Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Research article

The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan Province, China

verfasst von: Nian Dong, Yongrui Li, Jiayong Zhao, Hui Ma, Jinyan Wang, Beibei Liang, Xinying Du, Fuli Wu, Shengli Xia, Xiaoxia Yang, Hongbo Liu, Chaojie Yang, Shaofu Qiu, Hongbin Song, Leili Jia, Yan Li, Yansong Sun

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

Salmonella enterica subsp. enterica serovar Typhimurium infections continue to be a significant public health threat worldwide. The aim of this study was to investigate antibiotic resistance among 147 S. Typhimurium isolates collected from patients in Henan, China from 2006 to 2015.

Methods

147 S. Typhimurium isolates were collected from March 2006 to November 2015 in Henan Province, China. Antimicrobial susceptibility testing was performed, and the resistant genes of ciprofloxacin, cephalosporins (ceftriaxone and cefoxitin) and azithromycin were detected and sequenced. Clonal relationships were assessed by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE).

Results

Of the 147 isolates, 91.1% were multidrug resistant (MDR), with 4.1% being resistant to all antibiotic classes tested. Of concern, 13 MDR isolates were co-resistant to the first-line treatments cephalosporins and ciprofloxacin, while three were also resistant to azithromycin. Seven PFGE patterns were identified among the 13 isolates. All of the isolates could be assigned to one of four main groups, with a similarity value of 89%. MLST assigned the 147 isolates into five STs, including two dominant STs (ST19 and ST34). Of the 43 ciprofloxacin-resistant isolates, 39 carried double gyrA mutations (Ser83Phe, Asp87Asn/Tyr/Gly) and a single parC (Ser80Arg) mutation, including 1 isolate with four mutations (gyrA: Ser83Phe, Asp87Gly; parC: Ser80Arg; parE: Ser458Pro). In addition, 12 isolates not only carried mutations in gyrA and parC but also had at least one plasmid-mediated quinolone resistance (PMQR) gene. Among the 32 cephalosporin-resistant isolates, the most common extended-spectrum β-lactamase (ESBL) gene was blaOXA-1, followed by blaCTX-M, blaTEM-1, and blaCMY-2. Moreover, the mphA gene was identified in 5 of the 15 azithromycin-resistant isolates. Four MDR isolates contained ESBL and PMQR genes, and one of them also carried mphA in addition.

Conclusion

The high level of antibiotic resistance observed in S. Typhimurium poses a great danger to public health, so continuous surveillance of changes in antibiotic resistance is necessary.
Hinweise
Nian Dong, Yongrui Li, Jiayong Zhao, Hui Ma and Jinyan Wang are co-first authors.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-05203-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ESBLs
Extended-spectrum β-lactamases
PMQR
Plasmid-mediated quinolone resistace
QRDR
Quinolone resistance determing region
MICs
Minimal inhibition concentration
MLST
Multilocus sequence typing
gyrA
DNA gyrase
parC
Topoisomerase IV

Background

Salmonella enterica subsp. enterica serovar Typhimurium is an important causative agent of human gastroenteritis and bacteremia in many countries. Worldwide, there are 93.8 million cases of human gastroenteritis due to Salmonella infection annually, associated with a death toll as high as 150,000 [1]. Over 2700 serovars have been identified using the White-Kauffmann-Le Minor scheme [1, 2], of which, S. Typhimurium is the most commonly associated with human and animal disease globally. S. Typhimurium is also the most prevalent serovars causing invasive Nontyphoidal Salmonella infections (iNTS), among iNTS cases, 63.7% occurred in children < 5 years of age globally [3]. Moreover, S. Typhimurium is the second most prevalent serotype in China [4].
Following the emergence of antimicrobial-resistant Salmonella, and in particular, the increasing prevalence of an epidemic multidrug-resistant (MDR) S. Typhimurium strain definitive phage type 104 (DT104) first observed during the 1990s [4], the antimicrobial resistance of Salmonella has become a matter of concern worldwide. Therefore, the appropriate selection of antimicrobial drugs in treating Salmonella infections is necessary. As previously described, cephalosporins (CEP) and ciprofloxacin (CIP) are first-line treatment agents for such infections [5], and azithromycin (AZI) has recently been approved by the US Food and Drug Administration as an additional therapy [6]. Salmonella isolates with reduced susceptibility to fluoroquinolones have been frequently reported in several countries, such as Kuwait, the United Arab Emirates, France [79]. Moreover, strains resistant to third-generation CEP have been described [10]. Given that these drugs are also first-line treatments for Salmonella infections in children, for whom fluoroquinolones are contraindicated, this represents a troubling development [10, 11]. Furthermore, a study of Salmonella in Cambodia revealed high rates of decreased susceptibility to CIP and AZI [12]. Worryingly, a recent report also identified a number of strains with concurrent resistance to CEP, CIP, and AZI in China [13].
Within China, significant regional differences in bacterial antibiotic resistance profiles have been demonstrated [14]. Henan is the most populous province of Central China and a region of substantial labor productivity. High levels of migration are expected to accelerate the spread of drug-resistant bacteria, exacerbating the threat to public health. Therefore, the objectives of this study were to determine the antimicrobial resistance profiles and molecular epidemiological characteristics of S. Typhimurium present in Henan between 2006 and 2015. This investigation will assist in establishing a scientific basis for the prevention and control of intestinal infectious diseases and guide the selection of appropriate antimicrobials for treatment of S. Typhimurium infections.

Methods

Bacterial isolates and serotypes

From 7 March 2006 to 28 November 2015, S. Typhimurium isolates were obtained from human patients with diarrhea and clinically suspected Salmonella infections, following previously described procedures [15]. The strains were isolated from 15 sentinel hospitals located in 11 different geographic regions in Henan Province, which covers an area of 167,000 km2 and is one of the most populous province (more than 95 million people) in China. Five of the hospitals were located in rural areas and the remaining 10 in urban areas. These hospitals consisted of second- and third-grade hospitals, township hospitals and village clinics. Patients generally have fever, diarrhea, abdominal pain, vomiting, watery stool and other clinical symptoms. Fresh fecal specimens collected from diarrhea patients of all ages were inoculated into Carry-Blair medium and forwarded to the regional CDC laboratories within 4 h. The stool samples were enriched in selenite brilliant green broth (Becton Dickinson and Co., Sparks, MD, USA) for 16–18 h at 37 °C, followed by incubation on Salmonella/Shigella agar (Land Bridge, Beijing, China) overnight at 37 °C. The resulting black colonies were streaked onto CHROMagar Salmonella agar (CHROMagar, Paris, France) and kept for 16–18 h at 37 °C to confirm their identity. The resultant purple colonies were then subjected to triple sugar iron agar, motility indole urea agar, l-lysine decarboxylase, and β-galactosidase (o-nitrophenyl-β-d-galactopyranoside) tests. Subsequently, a presumptive Salmonella colony from each sample was stored in semisolid agar and submitted to our laboratory for further confirmation. Age, gender, geographic origin, date and hospitals were recorded as part of the standard information present on the laboratory request forms. All isolates were identified using API 20E strips (bioMérieux Vitek, Marcy-l’Etoile, France) and tests for O and H antigens by slide agglutination with hyperimmune sera (State Serum Institute, Copenhagen, Denmark). Isolates were assigned to serovars according to the Kauffman-White scheme [7].

