Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2019

04.06.2018 | Review Article

The Ontogeny of UDP-glucuronosyltransferase Enzymes, Recommendations for Future Profiling Studies and Application Through Physiologically Based Pharmacokinetic Modelling

verfasst von: Justine Badée, Stephen Fowler, Saskia N. de Wildt, Abby C. Collier, Stephan Schmidt, Neil Parrott

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Limited understanding of drug pharmacokinetics in children is one of the major challenges in paediatric drug development. This is most critical in neonates and infants owing to rapid changes in physiological functions, especially in the activity of drug-metabolising enzymes. Paediatric physiologically based pharmacokinetic models that integrate ontogeny functions for cytochrome P450 enzymes have aided our understanding of drug exposure in children, including those under the age of 2 years. Paediatric physiologically based pharmacokinetic models have consequently been recognised by the European Medicines Agency and the US Food and Drug Administration as innovative tools in paediatric drug development and regulatory decision making. However, little is currently known about age-related changes in UDP-glucuronosyltransferase-mediated metabolism, which represents the most important conjugation reaction for xenobiotics. Therefore, the objective of the review was to conduct a thorough literature survey to summarise our current understanding of age-related changes in UDP-glucuronosyltransferases as well as associated clinical and experimental sources of variance. Our findings indicate that there are distinct differences in UDP-glucuronosyltransferase expression and activity between isoforms for different age groups. In addition, there is substantial variability between individuals and laboratories reported for human liver microsomes, which results in part from a lack of standardised experimental conditions. Therefore, we provide a number of best practice recommendations for experimental conditions, which ultimately may help improve the quality of data used for quantitative clinical pharmacology approaches, and thus for safe and effective pharmacotherapy in children.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Frattarelli DA, Galinkin JL, Green TP, Johnson TD, Neville KA, Paul IM, et al. Off-label use of drugs in children. Pediatrics. 2014;133(3):563–7.CrossRefPubMed Frattarelli DA, Galinkin JL, Green TP, Johnson TD, Neville KA, Paul IM, et al. Off-label use of drugs in children. Pediatrics. 2014;133(3):563–7.CrossRefPubMed
3.
Zurück zum Zitat Hoppu K, Anabwani G, Garcia-Bournissen F, Gazarian M, Kearns GL, Nakamura H, et al. The status of paediatric medicines initiatives around the world-what has happened and what has not? Eur J Clin Pharmacol. 2012;68(1):1–10.CrossRefPubMed Hoppu K, Anabwani G, Garcia-Bournissen F, Gazarian M, Kearns GL, Nakamura H, et al. The status of paediatric medicines initiatives around the world-what has happened and what has not? Eur J Clin Pharmacol. 2012;68(1):1–10.CrossRefPubMed
4.
Zurück zum Zitat Dunne J, Rodriguez WJ, Murphy MD, Beasley BN, Burckart GJ, Filie JD, et al. Extrapolation of adult data and other data in pediatric drug-development programs. Pediatrics. 2011;128(5):e1242–9.CrossRefPubMed Dunne J, Rodriguez WJ, Murphy MD, Beasley BN, Burckart GJ, Filie JD, et al. Extrapolation of adult data and other data in pediatric drug-development programs. Pediatrics. 2011;128(5):e1242–9.CrossRefPubMed
5.
Zurück zum Zitat de Zwart LL, Haenen HEMG, Versantvoort CHM, Wolterink G, Van Engelen JGM, Sips AJAM. Role of biokinetics in risk assessment of drugs and chemicals in children. Regul Toxicol Pharmacol. 2004;39(3):282–309.CrossRefPubMed de Zwart LL, Haenen HEMG, Versantvoort CHM, Wolterink G, Van Engelen JGM, Sips AJAM. Role of biokinetics in risk assessment of drugs and chemicals in children. Regul Toxicol Pharmacol. 2004;39(3):282–309.CrossRefPubMed
6.
Zurück zum Zitat Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC 1/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.CrossRefPubMed Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC 1/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.CrossRefPubMed
7.
Zurück zum Zitat Momper JD, Mulugeta Y, Green DJ, Karesh A, Krudys KM, Sachs HC, et al. Adolescent dosing and labeling since the food and drug administration amendments act of 2007. JAMA Pediatr. 2013;167(10):926–32.CrossRefPubMed Momper JD, Mulugeta Y, Green DJ, Karesh A, Krudys KM, Sachs HC, et al. Adolescent dosing and labeling since the food and drug administration amendments act of 2007. JAMA Pediatr. 2013;167(10):926–32.CrossRefPubMed
8.
Zurück zum Zitat Mahmood I. Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol. 2006;61(5):545–57.CrossRefPubMedPubMedCentral Mahmood I. Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol. 2006;61(5):545–57.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Germovsek E, Barker CIS, Sharland M, Standing JF. Scaling clearance in paediatric pharmacokinetics: all models are wrong, which are useful? Br J Clin Pharmacol. 2017;83(4):777–90.CrossRefPubMed Germovsek E, Barker CIS, Sharland M, Standing JF. Scaling clearance in paediatric pharmacokinetics: all models are wrong, which are useful? Br J Clin Pharmacol. 2017;83(4):777–90.CrossRefPubMed
10.
Zurück zum Zitat Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33(5):313–27.CrossRefPubMed Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33(5):313–27.CrossRefPubMed
11.
Zurück zum Zitat Holford NHG, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Paediatr Anaesth. 2012;22(3):209–22.CrossRefPubMed Holford NHG, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Paediatr Anaesth. 2012;22(3):209–22.CrossRefPubMed
12.
Zurück zum Zitat Liu T, Lewis T, Gauda E, Gobburu J, Ivaturi V. Mechanistic population pharmacokinetics of morphine in neonates with abstinence syndrome after oral administration of diluted tincture of opium. J Clin Pharmacol. 2016;56(8):1009–18.CrossRefPubMedPubMedCentral Liu T, Lewis T, Gauda E, Gobburu J, Ivaturi V. Mechanistic population pharmacokinetics of morphine in neonates with abstinence syndrome after oral administration of diluted tincture of opium. J Clin Pharmacol. 2016;56(8):1009–18.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Björkman S. Prediction of cytochrome P450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet. 2006;45(1):1–11.CrossRefPubMed Björkman S. Prediction of cytochrome P450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet. 2006;45(1):1–11.CrossRefPubMed
14.
Zurück zum Zitat Mahmood I, Staschen C-M, Goteti K. Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J. 2014;16(6):1334–43.CrossRefPubMedPubMedCentral Mahmood I, Staschen C-M, Goteti K. Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J. 2014;16(6):1334–43.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.CrossRefPubMed Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.CrossRefPubMed
16.
Zurück zum Zitat de Wildt SN. Profound changes in drug metabolism enzymes and possible effects on drug therapy in neonates and children. Expert Opin Drug Metab Toxicol. 2011;7(8):935–48.CrossRefPubMed de Wildt SN. Profound changes in drug metabolism enzymes and possible effects on drug therapy in neonates and children. Expert Opin Drug Metab Toxicol. 2011;7(8):935–48.CrossRefPubMed
18.
Zurück zum Zitat Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32.CrossRefPubMed Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32.CrossRefPubMed
19.
Zurück zum Zitat Kassahun K, McIntosh I, Cui D, Hreniuk D, Merschman S, Lasseter K, et al. Metabolism and disposition in humans of raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos. 2007;35(9):1657–63.CrossRefPubMed Kassahun K, McIntosh I, Cui D, Hreniuk D, Merschman S, Lasseter K, et al. Metabolism and disposition in humans of raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos. 2007;35(9):1657–63.CrossRefPubMed
20.
Zurück zum Zitat Strassburg CP. Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics. 2008;9(6):703–15.CrossRefPubMed Strassburg CP. Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics. 2008;9(6):703–15.CrossRefPubMed
21.
Zurück zum Zitat Mukai M, Tanaka S, Yamamoto K, Murata M, Okada K, Isobe T, et al. In vitro glucuronidation of propofol in microsomal fractions from human liver, intestine and kidney: tissue distribution and physiological role of UGT1A9. Pharmazie. 2014;69(11):829–32.PubMed Mukai M, Tanaka S, Yamamoto K, Murata M, Okada K, Isobe T, et al. In vitro glucuronidation of propofol in microsomal fractions from human liver, intestine and kidney: tissue distribution and physiological role of UGT1A9. Pharmazie. 2014;69(11):829–32.PubMed
22.
Zurück zum Zitat Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25(1):1–4.PubMed Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25(1):1–4.PubMed
23.
Zurück zum Zitat Di Marco A, D’Antoni M, Attaccalite S, Carotenuto P, Laufer R. Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay. Drug Metab Dispos. 2005;33(6):812–9.CrossRefPubMed Di Marco A, D’Antoni M, Attaccalite S, Carotenuto P, Laufer R. Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay. Drug Metab Dispos. 2005;33(6):812–9.CrossRefPubMed
24.
Zurück zum Zitat Radominska-Pandya A, Little JM, Czernik PJ. Human UDP-glucuronosyltransferase 2B7. Curr Drug Metab. 2001;2(3):283–98.CrossRefPubMed Radominska-Pandya A, Little JM, Czernik PJ. Human UDP-glucuronosyltransferase 2B7. Curr Drug Metab. 2001;2(3):283–98.CrossRefPubMed
25.
