Skip to main content
Erschienen in: Inflammation 6/2018

16.07.2018 | ORIGINAL ARTICLE

The Pannexin-1 Channel Inhibitor Probenecid Attenuates Skeletal Muscle Cellular Energy Crisis and Histopathological Injury in a Rabbit Endotoxemia Model

verfasst von: Huaiwu He, Dawei Liu, Yun Long, Xiaoting Wang, Bo Yao

Erschienen in: Inflammation | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

This study aimed to investigate the effect of probenecid (Pro) as an inhibitor of the pannexin-1 (Panx-1) channel-mediated release of intracellular ATP to the extracellular compartment on inflammation, cellular energy crisis, and organ injury in a rabbit sepsis model induced by Escherichia coli lipopolysaccharides (LPS). A total of 24 anesthetized and ventilated rabbits were randomly assigned to receive one of four treatments: infusion of LPS without Pro (LPS group), infusion of LPS with Pro (LPS + Pro group), sham operation without Pro (normal group), and sham operation with Pro (normal + Pro group). The LPS group had significantly higher serum ATP levels, serum inflammatory factor levels (TNF-α, IL-6, and IL-1β), and lower ATP concentrations and ATP/ADP ratios in the skeletal muscle tissue than the normal group. Compared to that at baseline, the expression of Panx-1 in peripheral blood cells increased significantly after the infusion of LPS (fluorescence intensity of Panx-1: T0 (baseline) vs. T1 (post-LPS) = 10 ± 1.2 vs. 84 ± 48, P < 0.0001; paired differences 73 ± 46, P = 0.024). Moreover, the LPS group exhibited higher expression of Panx-1 in the skeletal muscle tissue than the normal group. The serum ATP level was significantly positively correlated with IL-1β (R = 0.602, P = 0.001), IL-6 (R = 0.381, P = 0.033), and TNF-α (R = 0.514, P = 0.005) in 24 paired measurements. Compared to the LPS group, the LPS + Pro group had significantly lower levels of inflammatory factors (TNF-α, IL-6, and IL-1β) and serum ATP. In the skeletal muscle tissue, the LPS + Pro group also had a higher ATP concentration (1.1 ± 0.15 vs. 1.33 ± 0.17, P = 0.041) and ATP/ADP ratio (0.37 ± 0.03 vs. 0.51 ± 0.06, P = 0.002) and a lower histopathological damage score (4.67 ± 0.52 vs. 3 ± 0.63, P = 0.004). An overexpression of Panx-1 channel might be responsible for the strong inflammatory response, high serum ATP level, and skeletal muscle cellular energy crisis and histopathological damages in sepsis. Inhibiting Panx-1 channel-mediated release of intracellular ATP could decrease the above-mentioned injuries, and Panx-1 might be a potential therapeutic target in sepsis.
Literatur
1.
Zurück zum Zitat He, H.W., Y. Long, X. Zhou, X. Wang, H. Zhang, W. Chai, N. Cui, H. Wang, and D. Liu. 2018. Oxygen-flow-pressure targets for resuscitation in critical hemodynamic therapy. Shock 49: 15–23.CrossRef He, H.W., Y. Long, X. Zhou, X. Wang, H. Zhang, W. Chai, N. Cui, H. Wang, and D. Liu. 2018. Oxygen-flow-pressure targets for resuscitation in critical hemodynamic therapy. Shock 49: 15–23.CrossRef
2.
Zurück zum Zitat Crouser, E. 2004. Mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Mitochondrion 4: 729–741.CrossRef Crouser, E. 2004. Mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Mitochondrion 4: 729–741.CrossRef
3.
Zurück zum Zitat Albuszies, G., P. Radermacher, J. Vogt, U. Wachter, S. Weber, M. Schoaff, M. Georgieff, and E. Barth. 2005. Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Critical Care Medicine 33: 2332–2338.CrossRef Albuszies, G., P. Radermacher, J. Vogt, U. Wachter, S. Weber, M. Schoaff, M. Georgieff, and E. Barth. 2005. Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Critical Care Medicine 33: 2332–2338.CrossRef
4.
Zurück zum Zitat Brealey, D., M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, and M. Singer. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223.CrossRef Brealey, D., M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, and M. Singer. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223.CrossRef
5.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association 315 (8): 801–810.CrossRef Singer, M., C.S. Deutschman, C.W. Seymour, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association 315 (8): 801–810.CrossRef
