Skip to main content
Erschienen in: Immunologic Research 3/2021

13.05.2021 | Review

The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes

verfasst von: Mahdi Taghadosi, Mehrnoosh Adib, Ahmadreza Jamshidi, Mahdi Mahmoudi, Elham Farhadi

Erschienen in: Immunologic Research | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Literatur
1.
Zurück zum Zitat Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis Nature Reviews Disease Primers. 2018;4:18001.PubMedCrossRef Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis Nature Reviews Disease Primers. 2018;4:18001.PubMedCrossRef
2.
Zurück zum Zitat Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019;37:347–57.PubMed Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019;37:347–57.PubMed
3.
Zurück zum Zitat Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. The Lancet. 2007;370:1861–74.CrossRef Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. The Lancet. 2007;370:1861–74.CrossRef
7.
Zurück zum Zitat Shibuya H, Yoshitomi H, Murata K, Kobayashi S, Furu M, Ishikawa M, et al. TNFα, PDGF, and TGFβ synergistically induce synovial lining hyperplasia via inducible PI3Kδ. Mod Rheumatol. 2015;25:72–8.PubMedCrossRef Shibuya H, Yoshitomi H, Murata K, Kobayashi S, Furu M, Ishikawa M, et al. TNFα, PDGF, and TGFβ synergistically induce synovial lining hyperplasia via inducible PI3Kδ. Mod Rheumatol. 2015;25:72–8.PubMedCrossRef
8.
Zurück zum Zitat Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review. Mod Rheumatol. 2019;29:258–67.PubMedCrossRef Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review. Mod Rheumatol. 2019;29:258–67.PubMedCrossRef
9.
Zurück zum Zitat Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9:24.PubMedCrossRef Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9:24.PubMedCrossRef
10.
Zurück zum Zitat Tak PP, Zvaifler NJ, Green DR, Firestein GS. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today. 2000;21:78–82.PubMedCrossRef Tak PP, Zvaifler NJ, Green DR, Firestein GS. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today. 2000;21:78–82.PubMedCrossRef
11.
Zurück zum Zitat Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis Passive responders or transformed aggressors? Arthritis Rheum. 1996;39:1781–90.PubMedCrossRef Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis Passive responders or transformed aggressors? Arthritis Rheum. 1996;39:1781–90.PubMedCrossRef
12.
Zurück zum Zitat Müller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol. 1996;149:1607.PubMedPubMedCentral Müller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol. 1996;149:1607.PubMedPubMedCentral
13.
Zurück zum Zitat Arrowsmith CH. Structure and function in the p53 family. Cell Death Differ. 1999;6:1169–73.PubMedCrossRef Arrowsmith CH. Structure and function in the p53 family. Cell Death Differ. 1999;6:1169–73.PubMedCrossRef
14.
Zurück zum Zitat Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.PubMedPubMedCentralCrossRef Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Levine A, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027.PubMedCrossRef Levine A, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027.PubMedCrossRef
16.
Zurück zum Zitat Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol. 1998;152:1091.PubMedPubMedCentral Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol. 1998;152:1091.PubMedPubMedCentral
18.
Zurück zum Zitat Han Z, Boyle DL, Shi Y, Green DR, Firestein GS. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 1999;42:1088–92.PubMedCrossRef Han Z, Boyle DL, Shi Y, Green DR, Firestein GS. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 1999;42:1088–92.PubMedCrossRef
19.
Zurück zum Zitat Malemud C, Haque A, Louis N, Wang J. Immune response and apoptosis–intro-duction. J Clin Cell Immunol Sci. 2012;3:e001. Malemud C, Haque A, Louis N, Wang J. Immune response and apoptosis–intro-duction. J Clin Cell Immunol Sci. 2012;3:e001.
20.