Zurück zum Zitat Burchell B, Coughtrie M, Jackson M, Harding D, Fournel-Gigleux S, Leakey J, et al. Development of human liver UDP-glucuronosyltransferases. Dev Pharmacol Ther. 1989;13(2–4):70–7.CrossRefPubMed Burchell B, Coughtrie M, Jackson M, Harding D, Fournel-Gigleux S, Leakey J, et al. Development of human liver UDP-glucuronosyltransferases. Dev Pharmacol Ther. 1989;13(2–4):70–7.CrossRefPubMed
26.
Zurück zum Zitat Fujiwara R, Maruo Y, Chen S, Tukey RH. Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol. 2015;289(1):124–32.CrossRefPubMedPubMedCentral Fujiwara R, Maruo Y, Chen S, Tukey RH. Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol. 2015;289(1):124–32.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Kawade N, Onishi S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J. 1981;196(1):257–60.CrossRefPubMedPubMedCentral Kawade N, Onishi S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J. 1981;196(1):257–60.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Shapiro SM. Chronic bilirubin encephalopathy: diagnosis and outcome. Semin Fetal Neonatal Med. 2010;15(3):157–63.CrossRefPubMed Shapiro SM. Chronic bilirubin encephalopathy: diagnosis and outcome. Semin Fetal Neonatal Med. 2010;15(3):157–63.CrossRefPubMed
29.
Zurück zum Zitat Ostrow JD, Pascolo L, Tiribelli C. Mechanisms of bilirubin neurotoxicity. Hepatology. 2002;35(5):1277–80.CrossRefPubMed Ostrow JD, Pascolo L, Tiribelli C. Mechanisms of bilirubin neurotoxicity. Hepatology. 2002;35(5):1277–80.CrossRefPubMed
30.
Zurück zum Zitat Mazur-Kominek K, Romanowski T, Bielawski K, Kiełbratowska B, Preis K, Domżalska-Popadiuk I, et al. Association between uridin diphosphate glucuronosylotransferase 1A1 (UGT1A1) gene polymorphism and neonatal hyperbilirubinemia. Acta Biochim Pol. 2017;64(2):351–6.CrossRefPubMed Mazur-Kominek K, Romanowski T, Bielawski K, Kiełbratowska B, Preis K, Domżalska-Popadiuk I, et al. Association between uridin diphosphate glucuronosylotransferase 1A1 (UGT1A1) gene polymorphism and neonatal hyperbilirubinemia. Acta Biochim Pol. 2017;64(2):351–6.CrossRefPubMed
31.
Zurück zum Zitat Yusoff S, Van Rostenberghe H, Yusoff NM, Talib NA, Ramli N, Ismail NZAN, et al. Frequencies of A(TA)7TAA, G71R, and G493R mutations of the UGT1A1 gene in the Malaysian population. Biol Neonate. 2006;89(3):171–6.CrossRefPubMed Yusoff S, Van Rostenberghe H, Yusoff NM, Talib NA, Ramli N, Ismail NZAN, et al. Frequencies of A(TA)7TAA, G71R, and G493R mutations of the UGT1A1 gene in the Malaysian population. Biol Neonate. 2006;89(3):171–6.CrossRefPubMed
32.
Zurück zum Zitat Sarici SU, Saldir M. Genetic factors in neonatal hyperbilirubinemia and kernicterus. Turk J Pediatr. 2007;49(3):245–9.PubMed Sarici SU, Saldir M. Genetic factors in neonatal hyperbilirubinemia and kernicterus. Turk J Pediatr. 2007;49(3):245–9.PubMed
33.
Zurück zum Zitat Anderson GD. Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia. 2002;43(Suppl. 3):53–9.CrossRefPubMed Anderson GD. Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia. 2002;43(Suppl. 3):53–9.CrossRefPubMed
34.
Zurück zum Zitat Guberman AH, Besag FM, Brodie MJ, Dooley JM, Duchowny MS, Pellock JM, et al. Lamotrigine-associated rash: risk/benefit considerations in adults and children. Epilepsia. 1999;40(7):985–91.CrossRefPubMed Guberman AH, Besag FM, Brodie MJ, Dooley JM, Duchowny MS, Pellock JM, et al. Lamotrigine-associated rash: risk/benefit considerations in adults and children. Epilepsia. 1999;40(7):985–91.CrossRefPubMed
35.
Zurück zum Zitat Chen M, LeDuc B, Kerr S, Howe D, Williams DA. Identification of human UGT2B7 as the major isoform involved in the O-glucuronidation of chloramphenicol. Drug Metab Dispos. 2010;38(3):368–75.CrossRefPubMed Chen M, LeDuc B, Kerr S, Howe D, Williams DA. Identification of human UGT2B7 as the major isoform involved in the O-glucuronidation of chloramphenicol. Drug Metab Dispos. 2010;38(3):368–75.CrossRefPubMed
36.
Zurück zum Zitat Chen Z, Somogyi A, Reynolds G, Bochner F. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol. 1991;31(4):381–90.CrossRefPubMedPubMedCentral Chen Z, Somogyi A, Reynolds G, Bochner F. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol. 1991;31(4):381–90.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Yue Q, Hasselstrom J, Svensson J, Sawe J. Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol. 1991;31(6):635–42.CrossRefPubMedPubMedCentral Yue Q, Hasselstrom J, Svensson J, Sawe J. Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol. 1991;31(6):635–42.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Johnson TN, Tucker GT, Rostami-Hodjegan A. Development of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther. 2008;83(5):670–1.CrossRefPubMed Johnson TN, Tucker GT, Rostami-Hodjegan A. Development of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther. 2008;83(5):670–1.CrossRefPubMed
39.
Zurück zum Zitat Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther. 2012;91(2):321–6.CrossRefPubMed Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther. 2012;91(2):321–6.CrossRefPubMed
40.
Zurück zum Zitat Krekels EHJ, Tibboel D, De Wildt SN, Ceelie I, Dahan A, Van Dijk M, et al. Evidence-based morphine dosing for postoperative neonates and infants. Clin Pharmacokinet. 2014;53(6):553–63.CrossRefPubMed Krekels EHJ, Tibboel D, De Wildt SN, Ceelie I, Dahan A, Van Dijk M, et al. Evidence-based morphine dosing for postoperative neonates and infants. Clin Pharmacokinet. 2014;53(6):553–63.CrossRefPubMed
41.
Zurück zum Zitat Krekels EHJ, DeJongh J, Van Lingen RA, Van Der Marel CD, Choonara I, Lynn AM, et al. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clin Pharmacokinet. 2011;50(1):51–63.CrossRefPubMed Krekels EHJ, DeJongh J, Van Lingen RA, Van Der Marel CD, Choonara I, Lynn AM, et al. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clin Pharmacokinet. 2011;50(1):51–63.CrossRefPubMed
42.
Zurück zum Zitat Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos. 2008;36(8):1587–93.CrossRefPubMed Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos. 2008;36(8):1587–93.CrossRefPubMed
43.
Zurück zum Zitat Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9.CrossRefPubMedPubMedCentral Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Edginton Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.CrossRefPubMed Edginton Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.CrossRefPubMed
45.
Zurück zum Zitat Milne RW, Nation RL, Somogyi AA, Bochner F, Griggs WM. The influence of renal function on the renal clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol. 1992;34(1):53–9.CrossRefPubMedPubMedCentral Milne RW, Nation RL, Somogyi AA, Bochner F, Griggs WM. The influence of renal function on the renal clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol. 1992;34(1):53–9.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92.CrossRefPubMed Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92.CrossRefPubMed
47.
Zurück zum Zitat Gröer C, Busch D, Patrzyk M, Beyer K, Busemann A, Heidecke CD, et al. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. J Pharm Biomed Anal. 2014;100:393–401.CrossRefPubMed Gröer C, Busch D, Patrzyk M, Beyer K, Busemann A, Heidecke CD, et al. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. J Pharm Biomed Anal. 2014;100:393–401.CrossRefPubMed
48.
Zurück zum Zitat Achour B, Dantonio A, Niosi M, Novak JJ, Fallon JK, Barber J, et al. Quantitative characterization of major hepatic UDP-glucuronosyltransferase enzymes in human liver microsomes: comparison of two proteomic methods and correlation with catalytic activity. Drug Metab Dispos. 2017;45(10):1102–12.CrossRefPubMed Achour B, Dantonio A, Niosi M, Novak JJ, Fallon JK, Barber J, et al. Quantitative characterization of major hepatic UDP-glucuronosyltransferase enzymes in human liver microsomes: comparison of two proteomic methods and correlation with catalytic activity. Drug Metab Dispos. 2017;45(10):1102–12.CrossRefPubMed
49.
Zurück zum Zitat Margaillan G, Rouleau M, Klein K, Fallon JK, Caron P, Villeneuve L, et al. Multiplexed targeted quantitative proteomics predicts hepatic glucuronidation potential. Drug Metab Dispos. 2015;43(9):1331–5.CrossRefPubMedPubMedCentral Margaillan G, Rouleau M, Klein K, Fallon JK, Caron P, Villeneuve L, et al. Multiplexed targeted quantitative proteomics predicts hepatic glucuronidation potential. Drug Metab Dispos. 2015;43(9):1331–5.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Fallon JK, Neubert H, Hyland R, Goosen TC, Smith PC. Targeted quantitative proteomics for the analysis of 14 UGT1As and -2Bs in human liver using NanoUPLC–MS/MS with selected reaction monitoring. J Proteome Res. 2013;12(10):4402–13.CrossRefPubMed Fallon JK, Neubert H, Hyland R, Goosen TC, Smith PC. Targeted quantitative proteomics for the analysis of 14 UGT1As and -2Bs in human liver using NanoUPLC–MS/MS with selected reaction monitoring. J Proteome Res. 2013;12(10):4402–13.CrossRefPubMed
51.