6.
Zurück zum Zitat Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. de Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine 45: 486–552.CrossRef Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. de Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine 45: 486–552.CrossRef
7.
Zurück zum Zitat Isakson, B.E., and R.J. Thompson. 2014. Pannexin-1 as a potentiator of ligand-gated receptor signaling Channels. Austin 8 (2): 118–123. Isakson, B.E., and R.J. Thompson. 2014. Pannexin-1 as a potentiator of ligand-gated receptor signaling Channels. Austin 8 (2): 118–123.
8.
Zurück zum Zitat Alves, L.A., R.A. de Melo Reis, C.A. de Souza, et al. 2014. The P2X7 receptor: shifting from a low- to a high-conductance channel—an enigmatic phenomenon? Biochimica et Biophysica Acta 1838 (10): 2578–2587.CrossRef Alves, L.A., R.A. de Melo Reis, C.A. de Souza, et al. 2014. The P2X7 receptor: shifting from a low- to a high-conductance channel—an enigmatic phenomenon? Biochimica et Biophysica Acta 1838 (10): 2578–2587.CrossRef
9.
Zurück zum Zitat Samavati, L., I. Lee, I. Mathes, F. Lottspeich, and M. Hüttemann. 2008. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. The Journal of Biological Chemistry 283 (30): 21134–21144.CrossRef Samavati, L., I. Lee, I. Mathes, F. Lottspeich, and M. Hüttemann. 2008. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. The Journal of Biological Chemistry 283 (30): 21134–21144.CrossRef
10.
Zurück zum Zitat Mariappan, N., C.M. Elks, B. Fink, and J. Francis. 2009. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radical Biology & Medicine 46 (4): 462–470.CrossRef Mariappan, N., C.M. Elks, B. Fink, and J. Francis. 2009. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radical Biology & Medicine 46 (4): 462–470.CrossRef
11.
Zurück zum Zitat Shestopalov, V.I., and Y. Panchin. 2008. Pannexins and gap junction protein diversity. Cellular and Molecular Life Sciences 65: 376–394.CrossRef Shestopalov, V.I., and Y. Panchin. 2008. Pannexins and gap junction protein diversity. Cellular and Molecular Life Sciences 65: 376–394.CrossRef
12.
Zurück zum Zitat Lee, D.Y., I.H. Choi, C.Y. Chung, P.H. Chung, J.G. Chi, and Y.L. Suh. 1993. Effect of tibial lengthening on the gastrocnemius muscle: a histopathologic and morphometric study in rabbits. Acta Orthopaedica Scandinavica 64 (6): 688–692.CrossRef Lee, D.Y., I.H. Choi, C.Y. Chung, P.H. Chung, J.G. Chi, and Y.L. Suh. 1993. Effect of tibial lengthening on the gastrocnemius muscle: a histopathologic and morphometric study in rabbits. Acta Orthopaedica Scandinavica 64 (6): 688–692.CrossRef
13.
Zurück zum Zitat Chekeni, F.B., M.R. Elliott, J.K. Sandilos, S.F. Walk, J.M. Kinchen, E.R. Lazarowski, A.J. Armstrong, S. Penuela, D.W. Laird, G.S. Salvesen, B.E. Isakson, D.A. Bayliss, and K.S. Ravichandran. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (7317): 863–867.CrossRef Chekeni, F.B., M.R. Elliott, J.K. Sandilos, S.F. Walk, J.M. Kinchen, E.R. Lazarowski, A.J. Armstrong, S. Penuela, D.W. Laird, G.S. Salvesen, B.E. Isakson, D.A. Bayliss, and K.S. Ravichandran. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (7317): 863–867.CrossRef
14.
Zurück zum Zitat Idzko, M., D. Ferrari, and H.K. Eltzschig. 2014. Nucleotide signalling during inflammation. Nature 2509: 310–307.CrossRef Idzko, M., D. Ferrari, and H.K. Eltzschig. 2014. Nucleotide signalling during inflammation. Nature 2509: 310–307.CrossRef
15.
Zurück zum Zitat Adinolfi, E., M.G. Callegari, D. Ferrari, et al. 2005. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Molecular Biology of the Cell 16 (7): 3260–3272.CrossRef Adinolfi, E., M.G. Callegari, D. Ferrari, et al. 2005. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Molecular Biology of the Cell 16 (7): 3260–3272.CrossRef
16.
Zurück zum Zitat Luis, A. Cea, Riquelme Anibal Manuel, et al. 2015. Pannexin 1 channels in skeletal muscles. Hypothesis and Theory Article 5 (135): 1–6. Luis, A. Cea, Riquelme Anibal Manuel, et al. 2015. Pannexin 1 channels in skeletal muscles. Hypothesis and Theory Article 5 (135): 1–6.
17.