Antimicrobial susceptibility testing

The susceptibility of each isolate to the following 13 antimicrobial agents was evaluated: ceftriaxone (AXO), cefoxitin (FOX), ampicillin (AMP), amoxicillin/clavulanic acid, 2:1 ratio (AUG2), CIP, nalidixic acid (NAL), AZI, tetracycline (TET), chloramphenicol (CHL), trimethoprim/sulfamethoxazole (SXT), sulfisoxazole (FIS), gentamicin (GEN), and streptomycin (STR). MICs were determined by broth microdilution using a 96-well microtiter plate (Sensititre CMV3AGNF, Trek Diagnostic Systems; Thermo Fisher Scientific, Inc., West Sussex, UK), with results being interpreted according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) [16]. Isolates resistant to three or more classes of antimicrobial agents were defined as MDR. The ACSSuT MDR profile, which was the prevalent resistance pattern in S. Typhimurium, was defined as resistance to AMP, CHL, STR, FIS, and TET [17]. Escherichia coli ATCC 25922 was used in susceptibility tests as a quality control strain, as specified by the Clinical and Laboratory Standards Institute.

Multilocus sequence typing (MLST)

MLST analysis of the S. Typhimurium isolates was conducted according to previously described protocols [18]. Seven housekeeping genes (thrA, dnaN, aroC, purE, hisD, hemD, and sucA) were amplified by PCR using Ex Taq DNA polymerase (TaKaRa, Dalian, China) and primers whose sequences were downloaded from the abovementioned MLST resource. The PCR cycling conditions were as follows: 95 °C for 5 min; 30 cycles of 95 °C for 30 s, 55 °C for 45 s, and 72 °C for 1 min; and 72 °C for 7 min. The amplicons were sequenced by BGI (BGI, Beijing, China) and the resulting sequence data were checked against the MLST database [19] to establish sequence types (STs). The eBURST analysis was used with multilocus data to define groups of closely related isolates and display the relatedness between very different multilocus genotypes as previously described [20].

Pulsed-field gel electrophoresis (PFGE)

S. Typhimurium isolates co-resistant to CIP and CEP were analyzed by PFGE according to the PulseNet protocol for Salmonella [21]. Salmonella standard strain Braenderup H9812 was employed as the molecular weight marker [22]. Agarose plug slices were digested with XbaI (TaKaRa) at 37 °C for 3 h, and electrophoresis was performed under the following conditions: voltage, 6 V/cm; switch time, 2.16–63.8 s (linear ramping); electric field angle, 120°; electrophoresis time, 19 h; and buffer temperature, 14 °C. PFGE patterns were analyzed using BioNumerics software version 6.0 (Applied Maths, Sint-Martens-Latem, Belgium), employing the Dice correlation coefficient and unweighted pair group method with arithmetic mean, with tolerance set to 1.2%.

PCR amplification and DNA sequencing

Quinolone resistance-determining regions of the DNA topoisomerase genes gyrA, gyrB, parC, and parE were amplified by PCR assays as previously described [23]. Presence of the plasmid-mediated quinolone resistance (PMQR) genes aac(6′)-Ib-cr, qnrA, qnrB, qnrD, and qnrS was also established by PCR [24]. Amplification of antibiotic-resistance genes of the blaTEM, blaSHV, blaOXA, and blaCTX-M groups and blaCMY groups were performed by PCR for all isolates resistant to CEP [8, 24, 25]. In addition, for the AZI-resistant isolates, presence of the macrolide-resistance genes mphA, mphB, ermA, ermB, ereA, mefA, and msrA were tested [26]. PCR products were fully sequenced by BGI, and all nucleotide sequences were analyzed by comparisons against corresponding sequences in GenBank.

Statistical analysis

The chi-squared test and Fisher exact probability test were used for data analysis in SPSS version 17.0 (SPSS Inc., Chicago, IL, USA). P-values < 0.05 were considered to indicate statistical significance.

Results

S. Typhimurium isolates from patients in Henan, China, from 2006 to 2015

A total of 147 S. Typhimurium isolates were recovered from 15 hospitals in 11 different geographic regions of Henan Province from 2006 to 2015, and the strains were distributed every year in each region (Table S1). Of these, 103 (70.1%) were isolated from patients below 6 years of age, and 91 (61.9%) from those less than 2 years old. Nine (6.1%) isolates were retrieved from patients 7 to 18 years of age, 21 (14.3%) from those 19 to 59 years of age, and 12 (8.1%) from those more than 59 years old. Two isolates (1.4%) derived from individuals of unknown age.