Zurück zum Zitat Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004;15(3):155–66.PubMedPubMedCentral Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004;15(3):155–66.PubMedPubMedCentral
52.
Zurück zum Zitat Dluzen DF, Sun D, Salzberg AC, Jones N, Bushey RT, Robertson GP, et al. Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p. J Pharmacol Exp Ther. 2014;348(3):465–77.CrossRefPubMedPubMedCentral Dluzen DF, Sun D, Salzberg AC, Jones N, Bushey RT, Robertson GP, et al. Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p. J Pharmacol Exp Ther. 2014;348(3):465–77.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography–tandem mass spectrometry. Anal Chem. 2012;84(1):98–105.CrossRefPubMed Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography–tandem mass spectrometry. Anal Chem. 2012;84(1):98–105.CrossRefPubMed
54.
Zurück zum Zitat Sato Y, Nagata M, Kawamura A, Miyashita A, Usui T. Protein quantification of UDP-glucuronosyltransferases 1A1 and 2B7 in human liver microsomes by LC–MS/MS and correlation with glucuronidation activities. Xenobiotica. 2012;42(9):823–9.CrossRefPubMed Sato Y, Nagata M, Kawamura A, Miyashita A, Usui T. Protein quantification of UDP-glucuronosyltransferases 1A1 and 2B7 in human liver microsomes by LC–MS/MS and correlation with glucuronidation activities. Xenobiotica. 2012;42(9):823–9.CrossRefPubMed
55.
Zurück zum Zitat Sridar C, Hanna I, Hollenberg PF. Quantitation of UGT1A1 in human liver microsomes using stable isotope-labelled peptides and mass spectrometry based proteomic approaches. Xenobiotica. 2013;43(4):336–45.CrossRefPubMed Sridar C, Hanna I, Hollenberg PF. Quantitation of UGT1A1 in human liver microsomes using stable isotope-labelled peptides and mass spectrometry based proteomic approaches. Xenobiotica. 2013;43(4):336–45.CrossRefPubMed
56.
Zurück zum Zitat Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5UDP-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10.CrossRefPubMed Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5UDP-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10.CrossRefPubMed
57.
Zurück zum Zitat Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography–tandem mass spectrometry. Drug Metab Dispos. 2014;42(5):885–9.CrossRefPubMed Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography–tandem mass spectrometry. Drug Metab Dispos. 2014;42(5):885–9.CrossRefPubMed
58.
Zurück zum Zitat Yan T, Gao S, Peng X, Shi J, Xie C, Li Q, et al. Significantly decreased and more variable expression of major CYPs and UGTs in liver microsomes prepared from HBV-positive human hepatocellular carcinoma and matched pericarcinomatous tissues determined using an isotope label-free UPLC–MS/MS method. Pharm Res. 2015;32(3):1141–57.CrossRefPubMed Yan T, Gao S, Peng X, Shi J, Xie C, Li Q, et al. Significantly decreased and more variable expression of major CYPs and UGTs in liver microsomes prepared from HBV-positive human hepatocellular carcinoma and matched pericarcinomatous tissues determined using an isotope label-free UPLC–MS/MS method. Pharm Res. 2015;32(3):1141–57.CrossRefPubMed
59.
Zurück zum Zitat Wegler C, Gaugaz FZ, Andersson TB, Wiśniewski JR, Busch D, Gröer C, et al. Variability in mass spectrometry-based quantification of clinically relevant drug transporters and drug metabolizing enzymes. Mol Pharm. 2017;14(9):3142–51.CrossRefPubMed Wegler C, Gaugaz FZ, Andersson TB, Wiśniewski JR, Busch D, Gröer C, et al. Variability in mass spectrometry-based quantification of clinically relevant drug transporters and drug metabolizing enzymes. Mol Pharm. 2017;14(9):3142–51.CrossRefPubMed
60.
Zurück zum Zitat Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40(1):581–616.CrossRefPubMed Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40(1):581–616.CrossRefPubMed
61.
Zurück zum Zitat Collier AC, Ganley NA, Tingle MD, Blumenstein M, Marvin KW, Paxton JW, et al. UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol. 2002;63(3):409–19.CrossRefPubMed Collier AC, Ganley NA, Tingle MD, Blumenstein M, Marvin KW, Paxton JW, et al. UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol. 2002;63(3):409–19.CrossRefPubMed
62.
Zurück zum Zitat Sabolovic N, Heydel JM, Li X, Little JM, Humbert AC, Radominska-Pandya A, et al. Carboxyl nonsteroidal anti-inflammatory drugs are efficiently glucuronidated by microsomes of the human gastrointestinal tract. Biochim Biophys Acta. 2004;1675(1–3):120–9.CrossRefPubMed Sabolovic N, Heydel JM, Li X, Little JM, Humbert AC, Radominska-Pandya A, et al. Carboxyl nonsteroidal anti-inflammatory drugs are efficiently glucuronidated by microsomes of the human gastrointestinal tract. Biochim Biophys Acta. 2004;1675(1–3):120–9.CrossRefPubMed
63.
Zurück zum Zitat Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet. 2006;21(5):357–74.CrossRefPubMed Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet. 2006;21(5):357–74.CrossRefPubMed
64.
Zurück zum Zitat Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica. 2012;42(3):266–77.CrossRefPubMed Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica. 2012;42(3):266–77.CrossRefPubMed
65.
Zurück zum Zitat Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, et al. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos. 2015;43(4):611–9.CrossRefPubMedPubMedCentral Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, et al. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos. 2015;43(4):611–9.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat King CD, Rios GR, Assouline JA, Tephly TR. Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and Identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys. 1999;365(1):156–62.CrossRefPubMed King CD, Rios GR, Assouline JA, Tephly TR. Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and Identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys. 1999;365(1):156–62.CrossRefPubMed
67.
Zurück zum Zitat Sneitz N, Court MH, Zhang X, Laajanen K, Yee KK, Dalton P, et al. Human UDP-glucuronosyltransferase UGT2A2: CDNA construction, expression, and functional characterization in comparison with UGT2A1 and UGT2A3. Pharmacogenet Genomics. 2009;19(12):923–34.CrossRefPubMedPubMedCentral Sneitz N, Court MH, Zhang X, Laajanen K, Yee KK, Dalton P, et al. Human UDP-glucuronosyltransferase UGT2A2: CDNA construction, expression, and functional characterization in comparison with UGT2A1 and UGT2A3. Pharmacogenet Genomics. 2009;19(12):923–34.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Cheng Z, Radominska-Pandya A, Tephly TR. Cloning and expression of human UDP-glucuronosyltransferase (UGT) 1A8. Arch Biochem Biophys. 1998;356(2):301–5.CrossRefPubMed Cheng Z, Radominska-Pandya A, Tephly TR. Cloning and expression of human UDP-glucuronosyltransferase (UGT) 1A8. Arch Biochem Biophys. 1998;356(2):301–5.CrossRefPubMed
69.
Zurück zum Zitat Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos. 2008;36(8):1461–4.CrossRefPubMed Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos. 2008;36(8):1461–4.CrossRefPubMed
70.
Zurück zum Zitat Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M, Aoki Y, Ikushiro S, Sakaki T, Yokoi T. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos. 2009;37(8):1759–68.CrossRefPubMed Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M, Aoki Y, Ikushiro S, Sakaki T, Yokoi T. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos. 2009;37(8):1759–68.CrossRefPubMed
71.
Zurück zum Zitat MacKenzie PI, Rogers A, Elliot DJ, Chau N, Hulin J-A, Miners JO, Meech R. The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution. Mol Pharmacol. 2011;79(3):472–8.CrossRefPubMed MacKenzie PI, Rogers A, Elliot DJ, Chau N, Hulin J-A, Miners JO, Meech R. The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution. Mol Pharmacol. 2011;79(3):472–8.CrossRefPubMed
72.
Zurück zum Zitat Mizuma T. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10. Int J Pharm. 2009;378(1–2):140–1.CrossRefPubMed Mizuma T. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10. Int J Pharm. 2009;378(1–2):140–1.CrossRefPubMed
73.
Zurück zum Zitat Wells PG, Mackenzie PI, Chowdhury JR, Guillemette C, Gregory PA, Ishii Y, et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos. 2004;32(3):281–90.CrossRefPubMed Wells PG, Mackenzie PI, Chowdhury JR, Guillemette C, Gregory PA, Ishii Y, et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos. 2004;32(3):281–90.CrossRefPubMed
74.
Zurück zum Zitat Guillemette C, Levesque E, Beaulieu M, Turgeon D, Hum DW, Belanger A. Differential regulation of two uridine diphospho-glucuronosyltransferases, UGT2B15 and UGT2B17, in human prostate LNCaP cells. Endocrinology. 1997;138(0013–7227):2998–3005.CrossRefPubMed Guillemette C, Levesque E, Beaulieu M, Turgeon D, Hum DW, Belanger A. Differential regulation of two uridine diphospho-glucuronosyltransferases, UGT2B15 and UGT2B17, in human prostate LNCaP cells. Endocrinology. 1997;138(0013–7227):2998–3005.CrossRefPubMed
75.