Zurück zum Zitat Tak PP, Smeets TJ, Boyle DL, Kraan MC, Shi Y, Zhuang S, et al. p53 overexpression in synovial tissue from patients with early and longstanding rheumatoid arthritis compared with patients with reactive arthritis and osteoarthritis. Arthritis Rheum. 1999;42:948–53.PubMedCrossRef Tak PP, Smeets TJ, Boyle DL, Kraan MC, Shi Y, Zhuang S, et al. p53 overexpression in synovial tissue from patients with early and longstanding rheumatoid arthritis compared with patients with reactive arthritis and osteoarthritis. Arthritis Rheum. 1999;42:948–53.PubMedCrossRef
21.
Zurück zum Zitat Zhang T, Li H, Shi J, Li S, Li M, Zhang L, et al. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res Ther. 2016;18:271.PubMedPubMedCentralCrossRef Zhang T, Li H, Shi J, Li S, Li M, Zhang L, et al. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res Ther. 2016;18:271.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Taranto E, Xue JR, Lacey D, Hutchinson P, Smith M, Morand EF, et al. Detection of the p53 regulator murine double-minute protein 2 in rheumatoid arthritis. J Rheumatol. 2005;32:424–9.PubMed Taranto E, Xue JR, Lacey D, Hutchinson P, Smith M, Morand EF, et al. Detection of the p53 regulator murine double-minute protein 2 in rheumatoid arthritis. J Rheumatol. 2005;32:424–9.PubMed
23.
Zurück zum Zitat Seemayer CA, Kuchen S, Neidhart M, Kuenzler P, Řihošková V, Neumann E, et al. p53 in rheumatoid arthritis synovial fibroblasts at sites of invasion. Ann Rheum Dis. 2003;62:1139–44.PubMedPubMedCentralCrossRef Seemayer CA, Kuchen S, Neidhart M, Kuenzler P, Řihošková V, Neumann E, et al. p53 in rheumatoid arthritis synovial fibroblasts at sites of invasion. Ann Rheum Dis. 2003;62:1139–44.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Lee CS, Portek I, Edmonds J, Kirkham B. Synovial membrane p53 protein immunoreactivity in rheumatoid arthritis patients. Ann Rheum Dis. 2000;59:143–5.PubMedPubMedCentralCrossRef Lee CS, Portek I, Edmonds J, Kirkham B. Synovial membrane p53 protein immunoreactivity in rheumatoid arthritis patients. Ann Rheum Dis. 2000;59:143–5.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Sugiyama M, Tsukazaki T, Yonekura A, Matsuzaki S, Yamashita S, Iwasaki K. Localisation of apoptosis and expression of apoptosis related proteins in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis. 1996;55:442–9.PubMedPubMedCentralCrossRef Sugiyama M, Tsukazaki T, Yonekura A, Matsuzaki S, Yamashita S, Iwasaki K. Localisation of apoptosis and expression of apoptosis related proteins in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis. 1996;55:442–9.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Mc Gonagle D, Reece R, Green M, Jack A, Veale D, Emery P. p53 Is not demonstrable by immunohistochemistry in early rheumatoid arthritis. Arthritis Rheum. 1997;40:S119-S. Mc Gonagle D, Reece R, Green M, Jack A, Veale D, Emery P. p53 Is not demonstrable by immunohistochemistry in early rheumatoid arthritis. Arthritis Rheum. 1997;40:S119-S.
27.
Zurück zum Zitat Salvador G, Sanmarti R, Garcia-Peiro A, Rodriguez-Cros J, Munoz-Gomez J, Canete J. p53 expression in rheumatoid and psoriatic arthritis synovial tissue and association with joint damage. Ann Rheum Dis. 2005;64:183–7.PubMedPubMedCentralCrossRef Salvador G, Sanmarti R, Garcia-Peiro A, Rodriguez-Cros J, Munoz-Gomez J, Canete J. p53 expression in rheumatoid and psoriatic arthritis synovial tissue and association with joint damage. Ann Rheum Dis. 2005;64:183–7.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Xiao C, Pan Y, Guo X, Wu Y, Gu J, Cai D. Expression of β-catenin in rheumatoid arthritis fibroblast-like synoviocytes. Scand J Rheumatol. 2011;40:26–33.PubMedCrossRef Xiao C, Pan Y, Guo X, Wu Y, Gu J, Cai D. Expression of β-catenin in rheumatoid arthritis fibroblast-like synoviocytes. Scand J Rheumatol. 2011;40:26–33.PubMedCrossRef
29.