Antimicrobial susceptibility testing

The resistance patterns of the 147 S. Typhimurium isolates in response to the 13 antimicrobials tested are shown in Tables 1 and 2. There were 89% of the isolates which were resistant to AMP, TET or FIS, followed by NAL (115, 78.2%), SXT (114, 77.6%), CHL (113, 76.9%), GEN (102, 69.3%), STR (101, 68.7%), and AUG2 (97, 66%). Importantly, some isolates demonstrated strong resistance to at least one of four first-line treatment agents, namely, CIP (43, 29.2%), AXO (24, 16.3%), AZI (15, 10.2%), and FOX (9, 6.1%) (Table 1). All of the antimicrobial resistance levels of S. Typhimurium isolates in Henan were significantly higher than the level described in the 2014 National Antimicrobial Resistance Monitoring System report from the USA [27] (P < 0.05), and the resistance rate of the older generation of antibiotics (AUG2, NAL, CHL, SXT, GEN, STR) remained at a relatively high level, which showed a decline after 2011 (Fig. S1). Meanwhile, the resistance rate of two first-line treatment agents (FOX and AZI) remained at a relatively low level, which showed a rise after 2011. Particularly, the resistance rate of CIP began to decline significantly after 2008 from high (60%) to low (0%), but the resistance rate of AMP and TET remained at a high level (more than 80%) from 2006 to 2015, and the resistance rate of AXO was decreased from 35.7 to 18.2% (Fig. 1). Furthermore, 13 (8.8%) isolates were co-resistant to CIP and CEP, of which, three were also resistant to AZI.
Table 1
Antimicrobial susceptibility of 147 S. Typhimurium isolates collected from patients in Henan, China, between 2006 and 2015
Antimicrobial
No. isolates (%)
*NARMS Report n(%)
P-value
Resistant
Intermediate
Susceptible
β-Lactams
 Ceftriaxone
24 (16.3)
0 (0.0)
123 (83.7)
14 (5.3)
P < 0.05
 Cefoxitin
9 (6.1)
0 (0.0)
138 (93.8)
14 (5.3)
P < 0.05
 Ampicillin
132 (89.8)
0 (0.0)
15 (10.2)
52 (19.8)
P < 0.05
 Amoxicillin/clavulanic acid, 2:1 ratio
97 (66.0)
0 (0.0)
50 (34.0)
14 (5.3)
P < 0.05
Quinolones
 Ciprofloxacin
43 (29.2)
0 (0.0)
104 (70.7)
1 (0.4)
P < 0.05
 Nalidixic acid
115 (78.2)
0 (0.0)
32 (21.8)
7 (2.7)
P < 0.05
Macrolides
 Azithromycin
15 (10.2)
0 (0.0)
132 (89.8)
1 (0.4)
P < 0.05
Tetracyclines
 Tetracycline
132 (89.8)
0 (0.0)
15 (10.2)
59 (22.5)
P < 0.05
Amphenicols
 Chloramphenicol
113 (76.9)
2 (1.4)
32 (21.7)
42 (16.0)
P < 0.05
Sulfonamides and synergistic agents
 Trimethoprim/sulfamethoxazole
114 (77.6)
0 (0.0)
33 (22.4)
6 (2.3)
P < 0.05
 Sulfisoxazole
132 (89.8)
0 (0.0)
15 (10.2)
66 (25.2)
P < 0.05
Aminoglycosides
 Gentamicin
102 (69.3)
1 (0.7)
44 (30.0)
8(3.1)
P < 0.05
 Streptomycin
101 (68.7)
25 (17.0)
21 (14.3)
65 (24.8)
P < 0.05
* The antimicrobial resistant number and rate of 262 S. Typhimurium isolates were cited from the National Antimicrobial Resistance Monitoring System report from the USA in 2014 [27]
Table 2
Multidrug resistance patterns of S. Typhimurium isolates collected from patients in Henan, China, between 2006 and 2015
Multidrug resistance pattern
Number of isolates
Percentage
* NARMS Report(%)
P-value
≥ 3 antimicrobial classes
134
91.1
21.8
P < 0.05
≥ 4 antimicrobial classes
133
90.5
18.7
P < 0.05
≥ 5 antimicrobial classes
117
79.6
15.6
P < 0.05
≥ 6 antimicrobial classes
97
65.9
= 7 antimicrobial classes
6
4.1
ACSSuT
75
51.0
14.5
P < 0.05
ACSSuT+AZI
7
4.8
ACSSuT+CIP
31
21.1
ACSSuT+CEP
20
13.6
ACSSuT+CEP+CIP
10
6.8
ACSSuT+CEP+CIP + AZI
2
1.4
Sensitive to all
4
2.7
CEP cephalosporins, CIP ciprofloxacin, AZI, azithromycin
* The percentage of multidrug resistance patterns of S. Typhimurium isolates were cited from the National Antimicrobial Resistance Monitoring System report from the USA in 2014 [27]
In total, 134 (91.1%) isolates were MDR (Table 2). Of these, 133 (90.5%), 117 (79.6%), 97 (65.9%), and six (4.1%) were resistant to at least four classes of antimicrobials, five classes of antimicrobials, six classes of antimicrobials, and all classes of antimicrobials tested, respectively. Seventy-five (51.0%) MDR isolates exhibited the ACSSuT resistance pattern, of which, 41.3% were co-resistant to CIP, 26.6% were co-resistant to CEP, and 9.3% were co-resistant to AZI. Notably, two (1.4%) ACSSuT-type isolates were co-resistant to all three of these antimicrobials (Table 2). The MDR (≥3 and ≥ 4 antimicrobial classes) rate remained at a high level, while MDR (≥5 and ≥ 6 antimicrobial classes) and ACSSuT resistance pattern showed a decline over time (Fig. 2). But the rates of MDR (≥3, ≥4 and ≥ 5 antimicrobial classes) and ACSSuT were significantly higher than the rate described in the 2014 NARMS report [27] (P < 0.05) (Table 2).

MLST and PFGE analyses

MLST assigned the 147 isolates into five STs as follows: ST19 (72, 49.0%), ST34 (67, 45.6%), ST36 (6, 4.0%), ST3265 (1, 0.7%), and ST13(1, 0.7%) (Fig. 3). The eBURST analysis showed there were four eBURST groups between the five STs, ST19 and ST34 belonged to one group, and ST36, ST3265 and ST13 belonged to another groups, respectively. ST19 and ST34 are single locus variants (SLVs) in which one of the seven MLST loci has been altered, due to different sequence values of dnaN. PFGE was performed to determine the genetic relatedness of those isolates co-resistant to CIP and CEP. Seven PFGE patterns (Profile 1–Profile 7) were identified among the 13 isolates. All of the isolates could be assigned to one of four main groups (A–D), with a similarity value of 89%. PFGE patterns revealed both diversity and the predominance of certain profiles. Eight isolates belonged to group A, in which three profiles were observed and Profile 3 was the main pattern type including six isolates. Group C and group D contained two isolates each, while only one isolate was present in group B (Fig. 4).

