-RNAs in acute kidney injury: early observations. Clin J Am Soc Nephrol 6:1517–1519PubMedCrossRef Molitoris JK, Molitoris BA (2011) Circulating micro-RNAs in acute kidney injury: early observations. Clin J Am Soc Nephrol 6:1517–1519PubMedCrossRef
118.
Zurück zum Zitat Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427PubMedCrossRef Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427PubMedCrossRef
119.
Zurück zum Zitat Bitzer M, Ben-Dov IZ, Thum T (2012) Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int 82:375–377PubMedPubMedCentralCrossRef Bitzer M, Ben-Dov IZ, Thum T (2012) Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int 82:375–377PubMedPubMedCentralCrossRef
120.
121.
Zurück zum Zitat Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralCrossRef Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralCrossRef
Metadaten
Titel
The multifaceted role of the renal microvasculature during acute kidney injury
verfasst von
Katherine Maringer
Sunder Sims-Lucas
Publikationsdatum
22.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 8/2016
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-015-3231-2

Weitere Artikel der Ausgabe 8/2016

Pediatric Nephrology 8/2016 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.