Zurück zum Zitat Maas K, Westfall M, Pietenpol J, Olsen NJ, Aune T. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Arthritis Rheum. 2005;52:1047–57.PubMedCrossRef Maas K, Westfall M, Pietenpol J, Olsen NJ, Aune T. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Arthritis Rheum. 2005;52:1047–57.PubMedCrossRef
30.
Zurück zum Zitat Du Y, Deng L, Li Y, Gan L, Wang Y, Shi G. Decreased PERP expression on peripheral blood mononuclear cells from patient with rheumatoid arthritis negatively correlates with disease activity. Clin Dev Immunol. 2013;2013. Du Y, Deng L, Li Y, Gan L, Wang Y, Shi G. Decreased PERP expression on peripheral blood mononuclear cells from patient with rheumatoid arthritis negatively correlates with disease activity. Clin Dev Immunol. 2013;2013.
31.
Zurück zum Zitat Sionov RV and Haupt Y, editors. Apoptosis by p53: mechanisms, regulation, and clinical implications. Springer seminars in immunopathology; 1998: Springer. Sionov RV and Haupt Y, editors. Apoptosis by p53: mechanisms, regulation, and clinical implications. Springer seminars in immunopathology; 1998: Springer.
32.
Zurück zum Zitat Lee S-H, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL, et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170:2214–20.PubMedCrossRef Lee S-H, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL, et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170:2214–20.PubMedCrossRef
33.
Zurück zum Zitat Yamanishi Y, Boyle DL, Green DR, Keystone EC, Connor A, Zollman S, et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res Ther. 2004;7:R12.PubMedPubMedCentralCrossRef Yamanishi Y, Boyle DL, Green DR, Keystone EC, Connor A, Zollman S, et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res Ther. 2004;7:R12.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci. 1997;94:10895–900.PubMedPubMedCentralCrossRef Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci. 1997;94:10895–900.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Altindag O, Karakoc M, Kocyigit A, Celik H, Soran N. Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem. 2007;40:167–71.PubMedCrossRef Altindag O, Karakoc M, Kocyigit A, Celik H, Soran N. Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem. 2007;40:167–71.PubMedCrossRef
36.
Zurück zum Zitat Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci. 1996;93:2442–7.PubMedPubMedCentralCrossRef Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci. 1996;93:2442–7.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Igarashi H, Hashimoto J, Tomita T, Yoshikawa H, Ishihara K. TP53 mutations coincide with the ectopic expression of activation-induced cytidine deaminase in the fibroblast-like synoviocytes derived from a fraction of patients with rheumatoid arthritis. Clin Exp Immunol. 2010;161:71–80.PubMedPubMedCentralCrossRef Igarashi H, Hashimoto J, Tomita T, Yoshikawa H, Ishihara K. TP53 mutations coincide with the ectopic expression of activation-induced cytidine deaminase in the fibroblast-like synoviocytes derived from a fraction of patients with rheumatoid arthritis. Clin Exp Immunol. 2010;161:71–80.PubMedPubMedCentralCrossRef
38.
39.
Zurück zum Zitat Kawauchi K, Araki K, Tobiume K, Tanaka N. Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun. 2008;372:137–41.PubMedCrossRef Kawauchi K, Araki K, Tobiume K, Tanaka N. Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun. 2008;372:137–41.PubMedCrossRef
40.