Zurück zum Zitat Beaulieu M, Lévesque E, Tchernof A, Beatty BG, Bélanger A, Hum DW. Chromosomal localization, structure, and regulation of the UGT2B17 gene, encoding a C19 steroid metabolizing enzyme. DNA Cell Biol. 1997;16(10):1143–54.CrossRefPubMed Beaulieu M, Lévesque E, Tchernof A, Beatty BG, Bélanger A, Hum DW. Chromosomal localization, structure, and regulation of the UGT2B17 gene, encoding a C19 steroid metabolizing enzyme. DNA Cell Biol. 1997;16(10):1143–54.CrossRefPubMed
76.
Zurück zum Zitat Chouinard S, Yueh MF, Tukey RH, Giton F, Fiet J, Pelletier G, et al. Inactivation by UDP-glucuronosyltransferase enzymes: the end of androgen signaling. J Steroid Biochem Mol Biol. 2008;109(3–5):247–53.CrossRefPubMed Chouinard S, Yueh MF, Tukey RH, Giton F, Fiet J, Pelletier G, et al. Inactivation by UDP-glucuronosyltransferase enzymes: the end of androgen signaling. J Steroid Biochem Mol Biol. 2008;109(3–5):247–53.CrossRefPubMed
77.
Zurück zum Zitat Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos. 2009;37(1):32–40.CrossRefPubMed Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos. 2009;37(1):32–40.CrossRefPubMed
78.
Zurück zum Zitat Barbier O, Bélanger A. Inactivation of androgens by UDP-glucuronosyltransferases in the human prostate. Best Pract Res Clin Endocrinol Metab. 2008;22(2):259–70.CrossRefPubMed Barbier O, Bélanger A. Inactivation of androgens by UDP-glucuronosyltransferases in the human prostate. Best Pract Res Clin Endocrinol Metab. 2008;22(2):259–70.CrossRefPubMed
79.
Zurück zum Zitat Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.CrossRefPubMed Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.CrossRefPubMed
80.
Zurück zum Zitat Chen Y, Liu L, Nguyen K, Fretland AJ. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos. 2011;39(3):373–82.CrossRefPubMed Chen Y, Liu L, Nguyen K, Fretland AJ. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos. 2011;39(3):373–82.CrossRefPubMed
81.
Zurück zum Zitat Donato MT, Montero S, Castell JV, Gómez-Lechón MJ, Lahoz A. Validated assay for studying activity profiles of human liver UGTs after drug exposure: inhibition and induction studies. Anal Bioanal Chem. 2010;396(6):2251–63.CrossRefPubMed Donato MT, Montero S, Castell JV, Gómez-Lechón MJ, Lahoz A. Validated assay for studying activity profiles of human liver UGTs after drug exposure: inhibition and induction studies. Anal Bioanal Chem. 2010;396(6):2251–63.CrossRefPubMed
82.
Zurück zum Zitat de Wildt SN, Kearns GL, Leeder JS, Van Den Anker JN. Glucuronidation in humans: pharmacogenetic and developmental aspects. Clin Pharmacokinet. 1999;36(6):439–52.CrossRefPubMed de Wildt SN, Kearns GL, Leeder JS, Van Den Anker JN. Glucuronidation in humans: pharmacogenetic and developmental aspects. Clin Pharmacokinet. 1999;36(6):439–52.CrossRefPubMed
83.
Zurück zum Zitat Kato Y, Nakajima M, Oda S, Fukami T, Yokoi T. Human UDP-glucuronosyltransferase isoforms involved in haloperidol glucuronidation and quantitative estimation of their contribution. Drug Metab Dispos. 2012;40(2):240–8.CrossRefPubMed Kato Y, Nakajima M, Oda S, Fukami T, Yokoi T. Human UDP-glucuronosyltransferase isoforms involved in haloperidol glucuronidation and quantitative estimation of their contribution. Drug Metab Dispos. 2012;40(2):240–8.CrossRefPubMed
84.
Zurück zum Zitat Gibson CR, Lu P, MacIolek C, Wudarski C, Barter Z, Rowland-Yeo K, et al. Using human recombinant UDP-glucuronosyltransferase isoforms and a relative activity factor approach to model total body clearance of laropiprant (MK-0524) in humans. Xenobiotica. 2013;43(12):1027–36.CrossRefPubMed Gibson CR, Lu P, MacIolek C, Wudarski C, Barter Z, Rowland-Yeo K, et al. Using human recombinant UDP-glucuronosyltransferase isoforms and a relative activity factor approach to model total body clearance of laropiprant (MK-0524) in humans. Xenobiotica. 2013;43(12):1027–36.CrossRefPubMed
85.
Zurück zum Zitat Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163–81.CrossRefPubMed Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163–81.CrossRefPubMed
86.
Zurück zum Zitat Miners JO, Mackenzie PI, Knights KM. The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro–in vivo extrapolation of drug clearance and drug–drug interaction potential. Drug Metab Rev. 2010;42(1):196–208.CrossRefPubMed Miners JO, Mackenzie PI, Knights KM. The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro–in vivo extrapolation of drug clearance and drug–drug interaction potential. Drug Metab Rev. 2010;42(1):196–208.CrossRefPubMed
87.
Zurück zum Zitat Naritomi Y, Nakamori F, Furukawa T, Tabata K. Prediction of hepatic and intestinal glucuronidation using in vitro–in vivo extrapolation. Drug Metab Pharmacokinet. 2015;30(1):21–9.CrossRefPubMed Naritomi Y, Nakamori F, Furukawa T, Tabata K. Prediction of hepatic and intestinal glucuronidation using in vitro–in vivo extrapolation. Drug Metab Pharmacokinet. 2015;30(1):21–9.CrossRefPubMed
88.
Zurück zum Zitat Barter Z, Bayliss M, Beaune P, Boobis A, Carlile D, Edwards R, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human micro-somal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.CrossRefPubMed Barter Z, Bayliss M, Beaune P, Boobis A, Carlile D, Edwards R, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human micro-somal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.CrossRefPubMed
89.
Zurück zum Zitat Ito K, Houston JB. Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res. 2005;22(1):103–12.CrossRefPubMed Ito K, Houston JB. Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res. 2005;22(1):103–12.CrossRefPubMed
90.
Zurück zum Zitat Mistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos. 1987;15(5):710–7.PubMed Mistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos. 1987;15(5):710–7.PubMed
91.
Zurück zum Zitat Nakamori F, Naritomi Y, Furutani M, Takamura F, Miura H, Murai H, et al. Correlation of intrinsic in vitro and in vivo clearance for drugs metabolized by hepatic UDP-glucuronosyltransferases in rats. Drug Metab Pharmacokinet. 2011;26(5):465–73.CrossRefPubMed Nakamori F, Naritomi Y, Furutani M, Takamura F, Miura H, Murai H, et al. Correlation of intrinsic in vitro and in vivo clearance for drugs metabolized by hepatic UDP-glucuronosyltransferases in rats. Drug Metab Pharmacokinet. 2011;26(5):465–73.CrossRefPubMed
92.
Zurück zum Zitat Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825–35.CrossRefPubMedPubMedCentral Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825–35.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Kilford PJ, Stringer R, Sohal B, Houston JB, Galetin A. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos. 2009;37(1):82–9.CrossRefPubMed Kilford PJ, Stringer R, Sohal B, Houston JB, Galetin A. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos. 2009;37(1):82–9.CrossRefPubMed
94.
Zurück zum Zitat de Wildt SN, Tibboel D, Leeder JS. Drug metabolism for the paediatrician. Arch Dis Child. 2014;99(12):1137–42.CrossRefPubMed de Wildt SN, Tibboel D, Leeder JS. Drug metabolism for the paediatrician. Arch Dis Child. 2014;99(12):1137–42.CrossRefPubMed
95.
Zurück zum Zitat Coughtrie MW, Burchell B, Leakey JE, Hume R. The inadequacy of perinatal glucuronidation: immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol Pharmacol. 1988;34(6):729–35.PubMed Coughtrie MW, Burchell B, Leakey JE, Hume R. The inadequacy of perinatal glucuronidation: immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol Pharmacol. 1988;34(6):729–35.PubMed
96.
Zurück zum Zitat Zaya MJ, Hines RN, Stevens JC. Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos. 2006;34(12):2097–101.CrossRefPubMed Zaya MJ, Hines RN, Stevens JC. Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos. 2006;34(12):2097–101.CrossRefPubMed
97.
Zurück zum Zitat Miyagi SJ, Milne AM, Coughtrie MWH, Collier AC. Neonatal development of hepatic UGT1A9: implications of pediatric pharmacokinetics. Drug Metab Dispos. 2012;40(7):1321–7.CrossRefPubMedPubMedCentral Miyagi SJ, Milne AM, Coughtrie MWH, Collier AC. Neonatal development of hepatic UGT1A9: implications of pediatric pharmacokinetics. Drug Metab Dispos. 2012;40(7):1321–7.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Miyagi SJ, Collier AC. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos. 2007;35(9):1587–92.CrossRefPubMed Miyagi SJ, Collier AC. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos. 2007;35(9):1587–92.CrossRefPubMed
99.
Zurück zum Zitat Miyagi SJ, Collier AC. The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos. 2011;39(5):912–9.CrossRefPubMedPubMedCentral Miyagi SJ, Collier AC. The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos. 2011;39(5):912–9.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Neumann E, Mehboob H, Ramírez J, Mirkov S, Zhang M, Liu W. Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children. Front Pharmacol. 2016;16(7):437. Neumann E, Mehboob H, Ramírez J, Mirkov S, Zhang M, Liu W. Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children. Front Pharmacol. 2016;16(7):437.