PCR amplification and DNA sequencing

Mechanisms of resistance in the 43 CIP-resistant S. Typhimurium isolates were investigated. All of these isolates were found to have gyrA mutation and 39 (90.7%) of them carrying two mutations (Ser83Phe and Asp87Asn/Tyr/Gly), and four (9.3%) carrying only one (Asp87Asn or Asp87Tyr). Thirty-nine isolates (90.7%) had the parC Ser80Arg mutation. In addition, double gyrA mutations together with a single parC (Ser80Arg) mutation were detected in 38 (88.4%) of the 43 isolates. None carried a gyrB mutation; however, a parE mutation (Ser458Pro) was identified in one isolate, which interestingly also carried two gyrA mutations (Ser83Phe and Asp87Gly) and a single parC (Ser80Arg) mutation. Furthermore, two PMQR determinants were detected: qnrS1 (11 isolates, 25.6%) and aac(6′)-Ib-cr (seven isolates, 16.3%). Among the four isolates with a single gyrA mutation (Asp87Tyr or Asp87Asn), two had the aac(6′)-Ib-cr gene, one had the qnrS gene and one did not have either. None of the isolates carried qnrA, qnrB, or qnrD, and 28 (65.1%) of 43 isolates didn’t carry any PMQR determinants tested.
The 32 S. Typhimurium isolates found to be resistant to CEP antibiotics all carried β-lactamase gene and 16 (50%) had at least two ESBL genes. PCR amplification and sequencing showed that 28 (87.5%) isolates were positive for blaOXA-1, 13 (40.6%) for blaCTX-M, nine (28.1%) for blaTEM-1, and two (6.3%) for blaCMY-2. All 32 isolates were negative for blaSHV. Furthermore, sequencing revealed the presence of blaCTX-M-14, blaCTX-M-15, and blaCTX-M-55 in six, two, and five isolates, respectively.
PCR showed that only five (33.3%) of the 15 azithromycin-resistant isolates were positive for mphA, and none of them carried mphB, ermA, ermB, ereA, mefA, or msrA.
Among the 13 isolates resistant to both CIP and CEP, 8 harbored ESBL and carried two mutations in gyrA and one in parC, one harbored ESBL and carried one mutation in parC, 4 harbored ESBL and PMQR genes (Table 3). Moreover, each of these four carried two mutations in gyrA and one in parC. Two isolates each harbored four types of antimicrobial-resistance gene: qnrS/aac(6′)-Ib-cr/blaOXA/blaCTX (n = 1) and aac(6′)-Ib-cr/blaOXA/blaCTX/blaTEM (n = 1). One isolate exhibited three antimicrobial-resistance gene types (qnrS/blaCTX/blaOXA), and one other was found to have two types (qnrS/blaOXA). In addition, 2 of the 13 isolates harbored the mphA gene.
Table 3
Antimicrobial resistance determinants of clinical S. Typhimurium isolates resistant to both ciprofloxacin and cephalosporins
Strain
Years
STs
QRDR mutations
PMQR genes
β-Lactamase genes and types
Macrolide resistance gene
gyrA
parC
qnrS
aac(6′)-Ib-cr
blaCTX-M
blaOXA
blaCMY-2
blaTEM-1
mphA
Sal0475
2006
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-55
blaOXA-1
blaCMY-2
Sal0485
2006
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-15
blaOXA-1
Sal0490
2007
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-55
blaOXA-1
Sal0496
2007
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-55
blaOXA-1
Sal0507
2008
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-15
blaOXA-1
Sal0515
2008
19
Ser83Phe, Asp87Asn
Ser80Arg
aac(6′)-Ib-cr
blaCTX-55
blaOXA-1
blaTEM-1
mphA
Sal0525
2009
19
Ser83Phe, Asp87Asn
Ser80Arg
blaOXA-1
Sal0616
2010
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-14
blaOXA-1
Sal0552
2010
19
Ser83Phe, Asp87Asn
Ser80Arg
blaCTX-14
blaOXA-1
Sal0553
2010
19
Asp87Tyr
WT
blaOXA-1
mphA
Sal0572
2011
19
Ser83Phe, Asp87Asn
Ser80Arg
qnrS1
blaCTX-55
blaOXA-1
Sal0619
2012
19
Ser83Phe, Asp87Asn
Ser80Arg
qnrS1
aac(6′)-Ib-cr
blaCTX-55
blaOXA-1
Sal0592
2013
19
Ser83Phe, Asp87Asn
Ser80Arg
qnrS1
blaOXA-1
QRDR quinolone resistance-determining region, PMQR plasmid-mediated quinolone resistance, WT wild type

Discussion

S. Typhimurium is one of the most prevalent Salmonella serotypes in the world, which was frequently resistant to ampicillin, amoxicillin/clavulanic acid, ceftriaxone, chloramphenicol, kanamycin, nalidixic acid, streptomycin, trimethoprim-sulfamethoxazole, and tetracyclines [2830]. In this study, the S. Typhimurium isolates examined exhibited high rates of resistance to older-generation antimicrobials, and MDR (91.1%) showed the predominant resistance profile over the potential 10 year in Henan province, of which, 51.0% exhibited the ACSSuT resistance pattern. CEP, CIP, and AZI are recommended as first-line treatments for Salmonella infections [5, 6], and surprisingly, resistance rates to these antibiotics among the isolates tested were far higher than the values given in the 2014 National Antimicrobial Resistance Monitoring System (NARMS) report [27]. In addition, we found that the resistance rate of CEP and AZI showed a rise over time, while the resistance rate of CIP began to decline. Of concern, 91.1% of the isolates in the present investigation were MDR, an estimate higher than those in previous studies in Guangdong and Shanghai and in the abovementioned report [27, 31, 32]. More importantly, it is noteworthy that 13 (8.84%) isolates were co-resistant to CIP and CEP, and that all of these were also resistant to at least five additional antimicrobial classes, indicating that CIP and CEP resistant S. Typhimurium isolates have been disseminated among communities in Henan. Notably, three of the 13 isolates also exhibited resistance to AZI. Only some clinical S. Typhimurium strains have previously been documented with this resistance profile in China, 12 (2%) of 546 S. Typhimurium isolates resistant to both CIP and AXO were recovered from patients in hospitals during the period of 2005 to 2011; among these 12 isolates, two were also resistant to AZI [13]. And ACSSuT Salmonella co-resistant to quinolones and cephalosporins will make treatment even more difficult, and the spread of these isolates will pose a real threat to global public health. The above analyses therefore reveal that S. Typhimurium resistance patterns have obviously changed