Zurück zum Zitat Son D-S, Kabir SM, Dong Y-L, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IκB. PLoS ONE. 2012;7:e51116.PubMedPubMedCentralCrossRef Son D-S, Kabir SM, Dong Y-L, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IκB. PLoS ONE. 2012;7:e51116.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA. 2009;106:2629–34.PubMedPubMedCentralCrossRef Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA. 2009;106:2629–34.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Lim HS, Kim YJ, Kim BY, Jeong SJ. Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway. Int J Mol Sci. 2019;20. Lim HS, Kim YJ, Kim BY, Jeong SJ. Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway. Int J Mol Sci. 2019;20.
43.
Zurück zum Zitat Yin Y, Liu Y-X, Jin YJ, Hall EJ, Barrett JC. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature. 2003;422:527.PubMedCrossRef Yin Y, Liu Y-X, Jin YJ, Hall EJ, Barrett JC. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature. 2003;422:527.PubMedCrossRef
44.
Zurück zum Zitat Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 2000;19:6517–26.PubMedPubMedCentralCrossRef Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 2000;19:6517–26.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Cha H, Lowe JM, Li H, Lee J-S, Belova GI, Bulavin DV, et al. Wip1 directly dephosphorylates γ-H2AX and attenuates the DNA damage response. Can Res. 2010;70:4112–22.CrossRef Cha H, Lowe JM, Li H, Lee J-S, Belova GI, Bulavin DV, et al. Wip1 directly dephosphorylates γ-H2AX and attenuates the DNA damage response. Can Res. 2010;70:4112–22.CrossRef
46.
Zurück zum Zitat Lu X, Ma O, Nguyen T-A, Jones SN, Oren M, Donehower LA. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell. 2007;12:342–54.PubMedCrossRef Lu X, Ma O, Nguyen T-A, Jones SN, Oren M, Donehower LA. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell. 2007;12:342–54.PubMedCrossRef
47.
Zurück zum Zitat Perlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC, et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunol. 2003;170:838–45.PubMedCrossRef Perlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC, et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunol. 2003;170:838–45.PubMedCrossRef
48.
Zurück zum Zitat van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63:73–83.PubMedCrossRef van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63:73–83.PubMedCrossRef
49.
Zurück zum Zitat Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–5.PubMedCrossRef Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–5.PubMedCrossRef
50.
Zurück zum Zitat Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 2002;99:10025–30.PubMedPubMedCentralCrossRef Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A. 2002;99:10025–30.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Zheng S-J, Lamhamedi-Cherradi S-E, Wang P, Xu L, Chen YH. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes. 2005;54:1423–8.PubMedCrossRef Zheng S-J, Lamhamedi-Cherradi S-E, Wang P, Xu L, Chen YH. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes. 2005;54:1423–8.PubMedCrossRef
52.
Zurück zum Zitat Ameyar M, Wisniewska M, Weitzman J. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85:747–52.PubMedCrossRef Ameyar M, Wisniewska M, Weitzman J. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85:747–52.PubMedCrossRef
53.
Zurück zum Zitat Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.PubMedCrossRef Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.PubMedCrossRef
54.
Zurück zum Zitat Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188:5776–84.PubMedCrossRef Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188:5776–84.PubMedCrossRef
56.
Zurück zum Zitat Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265:1582–4.PubMedCrossRef Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265:1582–4.PubMedCrossRef
57.
Zurück zum Zitat Teodoro JG, Parker AE, Zhu X, Green MR. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 2006;313:968–71.PubMedCrossRef Teodoro JG, Parker AE, Zhu X, Green MR. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 2006;313:968–71.PubMedCrossRef
58.