101.
Zurück zum Zitat Pasha YZ, Kacho MA, Niaki HA, Tarighati M, Alaee E. The association between prolonged jaundice and TATA box dinucleotide repeats in Gilbert’s syndrome. J Clin Diagn Res. 2017;11(9):GC05–7.PubMedPubMedCentral Pasha YZ, Kacho MA, Niaki HA, Tarighati M, Alaee E. The association between prolonged jaundice and TATA box dinucleotide repeats in Gilbert’s syndrome. J Clin Diagn Res. 2017;11(9):GC05–7.PubMedPubMedCentral
102.
Zurück zum Zitat Skierka JM, Kotzer KE, Lagerstedt SA, O’Kane DJ, Baudhuin LM. UGT1A1 genetic analysis as a diagnostic aid for individuals with unconjugated hyperbilirubinemia. J Pediatr. 2013;162(6):1146–52 (1152.e1–2).CrossRefPubMed Skierka JM, Kotzer KE, Lagerstedt SA, O’Kane DJ, Baudhuin LM. UGT1A1 genetic analysis as a diagnostic aid for individuals with unconjugated hyperbilirubinemia. J Pediatr. 2013;162(6):1146–52 (1152.e1–2).CrossRefPubMed
103.
Zurück zum Zitat Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69.CrossRefPubMed Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69.CrossRefPubMed
104.
Zurück zum Zitat Kraemer D, Scheurlen M. Gilbert disease and type I and II Crigler–Najjar syndrome due to mutations in the same UGT1A1 gene locus (in German). Med Klin (Munich). 2002;97(9):528–32.CrossRefPubMed Kraemer D, Scheurlen M. Gilbert disease and type I and II Crigler–Najjar syndrome due to mutations in the same UGT1A1 gene locus (in German). Med Klin (Munich). 2002;97(9):528–32.CrossRefPubMed
105.
Zurück zum Zitat Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5.CrossRefPubMed Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5.CrossRefPubMed
106.
Zurück zum Zitat Kaniwa N, Kurose K, Jinno H, Tanaka-Kagawa T, Saito Y, Saeki M, et al. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C>T (P229L) found in an African–American. Drug Metab Dispos. 2005;33(3):458–65.CrossRefPubMed Kaniwa N, Kurose K, Jinno H, Tanaka-Kagawa T, Saito Y, Saeki M, et al. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C>T (P229L) found in an African–American. Drug Metab Dispos. 2005;33(3):458–65.CrossRefPubMed
107.
Zurück zum Zitat Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K, et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genom. 2007;17(7):497–504.CrossRef Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K, et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genom. 2007;17(7):497–504.CrossRef
108.
Zurück zum Zitat Zhang J, Yang C, Liu Y, Xi W, Zhou C, Jiang J, et al. Relationship between UGT1A1*6/*28 polymorphisms and severe toxicities in Chinese patients with pancreatic or biliary tract cancer treated with irinotecan-containing regimens. Drug Des Dev Ther. 2015;9:3677.CrossRef Zhang J, Yang C, Liu Y, Xi W, Zhou C, Jiang J, et al. Relationship between UGT1A1*6/*28 polymorphisms and severe toxicities in Chinese patients with pancreatic or biliary tract cancer treated with irinotecan-containing regimens. Drug Des Dev Ther. 2015;9:3677.CrossRef
109.
Zurück zum Zitat Nie Y-L, He H, Li J-F, Meng X-G, Yan L, Wang P, et al. Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population. Eur J Clin Pharmacol. 2017;73(1):29–37.CrossRefPubMed Nie Y-L, He H, Li J-F, Meng X-G, Yan L, Wang P, et al. Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population. Eur J Clin Pharmacol. 2017;73(1):29–37.CrossRefPubMed
110.
Zurück zum Zitat Pasternak AL, Crews KR, Caudle KE, Smith C, Pei D, Cheng C, et al. The impact of the UGT1A1*60 allele on bilirubin serum concentrations. Pharmacogenomics. 2017;18(1):5–16.CrossRefPubMed Pasternak AL, Crews KR, Caudle KE, Smith C, Pei D, Cheng C, et al. The impact of the UGT1A1*60 allele on bilirubin serum concentrations. Pharmacogenomics. 2017;18(1):5–16.CrossRefPubMed
111.
Zurück zum Zitat Munisamy M, Tripathi M, Behari M, Raghavan S, Jain DC, Ramanujam B, et al. The effect of uridine diphosphate glucuronosyltransferase (UGT)1A6 genetic polymorphism on valproic acid pharmacokinetics in Indian patients with epilepsy: a pharmacogenetic approach. Mol Diagn Ther. 2013;17(5):319–26.CrossRefPubMed Munisamy M, Tripathi M, Behari M, Raghavan S, Jain DC, Ramanujam B, et al. The effect of uridine diphosphate glucuronosyltransferase (UGT)1A6 genetic polymorphism on valproic acid pharmacokinetics in Indian patients with epilepsy: a pharmacogenetic approach. Mol Diagn Ther. 2013;17(5):319–26.CrossRefPubMed
112.
Zurück zum Zitat Guo Y, Hu C, He X, Qiu F, Zhao L. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2012;27(5):536–42.CrossRefPubMed Guo Y, Hu C, He X, Qiu F, Zhao L. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2012;27(5):536–42.CrossRefPubMed
113.
Zurück zum Zitat Shirzadi M, Reimers A, Helde G, Sjursen W, Brodtkorb E. No association between non-bullous skin reactions from lamotrigine and heterozygosity of UGT1A4 genetic variants *2(P24T) or *3(L48V) in Norwegian patients. Seizure. 2017;45:169–71.CrossRefPubMed Shirzadi M, Reimers A, Helde G, Sjursen W, Brodtkorb E. No association between non-bullous skin reactions from lamotrigine and heterozygosity of UGT1A4 genetic variants *2(P24T) or *3(L48V) in Norwegian patients. Seizure. 2017;45:169–71.CrossRefPubMed
114.
Zurück zum Zitat Chang Y, Yang LY, Zhang MC, Liu SY. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur J Clin Pharmacol. 2014;70(8):941–6.CrossRefPubMed Chang Y, Yang LY, Zhang MC, Liu SY. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur J Clin Pharmacol. 2014;70(8):941–6.CrossRefPubMed
115.
Zurück zum Zitat Gulcebi MI, Ozkaynakci A, Goren MZ, Aker RG, Ozkara C, Onat FY. The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res. 2011;95(1–2):1–8.CrossRefPubMed Gulcebi MI, Ozkaynakci A, Goren MZ, Aker RG, Ozkara C, Onat FY. The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res. 2011;95(1–2):1–8.CrossRefPubMed
116.
Zurück zum Zitat Reimers A, Sjursen W, Helde G, Brodtkorb E. Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur J Drug Metab Pharmacokinet. 2016;41(2):149–55.CrossRefPubMed Reimers A, Sjursen W, Helde G, Brodtkorb E. Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur J Drug Metab Pharmacokinet. 2016;41(2):149–55.CrossRefPubMed
117.
Zurück zum Zitat Wang Q, Liang M, Dong Y, Yun W, Qiu F, Zhao L, et al. Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2015;30(3):209–13.CrossRefPubMed Wang Q, Liang M, Dong Y, Yun W, Qiu F, Zhao L, et al. Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2015;30(3):209–13.CrossRefPubMed
118.
Zurück zum Zitat Lévesque E, Delage R, Benoit-Biancamano M-O, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther. 2007;81(3):392–400.CrossRefPubMed Lévesque E, Delage R, Benoit-Biancamano M-O, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther. 2007;81(3):392–400.CrossRefPubMed
119.
Zurück zum Zitat Djebli N, Picard N, Rérolle J-P, Le Meur Y, Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genom. 2007;17(5):321–30.CrossRef Djebli N, Picard N, Rérolle J-P, Le Meur Y, Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genom. 2007;17(5):321–30.CrossRef
120.
Zurück zum Zitat Chen G, Blevins-Primeau AS, Dellinger RW, Muscat JE, Lazarus P. Glucuronidation of nicotine and cotinine by UGT2B10: loss of function by the UGT2B10 codon 67 (Asp>Tyr) polymorphism. Cancer Res. 2007;67(19):9024–9.CrossRefPubMed Chen G, Blevins-Primeau AS, Dellinger RW, Muscat JE, Lazarus P. Glucuronidation of nicotine and cotinine by UGT2B10: loss of function by the UGT2B10 codon 67 (Asp>Tyr) polymorphism. Cancer Res. 2007;67(19):9024–9.CrossRefPubMed
121.
Zurück zum Zitat Zhou D, Guo J, Linnenbach AJ, Booth-Genthe CL, Grimm SW. Role of human UGT2B10 in N-glucuronidation of tricyclic antidepressants, amitriptyline, imipramine, clomipramine, and trimipramine. Drug Metab Dispos. 2010;38(5):863–70.CrossRefPubMed Zhou D, Guo J, Linnenbach AJ, Booth-Genthe CL, Grimm SW. Role of human UGT2B10 in N-glucuronidation of tricyclic antidepressants, amitriptyline, imipramine, clomipramine, and trimipramine. Drug Metab Dispos. 2010;38(5):863–70.CrossRefPubMed
122.