in recent years (Table 2 and Table S1), and empirical therapy should keep pace with these changes. Of concern is 6 (4.1%) strains are resistant to all antibiotic classes tested in our study, it meant we were almost impossible to find an effective treatment for infections. This situation demands regular surveillance of antimicrobial resistance and implements an efficient infection control program. We should control the injudicious use of antibiotics, and manage the antibiotics which are readily available in pharmacies without a prescription. Beacause antibiotic resistance could be driven by antibiotic consumption, the changing composition of consumption may also reflect alterations in patterns of resistance [33]. Otherwise, antimicrobial resistance will become more and more serious with such a sustained selective pressure. Henan Province is located in Central China, representing approximately 7% of the Chinese population, and is a major transport hub with substantial population mobility. If these MDR strains identified here become as prevalent as definitive phage type 104 worldwide, a more serious threat to national and international public health would be posed. It is therefore essential that antimicrobial resistance be monitored and appropriate drugs be chosen for S. Typhimurium infections.
In order to facilitate understanding of the fundamental factors underlying bacterial antimicrobial resistance and establish measures for its prevention, examination of the molecular mechanisms responsible is urgently needed. Salmonella CIP resistance has principally been attributed to point mutations in the quinolone resistance-determining regions of genes encoding the target gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) enzymes [7, 34]. Two gyrA mutations affecting amino acid residues 83 and 87 have been identified in S. Typhimurium with high-level resistance to CIP, and variations in other target enzyme-encoding genes such as parC and parE increase such resistance [35, 36]. In the present study, 43 CIP-resistant isolates were identified, all of which had at least one gyrA mutation. Thirty-nine (91%) of these carried two such mutations and showed high-level resistance. One isolate exhibiting a high degree of CIP resistance carried two gyrA mutations (Ser83Phe and Asp87Gly), one parC mutation (Ser80Arg), and a single parE mutation (Ser458Pro). This parE sequence variation has been reported previously in Taiwan, Hong Kong, and Wuhan [3739], suggesting that it has the potential to become prevalent in China. As previously described, PMQR genes such as qnr and aac(6′)-Ib-cr have also been established as conferring CIP resistance [40]. The first PMQR gene was identified in a clinical isolate of Klebsiella pneumoniae in 1998 [41], and to date, various PMQR gene types have been detected in clinical Salmonella isolates from humans worldwide [4244]. In this study, the genes qnrS1 and aac(6′)-Ib-cr were found to be present in 25.6% (11 isolates) and 16.3% (seven isolates) of the 43 CIP-resistant isolates, respectively. Interestingly, 12 isolates simultaneously carried two gyrA mutations, a single parC mutation, and at least one PMQR gene, and thus demonstrated a high level of CIP resistance. However, three isolates highly resistant to CIP harbored only single gyrA mutations affecting amino acid position 87. The fact that they also carried qnrS1 or aac(6′)-Ib-cr indicates that the presence of PMQR genes can increase CIP MICs [37, 40].
Production of β-lactamases is considered the predominant mechanism of bacterial resistance to CEP [45]. Among the 32 CEP-resistant isolates in the current work, blaOXA was the most frequently observed β-lactamase gene (n = 28), with only blaOXA-1 being detected, suggesting that it is prevalent among S. Typhimurium in Henan. OXA-type β-lactamases are characterized by high levels of hydrolytic activity against oxacillin and cloxacillin, and confer resistance to AMP and CEP [46], compounding the difficulty faced in choosing antimicrobials for treatment of S. Typhimurium infections. In recent years, the blaOXA gene has also been recorded at high frequencies among other Enterobacteriaceae [47]. Previous studies have shown that CMY-2-type β-lactamases encoded by the plasmid-borne blaCMY-2 gene are the most prevalent and problematic damaging β-lactamase of such enzymes [48]. Although the blaCMY-2 resistance gene has been documented in Salmonella isolates from many countries [49], its presence in China has only been reported in Shandong, Shanxi, and Sichuan Provinces [5052]. In the current study, one isolate was positive for blaCMY-2, blaCTX-M, and blaOXA and resistant to all antimicrobial classes tested. To the best of our knowledge, this is the first report of blaCMY-2-positive Salmonella in Henan. Of the 32 CEP-resistant isolates in our investigation, 40% harbored blaCTX-M genes, while 28.1% carried the blaTEM-1 resistance gene. We also found that some of these isolates harbored at least two CEP-resistance genes at the same time. As ESBL genes are usually located on antimicrobial-resistance plasmids, they can be easily transferred between different species of bacteria [53]. We should therefore pay consideration to such phenomena and make every effort to take preventive measures.
ST19 and ST34 have been shown to be common S. Typhimurium STs responsible for infections worldwide [5456]. Here, these two STs were also the most commonly encountered, indicating their predominance in Henan. Of the 43 CIP-resistant isolates, 39 were categorized as ST19, indicating a relationship between this ST and resistance to CIP (P < 0.05). Moreover, 13 MDR isolates co-resistant to CIP and CEP were identified as ST19, suggesting that the ST19 is prevalent among MDR S. Typhimurium in Henan. According to our data, we note that only by combining etiological and epidemiological information can the characteristics of the spread of resistant clonal strains be better understood.