Zurück zum Zitat Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, et al. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS ONE. 2008;3:e2215.PubMedPubMedCentralCrossRef Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, et al. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS ONE. 2008;3:e2215.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Fingerle-Rowson G, Petrenko O, Metz C, Forsthuber T, Mitchell R, Huss R, et al. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proc Natl Acad Sci. 2003;100:9354–9.PubMedPubMedCentralCrossRef Fingerle-Rowson G, Petrenko O, Metz C, Forsthuber T, Mitchell R, Huss R, et al. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proc Natl Acad Sci. 2003;100:9354–9.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 2000;14:34–44.PubMedPubMedCentralCrossRef Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 2000;14:34–44.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Wymann D, Blüggel M, Kalbacher H, Blesken T, Akdis C, Meyer H, et al. Human B cells secrete migration inhibition factor (MIF) and present a naturally processed MIF peptide on HLA-DRB1* 0405 by a FXXL motif. Immunology. 1999;96:1.PubMedPubMedCentralCrossRef Wymann D, Blüggel M, Kalbacher H, Blesken T, Akdis C, Meyer H, et al. Human B cells secrete migration inhibition factor (MIF) and present a naturally processed MIF peptide on HLA-DRB1* 0405 by a FXXL motif. Immunology. 1999;96:1.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Santos L, Hall P, Metz C, Bucala R, Morand E. Role of macrophage migration inhibitory factor (MIF) in murine antigen-induced arthritis: interaction with glucocorticoids. Clin Exp Immunol. 2001;123:309–14.PubMedPubMedCentralCrossRef Santos L, Hall P, Metz C, Bucala R, Morand E. Role of macrophage migration inhibitory factor (MIF) in murine antigen-induced arthritis: interaction with glucocorticoids. Clin Exp Immunol. 2001;123:309–14.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190:1375–82.PubMedPubMedCentralCrossRef Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190:1375–82.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Liao H, Bucala R, Mitchell RA. Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem. 2003;278:76–81.PubMedCrossRef Liao H, Bucala R, Mitchell RA. Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem. 2003;278:76–81.PubMedCrossRef
65.
Zurück zum Zitat Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF) Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999;274:18100–6.PubMedCrossRef Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF) Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999;274:18100–6.PubMedCrossRef
66.
Zurück zum Zitat Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum. 2003;48:1881–9.CrossRef Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum. 2003;48:1881–9.CrossRef
67.
Zurück zum Zitat Menendez D, Lowe JM, Snipe J, Resnick MA. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells. Oncotarget. 2016;7:61630.PubMedPubMedCentralCrossRef Menendez D, Lowe JM, Snipe J, Resnick MA. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells. Oncotarget. 2016;7:61630.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Wehr P, Purvis H, Law SC, Thomas R. Dendritic cells. T cells and their interaction in rheumatoid arthritis. 2019;196:12–27. Wehr P, Purvis H, Law SC, Thomas R. Dendritic cells. T cells and their interaction in rheumatoid arthritis. 2019;196:12–27.
70.
Zurück zum Zitat Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-κB plays a major role in the maturation of human dendritic cells induced by NiSO4 but not by DNCB. Toxicol Sci. 2007;99:488–501.PubMedCrossRef Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-κB plays a major role in the maturation of human dendritic cells induced by NiSO4 but not by DNCB. Toxicol Sci. 2007;99:488–501.PubMedCrossRef
71.
Zurück zum Zitat Popa C, van Lieshout AW, Roelofs MF, Geurts-Moespot A, van Riel PL, Calandra T, et al. MIF production by dendritic cells is differentially regulated by Toll-like receptors and increased during rheumatoid arthritis. Cytokine. 2006;36:51–6.PubMedCrossRef Popa C, van Lieshout AW, Roelofs MF, Geurts-Moespot A, van Riel PL, Calandra T, et al. MIF production by dendritic cells is differentially regulated by Toll-like receptors and increased during rheumatoid arthritis. Cytokine. 2006;36:51–6.PubMedCrossRef
72.
Zurück zum Zitat Zhong H, Neubig RR. Regulator of G protein signalingp: novel multifunctional drug targets. J Pharmacol Exp Ther. 2001;297:837.PubMed Zhong H, Neubig RR. Regulator of G protein signalingp: novel multifunctional drug targets. J Pharmacol Exp Ther. 2001;297:837.PubMed
73.