Zurück zum Zitat Fowler S, Kletzl H, Finel M, Manevski N, Schmid P, Tuerck D, et al. A UGT2B10 splicing polymorphism common in African populations may greatly increase drug exposure. J Pharmacol Exp Ther. 2015;352(2):358–67.CrossRefPubMed Fowler S, Kletzl H, Finel M, Manevski N, Schmid P, Tuerck D, et al. A UGT2B10 splicing polymorphism common in African populations may greatly increase drug exposure. J Pharmacol Exp Ther. 2015;352(2):358–67.CrossRefPubMed
123.
Zurück zum Zitat Court MH, Zhu Z, Masse G, Duan SX, James LP, Harmatz JS, et al. Race, gender, and genetic polymorphism contribute to variability in acetaminophen pharmacokinetics, metabolism, and protein-adduct concentrations in healthy African–American and European–American volunteers. J Pharmacol Exp Ther. 2017;362(3):431–40.CrossRefPubMedPubMedCentral Court MH, Zhu Z, Masse G, Duan SX, James LP, Harmatz JS, et al. Race, gender, and genetic polymorphism contribute to variability in acetaminophen pharmacokinetics, metabolism, and protein-adduct concentrations in healthy African–American and European–American volunteers. J Pharmacol Exp Ther. 2017;362(3):431–40.CrossRefPubMedPubMedCentral
124.
Zurück zum Zitat Wilson W, Pardo-Manuel de Villena F, Lyn-Cook BD, Chatterjee PK, Bell TA, Detwiler DA, et al. Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics. 2004;84(4):707–14.CrossRefPubMed Wilson W, Pardo-Manuel de Villena F, Lyn-Cook BD, Chatterjee PK, Bell TA, Detwiler DA, et al. Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics. 2004;84(4):707–14.CrossRefPubMed
125.
Zurück zum Zitat Zhu AZX, Cox LS, Ahluwalia JS, Renner CC, Hatsukami DK, Benowitz NL, et al. Genetic and phenotypic variation in UGT2B17, a testosterone-metabolizing enzyme, is associated with BMI in males. Pharmacogenet Genom. 2015;25(5):263–9.CrossRef Zhu AZX, Cox LS, Ahluwalia JS, Renner CC, Hatsukami DK, Benowitz NL, et al. Genetic and phenotypic variation in UGT2B17, a testosterone-metabolizing enzyme, is associated with BMI in males. Pharmacogenet Genom. 2015;25(5):263–9.CrossRef
126.
Zurück zum Zitat Wang LA, Gonzalez D, Leeder JS, Tyndale RF, Pearce RE, Benjamin DK, et al. Metronidazole metabolism in neonates and the interplay between ontogeny and genetic variation. J Clin Pharmacol. 2017;57(2):230–4.CrossRefPubMed Wang LA, Gonzalez D, Leeder JS, Tyndale RF, Pearce RE, Benjamin DK, et al. Metronidazole metabolism in neonates and the interplay between ontogeny and genetic variation. J Clin Pharmacol. 2017;57(2):230–4.CrossRefPubMed
127.
Zurück zum Zitat de Wildt SN, Van Schaik RHN, Soldin OP, Soldin SJ, Brojeni PY, Van Der Heiden IP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67(12):1231–41.CrossRefPubMedPubMedCentral de Wildt SN, Van Schaik RHN, Soldin OP, Soldin SJ, Brojeni PY, Van Der Heiden IP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67(12):1231–41.CrossRefPubMedPubMedCentral
128.
Zurück zum Zitat Ward RM, Tammara B, Sullivan SE, Stewart DL, Rath N, Meng X, et al. Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur J Clin Pharmacol. 2010;66(6):555–61.CrossRefPubMed Ward RM, Tammara B, Sullivan SE, Stewart DL, Rath N, Meng X, et al. Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur J Clin Pharmacol. 2010;66(6):555–61.CrossRefPubMed
129.
Zurück zum Zitat Leeder JS, Kearns GL. Interpreting pharmacogenetic data in the developing neonate: the challenge of hitting a moving target. Clin Pharmacol Ther. 2012;92(4):434–6.PubMed Leeder JS, Kearns GL. Interpreting pharmacogenetic data in the developing neonate: the challenge of hitting a moving target. Clin Pharmacol Ther. 2012;92(4):434–6.PubMed
130.
Zurück zum Zitat Yasar U, Greenblatt DJ, Guillemette C, Court MH. Evidence for regulation of UDP-glucuronosyltransferase (UGT) 1A1 protein expression and activity via DNA methylation in healthy human livers. J Pharm Pharmacol. 2013;65(6):874–83.CrossRefPubMedPubMedCentral Yasar U, Greenblatt DJ, Guillemette C, Court MH. Evidence for regulation of UDP-glucuronosyltransferase (UGT) 1A1 protein expression and activity via DNA methylation in healthy human livers. J Pharm Pharmacol. 2013;65(6):874–83.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Oda S, Fukami T, Yokoi T, Nakajima M. Epigenetic regulation of the tissue-specific expression of human UDP-glucuronosyltransferase (UGT) 1A10. Biochem Pharmacol. 2014;87(4):660–7.CrossRefPubMed Oda S, Fukami T, Yokoi T, Nakajima M. Epigenetic regulation of the tissue-specific expression of human UDP-glucuronosyltransferase (UGT) 1A10. Biochem Pharmacol. 2014;87(4):660–7.CrossRefPubMed
132.
Zurück zum Zitat Oeser SG, Bingham J-P, Collier AC. Regulation of hepatic UGT2B15 by methylation in adults of Asian descent. Pharmaceutics. 2018;10(1):6.CrossRefPubMedCentral Oeser SG, Bingham J-P, Collier AC. Regulation of hepatic UGT2B15 by methylation in adults of Asian descent. Pharmaceutics. 2018;10(1):6.CrossRefPubMedCentral
133.
Zurück zum Zitat Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, et al. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet. 2014;23(20):5558–69.CrossRefPubMedPubMedCentral Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, et al. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet. 2014;23(20):5558–69.CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Lee SY, Lee JY, Kim YM, Kim SK, Oh SJ. Expression of hepatic cytochrome P450s and UDP-glucuronosyltransferases in PXR and CAR double humanized mice treated with rifampicin. Toxicol Lett. 2015;235(2):107–15.CrossRefPubMed Lee SY, Lee JY, Kim YM, Kim SK, Oh SJ. Expression of hepatic cytochrome P450s and UDP-glucuronosyltransferases in PXR and CAR double humanized mice treated with rifampicin. Toxicol Lett. 2015;235(2):107–15.CrossRefPubMed
135.
Zurück zum Zitat Bock KW. Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications. Biochem Pharmacol. 2015;96(2):77–82.CrossRefPubMed Bock KW. Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications. Biochem Pharmacol. 2015;96(2):77–82.CrossRefPubMed
136.
Zurück zum Zitat Bao B-Y, Chuang B-F, Wang Q, Sartor O, Balk SP, Brown M, et al. Androgen receptor mediates the expression of UDP-glucuronosyltransferase 2 B15 and B17 genes. Prostate. 2008;68(8):839–48.CrossRefPubMedPubMedCentral Bao B-Y, Chuang B-F, Wang Q, Sartor O, Balk SP, Brown M, et al. Androgen receptor mediates the expression of UDP-glucuronosyltransferase 2 B15 and B17 genes. Prostate. 2008;68(8):839–48.CrossRefPubMedPubMedCentral
137.
Zurück zum Zitat Papageorgiou I, Freytsis M, Court MH. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver. Biochem Pharmacol. 2016;117:78–87.CrossRefPubMedPubMedCentral Papageorgiou I, Freytsis M, Court MH. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver. Biochem Pharmacol. 2016;117:78–87.CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Papageorgiou I, Court MH. Identification and validation of microRNAs directly regulating the UDP-glucuronosyltransferase 1A subfamily enzymes by a functional genomics approach. Biochem Pharmacol. 2017;1(137):93–106.CrossRef Papageorgiou I, Court MH. Identification and validation of microRNAs directly regulating the UDP-glucuronosyltransferase 1A subfamily enzymes by a functional genomics approach. Biochem Pharmacol. 2017;1(137):93–106.CrossRef
139.
Zurück zum Zitat Basu NK, Kovarova M, Garza A, Kubota S, Saha T, Mitra PS, et al. Phosphorylation of a UDP-glucuronosyltransferase regulates substrate specificity. Proc Natl Acad Sci USA. 2005;102(18):6285–90.CrossRefPubMed Basu NK, Kovarova M, Garza A, Kubota S, Saha T, Mitra PS, et al. Phosphorylation of a UDP-glucuronosyltransferase regulates substrate specificity. Proc Natl Acad Sci USA. 2005;102(18):6285–90.CrossRefPubMed
140.
Zurück zum Zitat Mitra PS, Basu NK, Owens IS. Src supports UDP-glucuronosyltransferase-2B7 detoxification of catechol estrogens associated with breast cancer. Biochem Biophys Res Commun. 2009;382(4):651–6.CrossRefPubMedPubMedCentral Mitra PS, Basu NK, Owens IS. Src supports UDP-glucuronosyltransferase-2B7 detoxification of catechol estrogens associated with breast cancer. Biochem Biophys Res Commun. 2009;382(4):651–6.CrossRefPubMedPubMedCentral
141.