Conclusions

We analyzed the antimicrobial resistance and basic molecular mechanisms underlying CIP and CEP resistance of S. Typhimurium isolates in Henan, China, and explored their genetic relatedness. These isolates not only exhibited high rates of resistance to traditional antimicrobials but also show high resistance rates to the first-line treatments for Salmonella infection. More importantly, we identified certain MDR isolates co-resistant to CEP, CIP, and AZI, suggesting that the choice of treatment for Salmonella infection has become increasingly difficult. Among the isolates, we detected various plasmid-encoded antimicrobial-resistance genes, including PMQR, ESBL, and mphA genes, with some isolates even carrying two or more types, posing a serious threat to global public health. Therefore, more comprehensive surveillance is essential to prevent further spread of resistant clonal strains.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-05203-3.

Acknowledgements

The authors appreciate the Henan Center for Disease Control and Prevention staff for preparing the isolates.
The stool samples from human patients with diarrhea were collected and screened in sentinel hospitals based on a national pathogen monitoring system, during our routine surveillance of S. Typhimurium. This study was approved by the ethics committees of the Academy of Military Medical Sciences (Beijing, China). Permission and written informed consent was obtained from patients for sample collection and subsequent usage for research purposes. Written informed consent for participants under 16 was obtained from the parents/guardians of the participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–9.PubMed Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–9.PubMed
2.
Zurück zum Zitat Zhang J, Wei L, Kelly P, Freeman M, Jaegerson K, Gong J, Xu B, Pan Z, Xu C, Wang C. Detection of Salmonella spp. using a generic and differential FRET-PCR. PloS One. 2013;8(10):e76053.PubMedPubMedCentral Zhang J, Wei L, Kelly P, Freeman M, Jaegerson K, Gong J, Xu B, Pan Z, Xu C, Wang C. Detection of Salmonella spp. using a generic and differential FRET-PCR. PloS One. 2013;8(10):e76053.PubMedPubMedCentral
3.
Zurück zum Zitat Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive Nontyphoidal Salmonella disease, 2010. Emerg Infect Dis. 2015;21(6):941–9.PubMedCentral Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive Nontyphoidal Salmonella disease, 2010. Emerg Infect Dis. 2015;21(6):941–9.PubMedCentral
4.
Zurück zum Zitat Ran L, Wu S, Gao Y, Zhang X, Feng Z, Wang Z, Kan B, Klena JD, Lo Fo Wong DM, Angulo FJ, et al. Laboratory-based surveillance of nontyphoidal Salmonella infections in China. Foodborne Pathog Dis. 2011;8(8):921–7.PubMed Ran L, Wu S, Gao Y, Zhang X, Feng Z, Wang Z, Kan B, Klena JD, Lo Fo Wong DM, Angulo FJ, et al. Laboratory-based surveillance of nontyphoidal Salmonella infections in China. Foodborne Pathog Dis. 2011;8(8):921–7.PubMed
5.
Zurück zum Zitat Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ. Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med. 1998;338(19):1333–8.PubMed Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ. Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med. 1998;338(19):1333–8.PubMed
6.
Zurück zum Zitat Sjolund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla FM, Fedorka-Cray P, Zhao S, Crump JA, Whichard JM. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother. 2011;55(9):3985–9.PubMedPubMedCentral Sjolund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla FM, Fedorka-Cray P, Zhao S, Crump JA, Whichard JM. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother. 2011;55(9):3985–9.PubMedPubMedCentral
7.
Zurück zum Zitat Hakanen A, Kotilainen P, Jalava J, Siitonen A, Huovinen P. Detection of decreased fluoroquinolone susceptibility in salmonellas and validation of nalidixic acid screening test. J Clin Microbiol. 1999;37(11):3572–7.PubMedPubMedCentral Hakanen A, Kotilainen P, Jalava J, Siitonen A, Huovinen P. Detection of decreased fluoroquinolone susceptibility in salmonellas and validation of nalidixic acid screening test. J Clin Microbiol. 1999;37(11):3572–7.PubMedPubMedCentral
8.
Zurück zum Zitat Weill FX, Guesnier F, Guibert V, Timinouni M, Demartin M, Polomack L, Grimont PA. Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France (1993 to 2003). J Clin Microbiol. 2006;44(3):700–8.PubMedPubMedCentral Weill FX, Guesnier F, Guibert V, Timinouni M, Demartin M, Polomack L, Grimont PA. Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France (1993 to 2003). J Clin Microbiol. 2006;44(3):700–8.PubMedPubMedCentral
9.
Zurück zum Zitat Rotimi VO, Jamal W, Pal T, Sonnevend A, Dimitrov TS, Albert MJ. Emergence of multidrug-resistant Salmonella spp. and isolates with reduced susceptibility to ciprofloxacin in Kuwait and the United Arab Emirates. Diagn Microbiol Infect Dis. 2008;60(1):71–7.PubMed Rotimi VO, Jamal W, Pal T, Sonnevend A, Dimitrov TS, Albert MJ. Emergence of multidrug-resistant Salmonella spp. and isolates with reduced susceptibility to ciprofloxacin in Kuwait and the United Arab Emirates. Diagn Microbiol Infect Dis. 2008;60(1):71–7.PubMed
10.
Zurück zum Zitat Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32(2):263–9. Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32(2):263–9.
11.
Zurück zum Zitat Zhao S, Blickenstaff K, Glenn A, Ayers SL, Friedman SL, Abbott JW, PF MD. Beta-lactam resistance in salmonella strains isolated from retail meats in the United States by the National Antimicrobial Resistance Monitoring System between 2002 and 2006. Appl Environ Microbiol. 2009;75(24):7624–30.PubMedPubMedCentral Zhao S, Blickenstaff K, Glenn A, Ayers SL, Friedman SL, Abbott JW, PF MD. Beta-lactam resistance in salmonella strains isolated from retail meats in the United States by the National Antimicrobial Resistance Monitoring System between 2002 and 2006. Appl Environ Microbiol. 2009;75(24):7624–30.PubMedPubMedCentral
12.
Zurück zum Zitat Vlieghe ER, Phe T, De Smet B, Veng CH, Kham C, Bertrand S, Vanhoof R, Lynen L, Peetermans WE, Jacobs JA. Azithromycin and ciprofloxacin resistance in Salmonella bloodstream infections in Cambodian adults. PLoS Negl Trop Dis. 2012;6(12):e1933.PubMedPubMedCentral Vlieghe ER, Phe T, De Smet B, Veng CH, Kham C, Bertrand S, Vanhoof R, Lynen L, Peetermans WE, Jacobs JA. Azithromycin and ciprofloxacin resistance in Salmonella bloodstream infections in Cambodian adults. PLoS Negl Trop Dis. 2012;6(12):e1933.PubMedPubMedCentral
13.
Zurück zum Zitat Wong MH, Yan M, Chan EW, Biao K, Chen S. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrob Agents Chemother. 2014;58(7):3752–6.PubMedPubMedCentral Wong MH, Yan M, Chan EW, Biao K, Chen S. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrob Agents Chemother. 2014;58(7):3752–6.PubMedPubMedCentral
14.
Zurück zum Zitat Xiao Y, Wei Z, Shen P, Ji J, Sun Z, Yu H, Zhang T, Ji P, Ni Y, Hu Z, et al. Bacterial-resistance among outpatients of county hospitals in China: significant geographic distinctions and minor differences between central cities. Microbes Infect. 2015;17(6):417–25.PubMed Xiao Y, Wei Z, Shen P, Ji J, Sun Z, Yu H, Zhang T, Ji P, Ni Y, Hu Z, et al. Bacterial-resistance among outpatients of county hospitals in China: significant geographic distinctions and minor differences between central cities. Microbes Infect. 2015;17(6):417–25.PubMed
15.
Zurück zum Zitat Xia S, Hendriksen RS, Xie Z, Huang L, Zhang J, Guo W, Xu B, Ran L, Aarestrup FM. Molecular characterization and antimicrobial susceptibility of Salmonella isolates from infections in humans in Henan Province, China. J Clin Microbiol. 2009;47(2):401–9.PubMed Xia S, Hendriksen RS, Xie Z, Huang L, Zhang J, Guo W, Xu B, Ran L, Aarestrup FM. Molecular characterization and antimicrobial susceptibility of Salmonella isolates from infections in humans in Henan Province, China. J Clin Microbiol. 2009;47(2):401–9.PubMed