Zurück zum Zitat Wang B, Niu D, Lam T, Xiao Z, Ren E. Mapping the p53 transcriptome universe using p53 natural polymorphs. Cell Death Differ. 2014;21:521–32.PubMedCrossRef Wang B, Niu D, Lam T, Xiao Z, Ren E. Mapping the p53 transcriptome universe using p53 natural polymorphs. Cell Death Differ. 2014;21:521–32.PubMedCrossRef
74.
Zurück zum Zitat Wang D, Liu Y, Li Y, He Y, Zhang J, Shi G. Gαq regulates the development of rheumatoid arthritis by modulating Th1 differentiation. Mediat Inflamm. 2017;2017. Wang D, Liu Y, Li Y, He Y, Zhang J, Shi G. Gαq regulates the development of rheumatoid arthritis by modulating Th1 differentiation. Mediat Inflamm. 2017;2017.
75.
Zurück zum Zitat Wang Y, Li Y, He Y, Sun Y, Sun W, Xie Q, et al. Expression of G protein αq subunit is decreased in lymphocytes from patients with rheumatoid arthritis and is correlated with disease activity. Scand J Immunol. 2012;75:203–9.PubMedCrossRef Wang Y, Li Y, He Y, Sun Y, Sun W, Xie Q, et al. Expression of G protein αq subunit is decreased in lymphocytes from patients with rheumatoid arthritis and is correlated with disease activity. Scand J Immunol. 2012;75:203–9.PubMedCrossRef
76.
Zurück zum Zitat Wang Y, Xiao H, Wu H, Yao C, He H, Wang C, et al. G protein subunit α q regulates gastric cancer growth via the p53/p21 and MEK/ERK pathways. Oncol Rep. 2017;37:1998–2006.PubMedPubMedCentralCrossRef Wang Y, Xiao H, Wu H, Yao C, He H, Wang C, et al. G protein subunit α q regulates gastric cancer growth via the p53/p21 and MEK/ERK pathways. Oncol Rep. 2017;37:1998–2006.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat McKelvey KJ, Millier MJ, Doyle TC, Stamp LK, Highton J, Hessian PA. Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation. PLoS ONE. 2018;13:e0202135.PubMedPubMedCentralCrossRef McKelvey KJ, Millier MJ, Doyle TC, Stamp LK, Highton J, Hessian PA. Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation. PLoS ONE. 2018;13:e0202135.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Tang BX, You X, Zhao LD, Li Y, Zhang X, Tang FL, et al. p53 in fibroblast-like synoviocytes can regulate T helper cell functions in patients with active rheumatoid arthritis. Chin Med J (Engl). 2011;124:364–8. Tang BX, You X, Zhao LD, Li Y, Zhang X, Tang FL, et al. p53 in fibroblast-like synoviocytes can regulate T helper cell functions in patients with active rheumatoid arthritis. Chin Med J (Engl). 2011;124:364–8.
80.
Zurück zum Zitat Kawashima H, Takatori H, Suzuki K, Iwata A, Yokota M, Suto A, et al. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J Immunol. 2013;191:3614–23.PubMedCrossRef Kawashima H, Takatori H, Suzuki K, Iwata A, Yokota M, Suto A, et al. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J Immunol. 2013;191:3614–23.PubMedCrossRef
81.
82.
Zurück zum Zitat Shen X-F, Zhao Y, Jiang J-P, Guan W-X, Du J-F. Phosphatase Wip1 in immunity: an overview and update. Front Immunol. 2017;8. Shen X-F, Zhao Y, Jiang J-P, Guan W-X, Du J-F. Phosphatase Wip1 in immunity: an overview and update. Front Immunol. 2017;8.
83.