Zurück zum Zitat Girard-Bock C, Benoit-Biancamano MO, Villeneuve L, Desjardins S, Guillemette C. A rare UGT2B7 variant creates a novel N-glycosylation site at codon 121 with impaired enzyme activity. Drug Metab Dispos. 2016;44(12):1867–71.CrossRefPubMed Girard-Bock C, Benoit-Biancamano MO, Villeneuve L, Desjardins S, Guillemette C. A rare UGT2B7 variant creates a novel N-glycosylation site at codon 121 with impaired enzyme activity. Drug Metab Dispos. 2016;44(12):1867–71.CrossRefPubMed
142.
Zurück zum Zitat Sneitz N, Bakker CT, De Knegt RJ, Halley DJJ, Finel M, Bosma PJ. Crigler–Najjar syndrome in the Netherlands: identification of four novel UGT1A1 alleles, genotype-phenotype correlation, and functional analysis of 10 missense mutants. Hum Mutat. 2010;31(1):52–9.CrossRefPubMed Sneitz N, Bakker CT, De Knegt RJ, Halley DJJ, Finel M, Bosma PJ. Crigler–Najjar syndrome in the Netherlands: identification of four novel UGT1A1 alleles, genotype-phenotype correlation, and functional analysis of 10 missense mutants. Hum Mutat. 2010;31(1):52–9.CrossRefPubMed
143.
Zurück zum Zitat Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos. 2012;40(5):1051–65.CrossRefPubMed Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos. 2012;40(5):1051–65.CrossRefPubMed
144.
Zurück zum Zitat Chang JH, Yoo P, Lee T, Klopf W, Takao D. The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe. Mol Pharm. 2009;6(4):1216–27.CrossRefPubMed Chang JH, Yoo P, Lee T, Klopf W, Takao D. The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe. Mol Pharm. 2009;6(4):1216–27.CrossRefPubMed
145.
Zurück zum Zitat Miners JO, Lillywhite KJ, Birkett DJ. In vitro evidence for the involvement of at least two forms of human liver UDP-glucuronosyltransferase in morphine 3-glucuronidation. Biochem Pharmacol. 1988;37(14):2839–45.CrossRefPubMed Miners JO, Lillywhite KJ, Birkett DJ. In vitro evidence for the involvement of at least two forms of human liver UDP-glucuronosyltransferase in morphine 3-glucuronidation. Biochem Pharmacol. 1988;37(14):2839–45.CrossRefPubMed
146.
Zurück zum Zitat Fisher MB, Campanale K, Ackermann BL, VandenBranden M, Wrighton SA. In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos. 2000;28(5):560–6.PubMed Fisher MB, Campanale K, Ackermann BL, VandenBranden M, Wrighton SA. In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos. 2000;28(5):560–6.PubMed
147.
Zurück zum Zitat Shipkova M, Strassburg CP, Braun F, Streit F, Gröne HJ, Armstrong VW, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol. 2001;132(5):1027–34.CrossRefPubMedPubMedCentral Shipkova M, Strassburg CP, Braun F, Streit F, Gröne HJ, Armstrong VW, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol. 2001;132(5):1027–34.CrossRefPubMedPubMedCentral
148.
Zurück zum Zitat Soars MG, Riley RJ, Findlay KAB, Coffey MJ, Burchell B. Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metab Dispos. 2001;29(2):121–6.PubMed Soars MG, Riley RJ, Findlay KAB, Coffey MJ, Burchell B. Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metab Dispos. 2001;29(2):121–6.PubMed
149.
Zurück zum Zitat Vietri M, Pietrabissa A, Mosca F, Pacifici G. Inhibition of mycophenolic acid glucuronidation by niflumic acid in human liver microsomes. Eur J Clin Pharmacol. 2002;58(2):93–7.CrossRefPubMed Vietri M, Pietrabissa A, Mosca F, Pacifici G. Inhibition of mycophenolic acid glucuronidation by niflumic acid in human liver microsomes. Eur J Clin Pharmacol. 2002;58(2):93–7.CrossRefPubMed
150.
Zurück zum Zitat Soars MG, Ring BJ, Wrighton SA. The effect of incubation conditions on the enzyme kinetics of UDP-glucuronosyltransferases. Drug Metab Dispos. 2003;31(6):762–7.CrossRefPubMed Soars MG, Ring BJ, Wrighton SA. The effect of incubation conditions on the enzyme kinetics of UDP-glucuronosyltransferases. Drug Metab Dispos. 2003;31(6):762–7.CrossRefPubMed
151.
Zurück zum Zitat Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, et al. Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for udp-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos. 2003;31(9):1125–33.CrossRefPubMed Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, et al. Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for udp-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos. 2003;31(9):1125–33.CrossRefPubMed
152.
Zurück zum Zitat Chau N, Elliot DJ, Lewis BC, Burns K, Johnston MR, Mackenzie PI, et al. Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies. J Pharmacol Exp Ther. 2014;349(1):126–37.CrossRefPubMed Chau N, Elliot DJ, Lewis BC, Burns K, Johnston MR, Mackenzie PI, et al. Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies. J Pharmacol Exp Ther. 2014;349(1):126–37.CrossRefPubMed
153.
Zurück zum Zitat Miles KK, Stern ST, Smith PC, Kessler FK, Ali S, Ritter JK. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab Dispos. 2005;33(10):1513–20.CrossRefPubMed Miles KK, Stern ST, Smith PC, Kessler FK, Ali S, Ritter JK. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab Dispos. 2005;33(10):1513–20.CrossRefPubMed
154.
Zurück zum Zitat Picard N, Ratanasavanh D, Prémaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46.CrossRefPubMed Picard N, Ratanasavanh D, Prémaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46.CrossRefPubMed
155.
Zurück zum Zitat Slovak JE, Mealey K, Court MH. Comparative metabolism of mycophenolic acid by glucuronic acid and glucose conjugation in human, dog, and cat liver microsomes. J Vet Pharmacol Ther. 2017;40(2):123–9.CrossRefPubMed Slovak JE, Mealey K, Court MH. Comparative metabolism of mycophenolic acid by glucuronic acid and glucose conjugation in human, dog, and cat liver microsomes. J Vet Pharmacol Ther. 2017;40(2):123–9.CrossRefPubMed
156.
Zurück zum Zitat Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO. Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro–in vivo extrapolation. J Pharmacol Exp Ther. 2007;321(1):137–47.CrossRefPubMed Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO. Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro–in vivo extrapolation. J Pharmacol Exp Ther. 2007;321(1):137–47.CrossRefPubMed
157.
Zurück zum Zitat Rowland A, Knights KM, Mackenzie PI, Miners JO. The “albumin effect” and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos. 2008;36(6):1056–62.CrossRefPubMed Rowland A, Knights KM, Mackenzie PI, Miners JO. The “albumin effect” and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos. 2008;36(6):1056–62.CrossRefPubMed
158.
Zurück zum Zitat Liu X, Sheng L, Zhao M, Mi J, Liu Z, Li Y. In vitro glucuronidation of the primary metabolite of 10-chloromethyl-11-demethyl-12-oxo-calanolide A by human liver microsomes and its interactions with UDP-glucuronosyltransferase substrates. Drug Metab Pharmacokinet. 2015;30(1):89–96.CrossRefPubMed Liu X, Sheng L, Zhao M, Mi J, Liu Z, Li Y. In vitro glucuronidation of the primary metabolite of 10-chloromethyl-11-demethyl-12-oxo-calanolide A by human liver microsomes and its interactions with UDP-glucuronosyltransferase substrates. Drug Metab Pharmacokinet. 2015;30(1):89–96.CrossRefPubMed
159.
Zurück zum Zitat Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro–in vivo extrapolation (IV–IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016;81(6):1153–64.CrossRefPubMedPubMedCentral Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro–in vivo extrapolation (IV–IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016;81(6):1153–64.CrossRefPubMedPubMedCentral
160.
Zurück zum Zitat Gagez A-L, Rouguieg-Malki K, Sauvage F-L, Marquet P, Picard N. Simultaneous evaluation of six human glucuronidation activities in liver microsomes using liquid chromatography–tandem mass spectrometry. Anal Biochem. 2012;427(1):52–9.CrossRefPubMed Gagez A-L, Rouguieg-Malki K, Sauvage F-L, Marquet P, Picard N. Simultaneous evaluation of six human glucuronidation activities in liver microsomes using liquid chromatography–tandem mass spectrometry. Anal Biochem. 2012;427(1):52–9.CrossRefPubMed
161.
Zurück zum Zitat Joo J, Lee B, Lee T, Liu K-H. Screening of six UGT enzyme activities in human liver microsomes using liquid chromatography/triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(22):2405–14.CrossRefPubMed Joo J, Lee B, Lee T, Liu K-H. Screening of six UGT enzyme activities in human liver microsomes using liquid chromatography/triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(22):2405–14.CrossRefPubMed
162.
Zurück zum Zitat Seo KA, Kim HJ, Jeong ES, Abdalla N, Choi CS, Kim DH, et al. In vitro assay of six UDP-glucuronosyltransferase isoforms in human liver microsomes, using cocktails of probe substrates and liquid chromatography–tandem mass spectrometry. Drug Metab Dispos. 2014;42(11):1803–10.CrossRefPubMed Seo KA, Kim HJ, Jeong ES, Abdalla N, Choi CS, Kim DH, et al. In vitro assay of six UDP-glucuronosyltransferase isoforms in human liver microsomes, using cocktails of probe substrates and liquid chromatography–tandem mass spectrometry. Drug Metab Dispos. 2014;42(11):1803–10.CrossRefPubMed
163.