16.
Zurück zum Zitat CLSI. Performance standards for antimicrobial susceptibility testing; twenty-seven informational supplement. CLSI document M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. CLSI. Performance standards for antimicrobial susceptibility testing; twenty-seven informational supplement. CLSI document M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
17.
Zurück zum Zitat Molbak K, Baggesen DL, Aarestrup FM, Ebbesen JM, Engberg J, Frydendahl K, Gerner-Smidt P, Petersen AM, Wegener HC. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104. N Engl J Med. 1999;341(19):1420–5.PubMed Molbak K, Baggesen DL, Aarestrup FM, Ebbesen JM, Engberg J, Frydendahl K, Gerner-Smidt P, Petersen AM, Wegener HC. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104. N Engl J Med. 1999;341(19):1420–5.PubMed
18.
Zurück zum Zitat Wu F, Xu X, Xie J, Yi S, Wang J, Yang X, Yang C, Liang B, Ma Q, Li H, Song H, Qiu S. Molecular characterization of Salmonella enterica Serovar Aberdeen negative for H2S production in China. PLoS One. 2016;11(8):e0161352.PubMedPubMedCentral Wu F, Xu X, Xie J, Yi S, Wang J, Yang X, Yang C, Liang B, Ma Q, Li H, Song H, Qiu S. Molecular characterization of Salmonella enterica Serovar Aberdeen negative for H2S production in China. PLoS One. 2016;11(8):e0161352.PubMedPubMedCentral
19.
Zurück zum Zitat Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14(4):e1007261.PubMedPubMedCentral Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14(4):e1007261.PubMedPubMedCentral
20.
Zurück zum Zitat Spratt BG, Hanage WP, Li B, Aanensen DM, Feil EJ. Displaying the relatedness among isolates of bacterial species -- the eBURST approach. FEMS Microbiol Lett. 2004;241(2):129–34.PubMed Spratt BG, Hanage WP, Li B, Aanensen DM, Feil EJ. Displaying the relatedness among isolates of bacterial species -- the eBURST approach. FEMS Microbiol Lett. 2004;241(2):129–34.PubMed
21.
Zurück zum Zitat Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis. 2006;3(1):59–67.PubMed Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis. 2006;3(1):59–67.PubMed
22.
Zurück zum Zitat Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barrett T, Ribot E. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol. 2005;43(3):1045–50.PubMedPubMedCentral Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barrett T, Ribot E. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol. 2005;43(3):1045–50.PubMedPubMedCentral
23.
Zurück zum Zitat Kim SY, Lee SK, Park MS, Na HT. Analysis of the Fluoroquinolone antibiotic resistance mechanism of Salmonella enterica isolates. J Microbiol Biotechnol. 2016;26(9):1605–12.PubMed Kim SY, Lee SK, Park MS, Na HT. Analysis of the Fluoroquinolone antibiotic resistance mechanism of Salmonella enterica isolates. J Microbiol Biotechnol. 2016;26(9):1605–12.PubMed
24.
Zurück zum Zitat Cui X, Wang J, Yang C, Liang B, Ma Q, Yi S, Li H, Liu H, Li P, Wu Z, et al. Prevalence and antimicrobial resistance of Shigella flexneri serotype 2 variant in China. Front Microbiol. 2015;6:435.PubMedPubMedCentral Cui X, Wang J, Yang C, Liang B, Ma Q, Yi S, Li H, Liu H, Li P, Wu Z, et al. Prevalence and antimicrobial resistance of Shigella flexneri serotype 2 variant in China. Front Microbiol. 2015;6:435.PubMedPubMedCentral
25.
Zurück zum Zitat Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. Beta-lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in the Netherlands. J Antimicrob Chemother. 2005;56(1):115–21.PubMed Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. Beta-lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in the Netherlands. J Antimicrob Chemother. 2005;56(1):115–21.PubMed
26.
Zurück zum Zitat Phuc Nguyen MC, Woerther PL, Bouvet M, Andremont A, Leclercq R, Canu A. Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis. 2009;15(10):1648–50.PubMed Phuc Nguyen MC, Woerther PL, Bouvet M, Andremont A, Leclercq R, Canu A. Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis. 2009;15(10):1648–50.PubMed
27.
Zurück zum Zitat CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2014 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2016. CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2014 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2016.
28.
Zurück zum Zitat Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8:887–900.PubMed Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8:887–900.PubMed
29.
Zurück zum Zitat CDC. Investigation Update: Multistate Outbreak of Human Salmonella Typhimurium Infections Linked to Ground Beef. 2012. CDC. Investigation Update: Multistate Outbreak of Human Salmonella Typhimurium Infections Linked to Ground Beef. 2012.
30.
Zurück zum Zitat Firoozeh F, Shahcheraghi F, Zahraei Salehi T, Karimi V, Aslani MM. Antimicrobial resistance profile and presence of class I integrongs among Salmonella enterica serovars isolated from human clinical specimens in Tehran, Iran. Iran J Microbiol. 2011;3(3):112–7.PubMedPubMedCentral Firoozeh F, Shahcheraghi F, Zahraei Salehi T, Karimi V, Aslani MM. Antimicrobial resistance profile and presence of class I integrongs among Salmonella enterica serovars isolated from human clinical specimens in Tehran, Iran. Iran J Microbiol. 2011;3(3):112–7.PubMedPubMedCentral
31.
Zurück zum Zitat Zhang J, Jin H, Hu J, Yuan Z, Shi W, Ran L, Zhao S, Yang X, Meng J, Xu X. Serovars and antimicrobial resistance of non-typhoidal Salmonella from human patients in Shanghai, China, 2006-2010. Epidemiol Infect. 2014;142(4):826–32.PubMed Zhang J, Jin H, Hu J, Yuan Z, Shi W, Ran L, Zhao S, Yang X, Meng J, Xu X. Serovars and antimicrobial resistance of non-typhoidal Salmonella from human patients in Shanghai, China, 2006-2010. Epidemiol Infect. 2014;142(4):826–32.PubMed
32.
Zurück zum Zitat Ke B, Sun J, He D, Li X, Liang Z, Ke CW. Serovar distribution, antimicrobial resistance profiles, and PFGE typing of Salmonella enterica strains isolated from 2007-2012 in Guangdong, China. BMC Infect Dis. 2014;14:338.PubMedPubMedCentral Ke B, Sun J, He D, Li X, Liang Z, Ke CW. Serovar distribution, antimicrobial resistance profiles, and PFGE typing of Salmonella enterica strains isolated from 2007-2012 in Guangdong, China. BMC Infect Dis. 2014;14:338.PubMedPubMedCentral
33.
Zurück zum Zitat Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463–70.PubMedPubMedCentral Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463–70.PubMedPubMedCentral
34.
Zurück zum Zitat Jeong HS, Kim JA, Shin JH, Chang CL, Jeong J, Cho JH, Kim MN, Kim S, Kim YR, Lee CH, et al. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microbial Drug Resist (Larchmont, NY). 2011;17(4):551–7. Jeong HS, Kim JA, Shin JH, Chang CL, Jeong J, Cho JH, Kim MN, Kim S, Kim YR, Lee CH, et al. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microbial Drug Resist (Larchmont, NY). 2011;17(4):551–7.
35.
Zurück zum Zitat Vila J, Ruiz J, Marco F, Barcelo A, Goni P, Giralt E, Jimenez de anta T. Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob Agents Chemother. 1994;38(10):2477–9.PubMedPubMedCentral Vila J, Ruiz J, Marco F, Barcelo A, Goni P, Giralt E, Jimenez de anta T. Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob Agents Chemother. 1994;38(10):2477–9.PubMedPubMedCentral
36.
Zurück zum Zitat Heisig P. High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrA and gyrB genes. J Antimicrob Chemother. 1993;32(3):367–77.PubMed Heisig P. High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrA and gyrB genes. J Antimicrob Chemother. 1993;32(3):367–77.PubMed