Zurück zum Zitat Liu M-F, Yang C-Y, Chao S-C, Li J-S, Weng T-H, Lei H-Y. Distribution of double-negative (CD4− CD8−, DN) T subsets in blood and synovial fluid from patients with rheumatoid arthritis. Clin Rheumatol. 1999;18:227–31.PubMedCrossRef Liu M-F, Yang C-Y, Chao S-C, Li J-S, Weng T-H, Lei H-Y. Distribution of double-negative (CD4− CD8−, DN) T subsets in blood and synovial fluid from patients with rheumatoid arthritis. Clin Rheumatol. 1999;18:227–31.PubMedCrossRef
84.
Zurück zum Zitat Samuels J, Ng Y-S, Paget D, Meffre E. Impaired early B-cell tolerance in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7:1–2.CrossRef Samuels J, Ng Y-S, Paget D, Meffre E. Impaired early B-cell tolerance in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7:1–2.CrossRef
85.
Zurück zum Zitat Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev. 2019;18:102397.PubMedCrossRef Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev. 2019;18:102397.PubMedCrossRef
86.
Zurück zum Zitat Li L, Ng DS, Mah WC, Almeida FF, Rahmat SA, Rao VK, et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 2015;22:1081–93.PubMedCrossRef Li L, Ng DS, Mah WC, Almeida FF, Rahmat SA, Rao VK, et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 2015;22:1081–93.PubMedCrossRef
87.
Zurück zum Zitat Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000;102:849–62.PubMedCrossRef Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000;102:849–62.PubMedCrossRef
88.
Zurück zum Zitat Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis-the p53 network. J Cell Sci. 2003;116:4077–85.PubMedCrossRef Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis-the p53 network. J Cell Sci. 2003;116:4077–85.PubMedCrossRef
89.
Zurück zum Zitat Igarashi H, Hirano H, Yahagi A, Saika T, Ishihara K. Anti-apoptotic roles for the mutant p53R248Q through suppression of p53-regulated apoptosis-inducing protein 1 in the RA-derived fibroblast-like synoviocyte cell line MH7A. Clin Immunol. 2014;150:12–21.PubMedCrossRef Igarashi H, Hirano H, Yahagi A, Saika T, Ishihara K. Anti-apoptotic roles for the mutant p53R248Q through suppression of p53-regulated apoptosis-inducing protein 1 in the RA-derived fibroblast-like synoviocyte cell line MH7A. Clin Immunol. 2014;150:12–21.PubMedCrossRef
90.
Zurück zum Zitat Chen S-Y, Shiau A-L, Wu C-L, Wang C-R. P53-derived hybrid peptides induce apoptosis of synovial fibroblasts in the rheumatoid joint. Oncotarget. 2017;8:115413.PubMedPubMedCentralCrossRef Chen S-Y, Shiau A-L, Wu C-L, Wang C-R. P53-derived hybrid peptides induce apoptosis of synovial fibroblasts in the rheumatoid joint. Oncotarget. 2017;8:115413.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Li H, Wan A. Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflamm. 2013;2013:953462.PubMedPubMedCentralCrossRef Li H, Wan A. Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflamm. 2013;2013:953462.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Xiao P, Hao Y, Zhu X, Wu X. p53 contributes to quercetin-induced apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation. 2013;36:272–8.PubMedCrossRef Xiao P, Hao Y, Zhu X, Wu X. p53 contributes to quercetin-induced apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation. 2013;36:272–8.PubMedCrossRef
93.
Zurück zum Zitat Sung M-S, Lee E-G, Jeon H-S, Chae H-J, Park SJ, Lee YC, et al. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation. 2012;35:1585–94.PubMedCrossRef Sung M-S, Lee E-G, Jeon H-S, Chae H-J, Park SJ, Lee YC, et al. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation. 2012;35:1585–94.PubMedCrossRef
94.
Zurück zum Zitat Hou H, Xing W and Li W. Brahma-related gene 1 induces apoptosis in a p53-dependent manner in human rheumatoid fibroblast-like synoviocyte MH7A. Medicine. 2016;95. Hou H, Xing W and Li W. Brahma-related gene 1 induces apoptosis in a p53-dependent manner in human rheumatoid fibroblast-like synoviocyte MH7A. Medicine. 2016;95.