Zurück zum Zitat Gradinaru J, Romand S, Geiser L, Carrupt PA, Spaggiari D, Rudaz S. Inhibition screening method of microsomal UGTs using the cocktail approach. Eur J Pharm Sci. 2015;71:35–45.CrossRefPubMed Gradinaru J, Romand S, Geiser L, Carrupt PA, Spaggiari D, Rudaz S. Inhibition screening method of microsomal UGTs using the cocktail approach. Eur J Pharm Sci. 2015;71:35–45.CrossRefPubMed
164.
Zurück zum Zitat Krishnaswamy S, Duan SX, Von Moltke LL, Greenblatt DJ, Court MH. Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos. 2003;31(1):133–9.CrossRefPubMed Krishnaswamy S, Duan SX, Von Moltke LL, Greenblatt DJ, Court MH. Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos. 2003;31(1):133–9.CrossRefPubMed
165.
Zurück zum Zitat Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human UDP-glucuronosyltransferases. Drug Metab Dispos. 2006;34(3):449–56.PubMedCrossRef Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human UDP-glucuronosyltransferases. Drug Metab Dispos. 2006;34(3):449–56.PubMedCrossRef
166.
Zurück zum Zitat Trottier J, Verreault M, Grepper S, Monté D, Bélanger J, Kaeding J, et al. Human UDP-glucuronosyltransferase (UGT)1A3 enzyme conjugates chenodeoxycholic acid in the liver. Hepatology. 2006;44(5):1158–70.CrossRefPubMed Trottier J, Verreault M, Grepper S, Monté D, Bélanger J, Kaeding J, et al. Human UDP-glucuronosyltransferase (UGT)1A3 enzyme conjugates chenodeoxycholic acid in the liver. Hepatology. 2006;44(5):1158–70.CrossRefPubMed
168.
Zurück zum Zitat Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2(8):e63.CrossRef Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2(8):e63.CrossRef
169.
Zurück zum Zitat Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA Public Workshop on PBPK. CPT Pharmacomet Syst Pharmacol. 2015;4(4):226–30.CrossRef Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA Public Workshop on PBPK. CPT Pharmacomet Syst Pharmacol. 2015;4(4):226–30.CrossRef
170.
Zurück zum Zitat Jamei M. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory acceptance. Curr Pharmacol Rep. 2016;2(3):161–9.CrossRefPubMedPubMedCentral Jamei M. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory acceptance. Curr Pharmacol Rep. 2016;2(3):161–9.CrossRefPubMedPubMedCentral
171.
Zurück zum Zitat Jones H, Chen Y, Gibson C, Heimbach T, Parrott N, Peters S, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.CrossRefPubMed Jones H, Chen Y, Gibson C, Heimbach T, Parrott N, Peters S, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.CrossRefPubMed
172.
Zurück zum Zitat Huang S-M, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.CrossRefPubMed Huang S-M, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.CrossRefPubMed
173.
Zurück zum Zitat Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.CrossRefPubMedPubMedCentral Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.CrossRefPubMedPubMedCentral
175.
Zurück zum Zitat Jiang X-L, Zhao P, Barrett JS, Lesko LJ, Schmidt S. Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacomet Syst Pharmacol. 2013;2(10):e80.CrossRef Jiang X-L, Zhao P, Barrett JS, Lesko LJ, Schmidt S. Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacomet Syst Pharmacol. 2013;2(10):e80.CrossRef
176.
Zurück zum Zitat Ogungbenro K, Aarons L, CRESim & Epi-CRESim Project Groups. A physiologically based pharmacokinetic model for valproic acid in adults and children. Eur J Pharm Sci. 2014;15(63):45–52.CrossRef Ogungbenro K, Aarons L, CRESim & Epi-CRESim Project Groups. A physiologically based pharmacokinetic model for valproic acid in adults and children. Eur J Pharm Sci. 2014;15(63):45–52.CrossRef
177.
Zurück zum Zitat Emoto C, Fukuda T, Johnson TN, Neuhoff S, Sadhasivam S, Vinks AA. Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT Pharmacomet Syst Pharmacol. 2017;6(2):110–9.CrossRef Emoto C, Fukuda T, Johnson TN, Neuhoff S, Sadhasivam S, Vinks AA. Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT Pharmacomet Syst Pharmacol. 2017;6(2):110–9.CrossRef
178.
Zurück zum Zitat Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.CrossRefPubMedPubMedCentral Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.CrossRefPubMedPubMedCentral
179.
Zurück zum Zitat Leong R, Vieira MLT, Zhao P, Mulugeta Y, Lee CS, Huang S-M, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.CrossRefPubMed Leong R, Vieira MLT, Zhao P, Mulugeta Y, Lee CS, Huang S-M, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.CrossRefPubMed
180.
Zurück zum Zitat Ginsberg G, Hattis D, Russ A, Sonawane B. Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxicol Environ Health A. 2004;67(4):297–329.CrossRefPubMed Ginsberg G, Hattis D, Russ A, Sonawane B. Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxicol Environ Health A. 2004;67(4):297–329.CrossRefPubMed
181.
Zurück zum Zitat Emoto C, Fukuda T, Cox S, Christians U, Vinks AA. Development of a physiologically-based pharmacokinetic model for sirolimus: predicting bioavailability based on intestinal CYP3A content. CPT Pharmacomet Syst Pharmacol. 2013;2(7):e59.CrossRef Emoto C, Fukuda T, Cox S, Christians U, Vinks AA. Development of a physiologically-based pharmacokinetic model for sirolimus: predicting bioavailability based on intestinal CYP3A content. CPT Pharmacomet Syst Pharmacol. 2013;2(7):e59.CrossRef
182.
Zurück zum Zitat Lin W, Heimbach T, Jain JP, Awasthi R, Hamed K, Sunkara G, et al. A physiologically based pharmacokinetic model to describe artemether pharmacokinetics in adult and pediatric patients. J Pharm Sci. 2016;105(10):3205–13.CrossRefPubMed Lin W, Heimbach T, Jain JP, Awasthi R, Hamed K, Sunkara G, et al. A physiologically based pharmacokinetic model to describe artemether pharmacokinetics in adult and pediatric patients. J Pharm Sci. 2016;105(10):3205–13.CrossRefPubMed
183.
Zurück zum Zitat Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2016;56(3):266–83.CrossRefPubMed Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2016;56(3):266–83.CrossRefPubMed
184.
Zurück zum Zitat T’jollyn H, Snoeys J, Vermeulen A, Michelet R, Cuyckens F, Mannens G, et al. Physiologically based pharmacokinetic predictions of tramadol exposure throughout pediatric life: an analysis of the different clearance contributors with emphasis on CYP2D6 maturation. AAPS J. 2015;17(6):1376–87.CrossRefPubMedPubMedCentral T’jollyn H, Snoeys J, Vermeulen A, Michelet R, Cuyckens F, Mannens G, et al. Physiologically based pharmacokinetic predictions of tramadol exposure throughout pediatric life: an analysis of the different clearance contributors with emphasis on CYP2D6 maturation. AAPS J. 2015;17(6):1376–87.CrossRefPubMedPubMedCentral
185.
Zurück zum Zitat Shangguan WN, Lian Q, Aarons L, Matthews I, Wang Z, Chen X, et al. Pharmacokinetics of a single bolus of propofol in chinese children of different ages. Anesthesiology. 2006;104(1):27–32.CrossRefPubMed Shangguan WN, Lian Q, Aarons L, Matthews I, Wang Z, Chen X, et al. Pharmacokinetics of a single bolus of propofol in chinese children of different ages. Anesthesiology. 2006;104(1):27–32.CrossRefPubMed
186.
Zurück zum Zitat Allegaert K, Peeters MY, Verbesselt R, Tibboel D, Naulaers G, De Hoon JN, et al. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth. 2007;99(6):864–70.CrossRefPubMed Allegaert K, Peeters MY, Verbesselt R, Tibboel D, Naulaers G, De Hoon JN, et al. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth. 2007;99(6):864–70.CrossRefPubMed
187.
Zurück zum Zitat Wang C, Sadhavisvam S, Krekels EHJ, Dahan A, Tibboel D, Danhof M, et al. Developmental changes in morphine clearance across the entire paediatric age range are best described by a bodyweight-dependent exponent model. Clin Drug Investig. 2013;33(7):523–34.CrossRefPubMed Wang C, Sadhavisvam S, Krekels EHJ, Dahan A, Tibboel D, Danhof M, et al. Developmental changes in morphine clearance across the entire paediatric age range are best described by a bodyweight-dependent exponent model. Clin Drug Investig. 2013;33(7):523–34.CrossRefPubMed
188.
Zurück zum Zitat Anand KJS, Anderson BJ, Holford NHG, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9.CrossRefPubMedPubMedCentral Anand KJS, Anderson BJ, Holford NHG, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Ontogeny of UDP-glucuronosyltransferase Enzymes, Recommendations for Future Profiling Studies and Application Through Physiologically Based Pharmacokinetic Modelling
verfasst von
Justine Badée
Stephen Fowler
Saskia N. de Wildt
Abby C. Collier
Stephan Schmidt
Neil Parrott
Publikationsdatum
04.06.2018
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2019
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-0681-2

Weitere Artikel der Ausgabe 2/2019

Clinical Pharmacokinetics 2/2019 Zur Ausgabe