37.
Zurück zum Zitat Ling JM, Chan EW, Lam AW, Cheng AF. Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother. 2003;47(11):3567–73.PubMedPubMedCentral Ling JM, Chan EW, Lam AW, Cheng AF. Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother. 2003;47(11):3567–73.PubMedPubMedCentral
38.
Zurück zum Zitat Baucheron S, Chaslus-Dancla E, Cloeckaert A, Chiu CH, Butaye P. High-level resistance to fluoroquinolones linked to mutations in gyrA, parC, and parE in Salmonella enterica serovar Schwarzengrund isolates from humans in Taiwan. Antimicrob Agents Chemother. 2005;49(2):862–3.PubMedPubMedCentral Baucheron S, Chaslus-Dancla E, Cloeckaert A, Chiu CH, Butaye P. High-level resistance to fluoroquinolones linked to mutations in gyrA, parC, and parE in Salmonella enterica serovar Schwarzengrund isolates from humans in Taiwan. Antimicrob Agents Chemother. 2005;49(2):862–3.PubMedPubMedCentral
39.
Zurück zum Zitat Cui S, Li J, Sun Z, Hu C, Jin S, Guo Y, Ran L, Ma Y. Ciprofloxacin-resistant Salmonella enterica serotype Typhimurium, China. Emerg Infect Dis. 2008;14(3):493–5.PubMedPubMedCentral Cui S, Li J, Sun Z, Hu C, Jin S, Guo Y, Ran L, Ma Y. Ciprofloxacin-resistant Salmonella enterica serotype Typhimurium, China. Emerg Infect Dis. 2008;14(3):493–5.PubMedPubMedCentral
40.
Zurück zum Zitat Kim JH, Cho JK, Kim KS. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian Pathol. 2013;42(3):221–9.PubMed Kim JH, Cho JK, Kim KS. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian Pathol. 2013;42(3):221–9.PubMed
41.
Zurück zum Zitat Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet (London, Engl). 1998;351(9105):797–9. Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet (London, Engl). 1998;351(9105):797–9.
42.
Zurück zum Zitat Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007;59(4):751–4.PubMed Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007;59(4):751–4.PubMed
43.
Zurück zum Zitat Cavaco LM, Hasman H, Xia S, Aarestrup FM. QnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother. 2009;53(2):603–8.PubMed Cavaco LM, Hasman H, Xia S, Aarestrup FM. QnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother. 2009;53(2):603–8.PubMed
44.
Zurück zum Zitat Cui S, Li J, Sun Z, Hu C, Jin S, Li F, Guo Y, Ran L, Ma Y. Characterization of Salmonella enterica isolates from infants and toddlers in Wuhan, China. J Antimicrob Chemother. 2009;63(1):87–94.PubMed Cui S, Li J, Sun Z, Hu C, Jin S, Li F, Guo Y, Ran L, Ma Y. Characterization of Salmonella enterica isolates from infants and toddlers in Wuhan, China. J Antimicrob Chemother. 2009;63(1):87–94.PubMed
45.
Zurück zum Zitat Miriagou V, Tassios PT, Legakis NJ, Tzouvelekis LS. Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. Int J Antimicrob Agents. 2004;23(6):547–55.PubMed Miriagou V, Tassios PT, Legakis NJ, Tzouvelekis LS. Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. Int J Antimicrob Agents. 2004;23(6):547–55.PubMed
46.
Zurück zum Zitat Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.PubMedPubMedCentral Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.PubMedPubMedCentral
47.
Zurück zum Zitat Yang C, Li P, Zhang X, Ma Q, Cui X, Li H, Liu H, Wang J, Xie J, Wu F, et al. Molecular characterization and analysis of high-level multidrug-resistance of Shigella flexneri serotype 4s strains from China. Sci Rep. 2016;6:29124.PubMedPubMedCentral Yang C, Li P, Zhang X, Ma Q, Cui X, Li H, Liu H, Wang J, Xie J, Wu F, et al. Molecular characterization and analysis of high-level multidrug-resistance of Shigella flexneri serotype 4s strains from China. Sci Rep. 2016;6:29124.PubMedPubMedCentral
48.
Zurück zum Zitat Allen KJ, Poppe C. Occurrence and characterization of resistance to extended-spectrum cephalosporins mediated by beta-lactamase CMY-2 in Salmonella isolated from food-producing animals in Canada. Can J Vet Res. 2002;66(3):137–44.PubMedPubMedCentral Allen KJ, Poppe C. Occurrence and characterization of resistance to extended-spectrum cephalosporins mediated by beta-lactamase CMY-2 in Salmonella isolated from food-producing animals in Canada. Can J Vet Res. 2002;66(3):137–44.PubMedPubMedCentral
49.
Zurück zum Zitat Li XZ, Mehrotra M, Ghimire S, Adewoye L. Beta-lactam resistance and beta-lactamases in bacteria of animal origin. Vet Microbiol. 2007;121(3–4):197–214.PubMed Li XZ, Mehrotra M, Ghimire S, Adewoye L. Beta-lactam resistance and beta-lactamases in bacteria of animal origin. Vet Microbiol. 2007;121(3–4):197–214.PubMed
50.
Zurück zum Zitat Li R, Lai J, Wang Y, Liu S, Li Y, Liu K, Shen J, Wu C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int J Food Microbiol. 2013;163(1):14–8.PubMed Li R, Lai J, Wang Y, Liu S, Li Y, Liu K, Shen J, Wu C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int J Food Microbiol. 2013;163(1):14–8.PubMed
51.
Zurück zum Zitat Yang B, Qu D, Shen J, Xi M, Zhi S, Cui S, Ji B, Meng J. Antimicrobial susceptibility and related genes of Salmonella serovars from retail food in Shaanxi province. Wei Sheng Wu Xue Bao. 2010;50(6):788–96.PubMed Yang B, Qu D, Shen J, Xi M, Zhi S, Cui S, Ji B, Meng J. Antimicrobial susceptibility and related genes of Salmonella serovars from retail food in Shaanxi province. Wei Sheng Wu Xue Bao. 2010;50(6):788–96.PubMed
52.
Zurück zum Zitat Zhang YN, Peng J, Wang Q, Pei ZF, Zhang WJ, Niu ZX. Appearance of blaCMY-2 gene-positive Salmonella isolates of pig origin in China. Int J Antimicrob Agents. 2008;31(3):292–3.PubMed Zhang YN, Peng J, Wang Q, Pei ZF, Zhang WJ, Niu ZX. Appearance of blaCMY-2 gene-positive Salmonella isolates of pig origin in China. Int J Antimicrob Agents. 2008;31(3):292–3.PubMed
53.
Zurück zum Zitat Arlet G, Barrett TJ, Butaye P, Cloeckaert A, Mulvey MR, White DG. Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes Infect. 2006;8(7):1945–54.PubMed Arlet G, Barrett TJ, Butaye P, Cloeckaert A, Mulvey MR, White DG. Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes Infect. 2006;8(7):1945–54.PubMed
54.
Zurück zum Zitat Antunes P, Mourao J, Pestana N, Peixe L. Leakage of emerging clinically relevant multidrug-resistant Salmonella clones from pig farms. J Antimicrob Chemother. 2011;66(9):2028–32.PubMed Antunes P, Mourao J, Pestana N, Peixe L. Leakage of emerging clinically relevant multidrug-resistant Salmonella clones from pig farms. J Antimicrob Chemother. 2011;66(9):2028–32.PubMed
55.
Zurück zum Zitat Cooke FJ, Brown DJ, Fookes M, Pickard D, Ivens A, Wain J, Roberts M, Kingsley RA, Thomson NR, Dougan G. Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol. 2008;190(24):8155–62.PubMedPubMedCentral Cooke FJ, Brown DJ, Fookes M, Pickard D, Ivens A, Wain J, Roberts M, Kingsley RA, Thomson NR, Dougan G. Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol. 2008;190(24):8155–62.PubMedPubMedCentral
56.
Zurück zum Zitat Antunes P, Coque TM, Peixe L. Emergence of an IncIgamma plasmid encoding CMY-2 ss-lactamase associated with the international ST19 OXA-30-producing ss-lactamase Salmonella Typhimurium multidrug-resistant clone. J Antimicrob Chemother. 2010;65(10):2097–100.PubMed Antunes P, Coque TM, Peixe L. Emergence of an IncIgamma plasmid encoding CMY-2 ss-lactamase associated with the international ST19 OXA-30-producing ss-lactamase Salmonella Typhimurium multidrug-resistant clone. J Antimicrob Chemother. 2010;65(10):2097–100.PubMed
Metadaten
Titel
The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan Province, China
verfasst von
Nian Dong
Yongrui Li
Jiayong Zhao
Hui Ma
Jinyan Wang
Beibei Liang
Xinying Du
Fuli Wu
Shengli Xia
Xiaoxia Yang
Hongbo Liu
Chaojie Yang
Shaofu Qiu
Hongbin Song
Leili Jia
Yan Li
Yansong Sun
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05203-3

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.