95.
Zurück zum Zitat Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–16.PubMedCrossRef Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–16.PubMedCrossRef
96.
Zurück zum Zitat El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRef El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRef
97.
Zurück zum Zitat Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.PubMedPubMedCentralCrossRef Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741.PubMedPubMedCentralCrossRef Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, et al. Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front Genet. 2019;10. Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, et al. Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front Genet. 2019;10.
100.
Zurück zum Zitat Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, et al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res. 2005;65:4673–82.PubMedCrossRef Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, et al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res. 2005;65:4673–82.PubMedCrossRef
102.
Zurück zum Zitat Grabiec AM. Regulation of inflammation by histone deacetylases in rheumatoid arthritis: beyond. Epigenetics 2012. Grabiec AM. Regulation of inflammation by histone deacetylases in rheumatoid arthritis: beyond. Epigenetics 2012.
103.
Zurück zum Zitat Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.PubMedCrossRef Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.PubMedCrossRef
104.
Zurück zum Zitat Hull EE, Montgomery MR and Leyva KJ. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res Int. 2016;2016. Hull EE, Montgomery MR and Leyva KJ. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res Int. 2016;2016.
105.
Zurück zum Zitat Horiuchi M, Morinobu A, Chin T, Sakai Y, Kurosaka M, Kumagai S. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2009;36:1580–9.PubMedCrossRef Horiuchi M, Morinobu A, Chin T, Sakai Y, Kurosaka M, Kumagai S. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2009;36:1580–9.PubMedCrossRef
106.
Zurück zum Zitat Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.PubMedCrossRef Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.PubMedCrossRef
107.
Zurück zum Zitat Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin. 2017;49:567–72.PubMedCrossRef Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin. 2017;49:567–72.PubMedCrossRef
110.
Zurück zum Zitat Mizoguchi F, Hasegawa H and Kohsaka H, editors. Functional screening of micrornas using the inhibitor library identified micrornas to regulate expression of MMP-3 and IL-6 in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol; 2016: Wiley Mizoguchi F, Hasegawa H and Kohsaka H, editors. Functional screening of micrornas using the inhibitor library identified micrornas to regulate expression of MMP-3 and IL-6 in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol; 2016: Wiley
111.
Zurück zum Zitat Moran-Moguel MC, Petarra-Del Rio S, Mayorquin-Galvan EE, Zavala-Cerna MG. Rheumatoid arthritis and miRNAs: a critical review through a functional view. J Immunol Res. 2018;2018:2474529. Moran-Moguel MC, Petarra-Del Rio S, Mayorquin-Galvan EE, Zavala-Cerna MG. Rheumatoid arthritis and miRNAs: a critical review through a functional view. J Immunol Res. 2018;2018:2474529.
112.
Zurück zum Zitat Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 2012;64:1771–9.PubMedCrossRef Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 2012;64:1771–9.PubMedCrossRef
114.
Zurück zum Zitat Inazuka M, Tahira T, Horiuchi T, Harashima S, Sawabe T, Kondo M, et al. Analysis of p53 tumour suppressor gene somatic mutations in rheumatoid arthritis synovium. Rheumatology. 2000;39:262–6.PubMedCrossRef Inazuka M, Tahira T, Horiuchi T, Harashima S, Sawabe T, Kondo M, et al. Analysis of p53 tumour suppressor gene somatic mutations in rheumatoid arthritis synovium. Rheumatology. 2000;39:262–6.PubMedCrossRef
Metadaten
Titel
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes
verfasst von
Mahdi Taghadosi
Mehrnoosh Adib
Ahmadreza Jamshidi
Mahdi Mahmoudi
Elham Farhadi
Publikationsdatum
13.05.2021
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 3/2021
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-021-09202-7

Weitere Artikel der Ausgabe 3/2021

Immunologic Research 3/2021 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.