Zurück zum Zitat Abruzzo, P.M., S. di Tullio, C. Marchionni, S. Belia, G. Fanó, S. Zampieri, U. Carraro, H. Kern, G. Sgarbi, G. Lenaz, and M. Marini. 2010. Oxidative stress in the denervated muscle. Free Radical Research 44: 563–576.CrossRef Abruzzo, P.M., S. di Tullio, C. Marchionni, S. Belia, G. Fanó, S. Zampieri, U. Carraro, H. Kern, G. Sgarbi, G. Lenaz, and M. Marini. 2010. Oxidative stress in the denervated muscle. Free Radical Research 44: 563–576.CrossRef
18.
Zurück zum Zitat (2016) Purinergic signaling and the immune response in sepsis: a review. Clinical Therapeutics 38(5):1054–65. (2016) Purinergic signaling and the immune response in sepsis: a review. Clinical Therapeutics 38(5):1054–65.
19.
Zurück zum Zitat Cauwels, A., E. Rogge, B. Vandendriessche, et al. 2014. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death & Disease 5: e1102.CrossRef Cauwels, A., E. Rogge, B. Vandendriessche, et al. 2014. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death & Disease 5: e1102.CrossRef
20.
Zurück zum Zitat Sumi, Y., T. Woehrle, Y. Chen, Y. Bao, X. Li, Y. Yao, Y. Inoue, H. Tanaka, and W.G. Junger. 2014. Plasma ATP is required for neutro-phil activation in a mouse sepsis model. Shock 42: 142–147.CrossRef Sumi, Y., T. Woehrle, Y. Chen, Y. Bao, X. Li, Y. Yao, Y. Inoue, H. Tanaka, and W.G. Junger. 2014. Plasma ATP is required for neutro-phil activation in a mouse sepsis model. Shock 42: 142–147.CrossRef
21.
Zurück zum Zitat Csóka, B., Z.H. Németh, G. Törő, B. Koscsó, E. Kókai, S.C. Robson, K. Enjyoji, R.H. Rolandelli, K. Erdélyi, P. Pacher, and G. Haskó. 2015. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. The FASEB Journal 29: 25–36.CrossRef Csóka, B., Z.H. Németh, G. Törő, B. Koscsó, E. Kókai, S.C. Robson, K. Enjyoji, R.H. Rolandelli, K. Erdélyi, P. Pacher, and G. Haskó. 2015. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. The FASEB Journal 29: 25–36.CrossRef
22.
Zurück zum Zitat Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in Sepsis. Critical Care Medicine 45 (1): e97–e104.CrossRef Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in Sepsis. Critical Care Medicine 45 (1): e97–e104.CrossRef
23.
Zurück zum Zitat Woehrle, T., L. Yip, A. Elkhal, Y. Sumi, Y. Chen, Y. Yao, P.A. Insel, and W.G. Junger. 2010. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116 (18): 3475–3484.CrossRef Woehrle, T., L. Yip, A. Elkhal, Y. Sumi, Y. Chen, Y. Yao, P.A. Insel, and W.G. Junger. 2010. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116 (18): 3475–3484.CrossRef
24.
Zurück zum Zitat Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16 (3): 177–192.CrossRef Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16 (3): 177–192.CrossRef
25.
Zurück zum Zitat Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis. 8 (7): E552–E557.CrossRef Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis. 8 (7): E552–E557.CrossRef
26.
Zurück zum Zitat Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic Shock. N Engl J Med. Jan 19. [Epub ahead of print], 2018. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic Shock. N Engl J Med. Jan 19. [Epub ahead of print], 2018.
27.
Zurück zum Zitat Shmygalev, S., M. Damm, L. Knels, A. Strassburg, K. Wünsche, R. Dumke, S.N. Stehr, T. Koch, and A.R. Heller. 2016. IgM-enriched solution BT086 improves host defense capacity and energy store preservation in a rabbit model of endotoxemia. Acta Anaesthesiologica Scandinavica 60 (4): 502–512.CrossRef Shmygalev, S., M. Damm, L. Knels, A. Strassburg, K. Wünsche, R. Dumke, S.N. Stehr, T. Koch, and A.R. Heller. 2016. IgM-enriched solution BT086 improves host defense capacity and energy store preservation in a rabbit model of endotoxemia. Acta Anaesthesiologica Scandinavica 60 (4): 502–512.CrossRef
Metadaten
Titel
The Pannexin-1 Channel Inhibitor Probenecid Attenuates Skeletal Muscle Cellular Energy Crisis and Histopathological Injury in a Rabbit Endotoxemia Model
verfasst von
Huaiwu He
Dawei Liu
Yun Long
Xiaoting Wang
Bo Yao
Publikationsdatum
16.07.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0846-z

Weitere Artikel der Ausgabe 6/2018

Inflammation 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.